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PREFACE 

Thirty years ago Professor Charles E. Spearman introduced the factor 
problem in psychology when he observed that the intercorrelations of a set 
of tests revealed an underlying order. He interpreted this order as the effect 
of a conspicuous factor that was common to all of the tests. There has been 
much controversy about different aspects of Spearman's single-factor hy­
pothesis and about his single-common-factor methods of analyzing inter­
correlations. His single-common-factor hypothesis is that the intercorrela­
tions of a group of tests can be explained in terms of a single central intellec­
tive factor which has been denoted "g," and that the variance of each test 
can be explained by the "g" factor and a factor that is specific and unique 
for each test. Since his hypothesis involves a factor which all of the tests 
have in common and a factor which is unique for each test, it is frequently 
called a "two-factor hypothesis." Spearman's single-factor methods are con­
cerned with the isolation of a single common factor in each test battery 
which can be so analyzed. 

Another interpretation of the mental abilities is that of Professor E. L. 
Thorndike, who has been a leader in this type of psychological research. It 
has been his judgment that the socially significant mental abilities are nu­
merous and discrete. 

The factor methods described in this volume are based on the assumption 
that a test score can be expressed, in first approximation, as a linear func­
tion of a number of factors. My previous papers on the multiple-factor 
problem are as follows: 

"Multiple Factor Analysis," Psychological Review, XXXVIII, No, 5 (September, 
1931), 406-27. 

"A Multiple Factor Study of Vocational Interests," Personnel Journal, X, No. 3 
(October, 1931), 198-205. 

"Isolation of Blocs in a Legislative Body by the Voting Records of Its Members," 
Journal of Social Psychology, III, No. 4 (November, 1932), 425-33. 

Theory of Multiple Factors (January, 1933). Pp. 65. University of Chicago Book­
store. 

Computing Diagrams for Tetrachoric Correlation Coefficients (April, 1933). Pp. 57. 
University of Chicago Bookstore. 

A Simplified Multiple Factor Method (May, 1933). Pp. 25. University of Chicago 
Bookstore. 

"The Vectors of Mind," Psychological Review, XLI, No. 1 (January, 1934), 1-32. 
"Unitary Abilities," Journal of General Psychology, XI, No. 1 (July, 1934), 126-32. 

vii 



viii PREFACE 

The fundamental equation in my first paper on factor theory is the same 
as the first equation in the present volume, but the development here pre­
sented is more formal and considerably extended. The fundamental as­
sumptions and the corresponding theorems are given in chapters i and ii. 
The centroid method which was described in my first paper has been im­
proved several times, and it is presented in chapter iii. The notation has 
been made more explicit and unambiguous. The fundamental factor theo­
rem was first stated in Theory of Multiple Factors. In the present volume 
this theorem is the subject of chapter ii. The theorem states that the num­
ber of linearly independent common factors in a battery of tests is the rank 
of their reduced correlational matrix. 

In Spearman's special case, where only one common factor is involved, 
the rank of the correlational matrix must therefore be one. Hence all sec­
ond-order minors must vanish. The expansions of the second-order minors 
are, in fact, Spearman's tetrad differences. This case is discussed in chap­
ter v. We are concerned here with the generalization of the factor problem 
to n dimensions. 

The geometrical formulation of the factor problem which was described 
in my earlier papers has been reproduced in this volume. Each test may be 
regarded as a radial vector in a common-factor space of as many dimensions 
as there are common factors in a test battery. The correlation between any 
pair of tests is the scalar product of the test vectors. Since the scalar prod­
uct of a pair of vectors is independent of the co-ordinate system, it follows 
that the intertest correlations define the test configuration in a common­
factor space but that they do not define the co-ordinate system. But the 
co-ordinate axes are the scientific categories in terms of which the tests are 
to be comprehended. This is an interesting indeterminacy. One of the prin­
cipal problems of factor analysis is to find a unique set of co-ordinate axes, 
either orthogonal or oblique, which shall represent scientifically meaningful 
categories in terms of which the tests may be comprehended. This problem 
has been solved in terms of what I have called 11simple structure" of a trait 
configuration. This concept is developed in chapters vi and vii. 

One of the important restrictions that must be satisfied by any acceptable 
solution to the factor problem is that the factorial description of a trait or 
test must be invariant when it is moved from one battery to another. No 
form of uniqueness can be scientifically meaningful which violates this prin­
ciple. This is the reason why I have discarded one of my earlier solutions, 
namely, the principal axes of the configuration; and it is also the reason why 
Professor Harold Retelling's special case of the principal axes solution must 
be discarded. His special case has been called a method of principal com­
ponents. The principal axes are discussed in chapter iv. 

In some applications of factor theory it seems appropriate to impose the 
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restriction that the direction cosines of each trait vector shall be positive or 
zero. This special case of the factor problem is developed in chapter viii on 
"The Positive Manifold." In some applications it may be appropriate to 
impose the restriction that the fundamental categories or reference traits 
shall be uncorrelated in the experimental population. The reference vectors 
are then orthogonal, and the determination of an orthogonal simple struc­
ture is then demanded. Orthogonal transformations of possible use for this 
problem are described in chapter ix. 

Finally, when the common factors are known, it is of interest to appraise 
each individual member of the statistical population as regards each of the 
primary factors. The solution of this regression problem is given in chap­
ter x. The other regression involves the prediction of a test performance in 
terms of the test coefficients and primary factors. The solution to this re­
gression problem is also given in chapter x. 

Since I was myself unfamiliar with matrix theory until very recently, I 
could hardly take this subject for granted in writing for other psychologists 
with limitations of training that are similar to mine. It was therefore im­
perative to supply students of factor analysis with a mathematical intro­
duction to matrix theory and related topics. This seemed all the more uec­
essary in view of the fact that the available textbooks on this subject are 
unsatisfactory. In the "Mathematical Introduction" I have attempted to 
present the essential mathematical ideas as clearly as may be possible in the 
scope of a single chapter. The introduction is written for students who have 
had the conventional undergraduate instruction in analytic geometry and 
in the calculus. It is explicitly limited to the real case, since complex num­
bers and imaginaries have not yet been introdu.ced in factor analysis. 

One of the turning-points in the development of multiple-factor analysis 
was the discovery in 1931 that the mathematics most adaptable to this prob­
lem was matrix theory. I once asked Professor Gilbert A. Bliss how to fac­
tor a correlation table, but· I did not call it a "matrix." He suggested that 
matrix theory might be applicable to my problem, but I was entirely un­
familiar with this branch of mathematics. Since that time I have profited 
on numerous occasions by the generosity of the members of the Department 
of Mathematics at the University of Chicago. I appreciate especially the 
interest of Professor R. W. Barnard. He suggested the equation by which a 
simple structure can be represented. A "simple structure" may be regarded 
either as a combined configuration of test vectors and reference vectors or 
as the aggregate of co-ordinate hyperplanes. Professor Barnard has also 
made valuable suggestions in connection with the problem of.determining 
the co-ordinate hyperplanes of a simple structure by successive approxima­
tion in the analytical method. 

I owe a special acknowledgment to my tutor in mathematics, Mr. Patrick 
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Youtz, who assisted me in becoming familiar with the elements of matrix 
theory. Later I was fortunate when Mr. Youtz accepted a full-time assign­
ment on the factor projects. He has examined, mathematically, each of the 
factor methods, and he has read and criticized in detail the manuscript for 
this volume. It is through him that I have become acquainted with some 
of the conventions of mathematical writing. 

Special acknowledgment is due Miss Leone Chesire, who has been re­
sponsible for most of the computing on my factor studies during several 
years. I have relied constantly on Miss Chesire's competent work in testing 
the many leads that we have investigated in factor theory. Her careful 
criticism of the entire manuscript has been of great value, and she has pre­
pared the appendix on the centroid method. 

I am indebted to my colleagues, Professor Mortimer J. Adler, Professor 
A. C. Benjamin, and Professor C. W. Morris, for reading and criticizing the 
general sections of the first chapter. 

The entire manuscript for this volume has been read and criticized in 
detail by four readers. Mr. Patrick Youtz and Miss Leone Chesire have 
read the manuscript and shared in the supervision of the computing. My 
wife, Thelma Gwinn Thurstone, has read and criticized the manuscript both 
for the mathematical and the psychological content. Mr. Joseph Novak, as 
a mathematician, has read and criticized the manuscript without previous 
familiarity with the factor problem. All of these readers have suggested 
many revisions that were intended to clarify the exposition, but I assume 
responsibility for all of the solutions, as well as for any errors that may be 
found. It cannot be hoped that this volume will be free from errors, since 
all of the chapters, except chapter v, cover new ground. I am indebted also 
to Mrs. Cypra Feinsot, who has supervised the work of preparing the manu­
script for the publishers. 

Three studies are now in progress which involve applications of the fac­
torial methods. These· will appear eventually in monograph form. They 
are (1) a factor analysis of sixty psychological tests that were taken by two 
hundred and forty college students who volunteered fifteen hours of testing, 
(2) a factor study of several hundred personality traits on which thirteen 
hundred adults were rated, and (3) a factor study of vocational interests of 
three thousand college students with respect to eighty professions. 

In carrying out these theoretical investigations, as well as the practical 
applications, the Social Science Research Committee at the University of 
Chicago has been most generous. I wish to acknowledge especially the in~ 
terest of Professor Donald Slesinger, chairman of the Committee. I am 
grateful for the financial assistance and for the physical facilities that this 
Committee has placed at my disposal during the past four years. I am grate-
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ful for a grant by the Carnegie Corporation of New York by which it became 
possible to add several research assistants during the past year. This grant 
has considerably aided in the development of factor theory. I am also 
grateful to the Illinois Emergency Relief Commission for assigning relief 
funds to these studies. Twelve computers have been at work on these fac­
tor projects. 

The future development of factor theory will probably reduce factor 
analysis to simpler computing methods. The linear approximations that are 
here used may eventually prove to be inadequate, but it is likely that much 
can be accomplished by these approximations in psychology and in other 
social sciences. The factor methods may be regarded as an intermediate 
stage in the development of science. No one would think of investigating 
the fundamental laws of classical mechanics by correlational methods or by 
factor methods, because the laws of classical mechanics are already well 
known. If nothing were known about the law of falling bodies, it would be 
sensible to analyze, factorially, a great many attributes of objects that are 
dropped or thrown from an elevated point. It would then be discovered 
that one factor is heavily loaded with the time of fall and with the distance 
fallen but that this factor has a zero loading in the weight of the object. 
The usefulness of the factor methods will be at the borderline of science. 

No attempt has been made in this volume to integrate the present multi­
ple-factor analysis with the previous work of Professor Sewell Wright on 
path coefficients and with the work of Professor Truman L. Kelley on mul­
tiple factors. While these several approaches to the problem seem to be 
quite different, it should be possible to unify them. As far as I am aware, 
my own work is not in conflict with the work of others on the multiple-fac­
tor problem or with that of Professor Spearman on the single-factor meth­
ods. The development of factor theory, as well as its applications in science, 
will be accelerated by the assistance of mathematicians; and it is gratifying 
that Professor E. B. Wilson has turned his attention to these problems in 
several papers. The future development of factor analysis in psychology 
will probably require more mathematical competence than we can supply 
in our own ranks. 

CHICAGO, ILLINOIS 

March, 1935 

L. L. THURSTONE 



MATHEMATICAL INTRODUCTION 

The matrix theory which is used in the development of factor analysis is 
not generally available to students whose training in mathematics is limited 
to undergraduate courses in analytical geometry and in the calculus. This 
mathematical introduction reviews the elementary theory of matrices as 
well as the closely related theory of determinants. Summation that involves 
double subscript notation is included in this section, since it is used in factor 
theory and since it is unfamiliar to most students of statistics. In the geo­
metrical interpretation of the factorial matrix, only non-homogeneous co­
ordinates are used. For this reason, the introduction includes non-homo­
geneous co-ordinates and omits homogeneous co-ordinates which are con­
ventional. Orthogonal and oblique transformations have been illustrated 
geometrically. No provocation has been found so far in factor theory to in­
troduce imaginaries and complex numbers, but the future development of 
factor analysis may call for them. This mathematical introduction is limited 
to the real case, and all theorems have been written with this restriction in 
mind. 

If this introduction is not self-sufficient, perhaps it may serve as a useful 
guide to the student of factor theory who seeks mathematical assistance on 
specified topics. If a student has the intention of attaining some competence 
in factor theory and in related statistical work, there is no short cut for 
formal courses in the mathematics that is involved.* 

Matrices 
Matrices and determinants involve rectangular auangements of num­

bers. Any rectangular arrangement of numbers is called a matrix, irrespec­
tive of what the numbers mean. If the matrix has m rows and n columns, 
the matrix is said to be of order mXn. In designating the order of a matrix, 
it is customary to refer to rows first and columns second. Thus a matrix of 

*The following references will be found useful: 
W. F. Osgood and W. C. Graustein, Plane and Solid Analytic Geometry (New York: 

Macmillan Co., 1929). 
L. E. Dickson, Modern Algebraic Theories (New York: B. H. Sanbom, 1926), chap. iii. 

yMaxime B6cher, Introduction to Higher Algebra (New York: Macmillan Co., 1931), 
chaps. i-vi, inc. 

H. W. Tumbull and A. C. Aitken, Canonical Matrices (London: Blackie & Sons, 
1932), chap. i. 

V. Snyder and C. H. Sisam, Analytical Geometry of Space (New York: Henry Holt & 
Co., 1914). 

1 



2 THE VECTORS OF MIND 

order pXq hasp rows and q columns. Tables 1a and 1b show a mn,trix of 
order 3X4 and a matrix of order 3X3. A TOW is horizontal. A column is 
vertical. The general name for either a row or a column is an array. Each 
of the small squares into which a matrix is divided is called a cell, and the 
number in each cell is called a cell entry or element. 

Table 1a 

2 3 1 5 

1 6 0 \) 

0 2 6 7 

Table 1b 

2 1 5 

4 8 3 

2 0 7 

In order to designate a particular element, it is customary to use a double 
subscript, the first one for the row and the second one for the column. If a 
matrix is denoted A, then its elements may be denoted a;;, where i shows 
the row and j shows the column at the intersection of which the element a;i 

is found. Thus, in Table 1 a the element a12 = 3 and ~4 = 9. 
In developing the theory of matrices it is desirable to exhibit the ele­

ments as shown in Table 2. The elements in the first row are a 11, a12, a13, 

... , a1,, showing that the table represents a matrix of n columns. The ele­
ments of the first column are au, a21, a31, ••• , aml, showing that the table 
represents m rows. The general element in this matrix A is a;i> where i 
takes the successive values I, 2, 3, ... , m, while j takes the successive 
values 1, 2, 3, ... , n. The first subscript refers to the row; the second sub­
script refers to the column. 

Table 2 

an a12 al3 aln 

a,1 a, a,s a,n 

as1 a,, a as asn 

a;f 

aml a.,, a.,, amn 

The conventional representation of a matrix is shown in Table 3, where 
the rectangular arrangement of numbers is inclosed by double vertical lines 
on the left and on the right sides of the rectangle. It is also customary to 
denote specified matrices with letters. Thus, the matrix of Table 3 might be 
conveniently designated A or any other letter. A matrix A might also be 
designated by its general element a;i· 

Table 3 

2 1 5 

4 8 3 

2 0 7 
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If the successive rows of matrix A are written as successive columns of a 
new matrix, the new matrix is called the transpose of A. It is denoted A'. 
Table 4 shows a matrix A and its transpose A'. 

Table 4 

2 3 1 5 2 1 0 

1 6 0 9 3 6 2 

0 2 6 7 1 0 6 

5 9 7 
A A' 

Determinants 
One particular interpretation of a square matrix is called a determinant. 

This interpretation of a square matrix probably had its origin in the practi­
cal work of solving simultaneous equations, and it is indicated by single 
vertical lines on the left and on the right sides of a square table. It is illus­
trated in Table 5. Table 3 is called a matrix; while Table 5, which implies a 
particular interpretation, is called a determinant. A determinant is always 
square. Hence its order is n, in which n is the number of rows or the number 
of columns. 

Table 5 

2 1 5 

4 8 3 

2 0 7 

The diagonal from the upper left corner to the lower right corner of a 
determinant is called the principal diagonal. In Table 5 the principal diag­
onal contains the elements 2, 8, 7. The other diagonal from the lower left 
corner to the upper right corner is called the secondary diagonal. 

In many problems it is convenient to assign a plus sign and a minus sign 
to alternate cells in a determinant. A convenient rule is to designate the 
upper left cell as positive and all other cells as alternately negative and 
positive, as the cells can be moved over by the castle in a chess game. This 
sign arrangement is illustrated in Table 6 for a determinant of order 5. 

Table 6 

+ ...: + + 
+ + 

+ 

+ 

+ 
+ + 

+ 

+ 

+ 
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Notice that the cells in the principal diagonal are all positive and that lines 
parallel to this diagonal are alternately negative and positive. The sign is 
positive for an even number of steps from the upper left cell, and it is nega­
tive when the number of steps is odd. The sign of a cell determined in this 
manner may be called the position sign of the cell. If the general element of 
the determinant is denoted a;i, then the element with its position sign may 
be conveniently denoted ( -l)i+iaii· When the exponent (i+j) is odd, the 
sign of the cell is negative; and when (i+j) is even, the sign of the cell is 
positive. 

The product of any n elements of a square matrix, selected with only one 
element from each of the n rows and only one element from each of the n 
columns is called a term of the determinant of the matrix. Table -1 is a deter-

Table/! . , 

minant of order 3. From this determinant six terms may be written. These 
are shown in Table -t?in which the elements of each term are arranged in 
the order of their columns. 

Table~"/ 
1) au a.. ass 

2) au a 32 a 23 

3) a~1 a12 aaa 

4) a.n as$ aa 

5) as1 a12 an 

6) a31 a22 aa 

Each ·of these six terms is the product of three elements so selected that 
each term contains only one element from each row and only one element 
from each column. If a square matrix is of order n, the total number of 
terms in its determinant is lE· The term that contains all the elements of 
the principal diagonal is called the leading term of the determinant. 

The sign of each of the ~ terms of a determinant can be ascertained in 
the following manner. Let then elements of each term ,?,e arranged in as­
cending order according to columns, as shown in Tablet. This can evident­
ly be done without affecting the numerical value of the terms. Consider 
the fourth term as an example, and list the rows as follows: 

2 3 1. 
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Any interchange of two adjacent elements constitutes an inversion. It may 
be illustrated by interchanging 1 and 3. The resulting arrangement is 

2 1 3. 

If, now, the adjacent elements 1 and 2 are interchanged, the arrangement 
becomes 

1 2 3' 

in which the rows are in consecutive order. 
The sign of a term of a determinant is positive if it represents an even 

number of inversions from the consecutive order of rows and columns. The 
sign of the term is negative if the number of inversions in the term is odd. 

Applying this rule to the six terms of Tabled-/we have the same terms 
with proper signs as shown in Table Jj: ·. 

Tablep'J 

1) +au 0.:.2 ass 

2) -au aa2 a2a 

3) -a21 ar2 aaa 

4) +a21 aa2 a13 

5) +aa1 a12 G.:!a 

6) -aal a22 au 

A complete definition of a determinant can now be given. 
Definition: If a squ.are table is used as a symbol of the sum of [E terms, 

each term being the product of n elements with only one element from 
each row and only one element from each column, the sign of each term 
taken positive or negative according as the term contains an even or an 
odd number of inversions, then the square table is called a determinant. 

Hence the sum of the six terms of Table /A.s implied by the determinant of 
Table1'~The determinantal interpretation of a square matrix is denoted by 
single vertical lines on the left and on the right sides of the square table, as 
shown in Table:;.'-

If a square matrix is denoted by a letter such as A, then the determinant 
of the matrix is denoted I A 1. If A represents a number, then I A I means 
the absolute value, ignoring the sign of the number A. It should be noted 
that a matrix is merely a rectangular table of numbers, and hence a .matrix 
has no numerical value. But a determinant is, by definition, a sum of terms, 
and hence it has a numerical value. If a matrix is denoted a;i, then its de­
terminant is denoted I a;JJ. 
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Consider the second-order determinant 

and the [3=2 terms that it implies. These are 1X3 and 8X5, in which the 
factors of each term are arranged in consecutive order by columns. The rows 
of the term 1 X 3 are 1 and 2. Since these are in consecutive order, the sign 
of this term is positive. Its value is therefore + (1) (3) = +3. The rows of 
the term 8X5 are 2 and 1. One inversion changes the order 2 and 1 into the 
consecutive order 1 and 2. Hence the sign of this term is negative. The de­
terminant therefore has the numerical value +3-40= -37. Any second­
order determinant can be evaluated as follows: 

I ac db I =ab-ed. 

An x-rowed minor of the matrix A is a determinant of order x which is 
formed by the intersections of any x rows and any x columns of the ma­
trix A. If one or more columns of a determinant are eliminated and if the 
same number of rows are eliminated, the remaining cells constitute a minor. 
From the determinant of Table 7 nine second-order minors may be drawn. 
A few of them are illustrated here: 

I an a121 I a21 a2sl I a12 a1sl· 
a21 a22 ' a31 aas ' a22 a2s 

If any two columns and any two rows are eliminated from the determinant 
of Table 7, there remains a 1-rowed minor which is a single element. In this 
sense each element can be regarded as a minor of the determinant. 

If corresponding rows and columns are eliminated, the remaining minor 
is symmetrically placed with regard to the principal diagonal, and it is 
called a principal minor. In the determinant of Table 7, three second-order 
principal minors may be drawn. These are 

I 
an a121 I an a1al I a22 a2al 
an a22 ' a31 aaa ' a32 ass . 

There are three 1-rowed principal minors in this determinant, namely, the 
three elements in the principal diagonal. 
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If the row i and the column j which intersect in an element aii are elimi­
nated from a determinant, the remaining (n-1)-rowed determinant is 
called the first minor of aii· This definition is illustrated with the determi­
nant of Table 5. The second row and the first column intersect in the ele­
ment 4. If these two arrays are eliminated from the determinant, the re­
maining 2-rowed determinant is 

1~ ~1=7-0=+7. 
This determinant, whose numerical value is +7, is the first minor of the 
element az1=4 in the determinant of Table 5. Let the first minor of the ele­
ment aii be denoted m;i· 

In some problems it is convenient to refer to the minor m;i with the posi­
tion sign of the element a;i· This quantity is called the cofactor of a;i· It is 
defined by the relation 

(cofactor of a;;) = e;i = ( -1)i+imii. 

In Table 5 the cofactor of the element 4 is 

( -1)2+1 I 01 571 = - [7 -0] = - 7 . 

In the same table the cofactor of the element 3 is 

( -1)2+3 
1

2
2 o

1 
I 

= - [0-2] = + 2. 

Hence the absolute values of the first minor of a;; and of its cofactor are 
identical. They differ only in the manner of determining the sign. If the 
position sign of the element a;; is positive, the first minor and the cofactor 
have the same sign. If the position sign of a;; is negative, they have op­
posite signs. 

The numerical value of a determinant can be expressed conveniently for 
some problems in terms of the cofactors. For example, 
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The numerical value of a determinant is the weighted sum of the elements in 
any array, each element being weighted by its cofactor. In the example, the 
determinant is expressed in terms of the elements of the first column. 

As a numerical example, the value of the determinant of Table 5 can be 
expressed as follows: 

The numerical value of a determinant can be expressed as the summa­
tion: 

(1) 

where the weighted sum may be taken over any column or any row. The 
following is an example of a fourth-order determinant, evaluated by the 
method of (1). 

2 4 1 0 242 4 1 0 4 1 0 4 1 0 3242 
IAI= 1 61 4 =+2 6 1 4 -3 614 +1 242 -1 242 

1 0 2 3 
023 0 2 3 023 6 1 4 

242 

= + 2 1 ; : /- 6 1 ; : I +O I i! I 6 1 4 
023 

= 2(3-8) - 6(12-4) + 0(16-2) 

= - 10 - 48 + 0 = - 58 .. 

410 

6 1 4 
= + 4 1 ~: 1-6 1 ~: I +O I :: I 

023 

= 4(3-8) - 6(3-0) + 0(4-0) 

= - 20 - 18 + 0 = - 38,.. 
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410 

242 ~ +41 : : 1-2 1 : : I +O I : : I 
0 2 3 

= 4(12-4) - 2(3-0) + 0(2-0) 

= 32 - 6 + 0 = + 26 . 

4 1 0 

242 
=+4 1 :: 1-2 1 ~: I + 6 1 :: I 

6 1 4 

= 4(16-2) - 2(4-0) + 6(2-0) 

= +56- 8+12 = + 60. 

Hence 

/AI = (+2)(-58)- (3)(-38) + (1)(+26)- (1)(+60) = -36. 

For every element a;3 in the square matrix A tpere is a corresponding 
minor m;i and a corresponding cofactor e;f. Let M be the squ~re matrix 
with elements m,3; let E be the square matrix with elements e;i; and let P be 
the transpose of E. Then the square matrix F is called the· adjoint of A. 
Its elements may be denoted ht = ei•· 

These definitions are illustrated in the following numerical example: 

.;-2 ...-1 +-5 56 -22 -16 

~4 -+8 -3 =A - 7 4 2 =E 

+2 "0 -t-7 -37. 14 12 

56 22 -16 56 -7 -37 

7 4 - 2 =M -22 4 14 =F=adjoint of A. 

-37 -14 12 -16 2 12 
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A square matrix is said to be symmetric when a,i = aii· It is symmetric 
about the principal diagonal. 

1 4 5 

4 2 8 =a symmetric matrix . 

5 8 3 

If the matrix is symmetric except that the signs above the principal diag­
onal are opposite to the signs below the diagonal, then the matrix is said to 
be skew symmetric. 

+2 -3 +4 

+3 -5 - 5 =a skew symmetric matrix . 

-4 +5 +6 

If all the principal minors of a matrix are greater than or equa:l to zero, 
then the matrix is said to be positive-definite. If, in addition, it is symmetric, 
it is a Gramian matrix. 

2 3 -3 

2 4 2 = a positive definite matrix. 

3 5 6 

5 10 13 

10 20 26 =a Gramian matrix. 

13 26 36 

In some problems it is important to know the highest order of the non­
vanishing minors. The highest order of the non-vanishing minors is called 
the rank of a matrix. The rank of Table 5 is equal to its order, namely, 3, 
because the determinant itself does not vanish. The determinant of Table 10 
does vanish, so that its rank must be less than 3. It contains second-order 
minors that do not vanish, and the rank of the determinant is therefore 2. 

Table 10 

10 8 1 

8 8 2 =0 

1 2 1 
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If the determinant of a matrix is zero, the matrix is said to be singular. 
If the determinant does not vanish, the matrix is said to be non-singular. 

If I aii I :;eo, then a;; is non-singular. 

Most of the theorems in the elementary theory of real determinants are 
concerned with the methods of ascertaining the numerical value of a de­
terminant and with the operations that do, or do not, affect its numerical 
value. The following theorems are useful in dealing with determinants: 

1) The value of a determinant is equal to that of its transpose. 

I 
a1 :I I a1 

bl I; 
br a2 b2 

a1 bl c1 a1 a2 as 

a2 b2 c2 br b2 ba 

a a ba Cs c1 C2 Ca 

2) If any pair of parallel arrays of a determinant are interchanged, the 
absolute value of the determinant remains unaltered but the sign is re­
versed. 

3) If two parallel arrays of a determinant are proportional, the determi­
nant vanishes. 

b1 b2 ba = 0. 

lcb1 lcb2 kba 
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If k = 1, then two arrays are identical and the determinant vanishes. 
4) If a determinant has an array of ciphers, it is equal to zero. 

a b c 

0 0 0 =0. 

d e f 

5) If each element of an array is multiplied by any factor, the value of 
the determinant is multiplied by that factor. 

a1 a2 as a1 a2 a a 

bl b2 ba =k bl b2 bs 

kc1 kc2 kca c1 c2 cs 

This theorem is sometimes useful in reducing a determinant to simpler. 
forms. 

6 9 8 1 1 4 1 1 4 

12 18 4 = 6X9X2 2 2 2 = 6X9X2X2 1 1 1 = -648. 

24 27 2 4 3 1 4 3 1 

6) If each element in an array is reversed in sign, the value of the de­
terminant is reversed in sign. 

aa ba ea -aa bs ea -as Ca 

7) If an array contains no zero elements, all the elements of the array 
may be made unity by means of multiplying factors. 

3 4 6 1 1 1 1 1 1 

2 8 8 = 3 X 4 X 6 % 2 -~ = 3 X 4 4 12 8 

6 7 9 2 t ~ 

1 1 1 

2 t .g 

1 1 1 

= 3X4X4 1 3 2 = 3X4 1 3 2 = -36. 

2 t ~ 8 7 6 
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8) Ev:ery determinant can be expressed as a sum of two determinants. 

(at+P) bl Ct a1 bl c1 p br er 

(a2+q) b2 c2 a2 b2 c2 + q b2 c2 

(aa+r) ba ea as ba ea r ba ea 

9) The value of a determinant remains unaltered if each element in any 
array is augmented by a multiple of the corr~sponding element in a parallel 
array. 

(at+kbt) bl Ct a1 bt Ct bl bl Ct a1 bl Ct 

(a2+kb2) b2 c2 ~ b2 c2 +k b2 b2 C2 a2 b2 c2 

(aa+kba) ba Ca as ba Ca bs ba Ca a a ba ea 

' The. second determinant in the right member vanishes because two columns 
are identical. 

10) If all the elements of a determinant on one side of the principal diag­
. onal are ciphers, the determinant reduces to the leading term. 

5 1 2 5 1 2 2 1 2 

633 = 633 

3 1 2 

3 3 3 

0 0 5 

0 3 3 = 2X3X5=+30. 

0 0 5 113 8 5 0 5 

Matrix multiplication 

Consider the three simultaneous equations, 

(2) ( 

. Y1 · + 2y2 = X1 , 

. 3y2 + Ya = X2, 

2yt + 2y2 + 4ya. = Xa • 

l 

The equations (2) are written in the expanded notation. If the x's are known, 
the equations may be solved numerically for the y's. As an example, let 
x1 =1, X2=?, x3 =2. Solving the equations simultaneously, 

Yl =- H' Y2 = tf, 
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In some problems it is convenient, as well as clarifying, to represent u set 
of simultaneous equations in the rectangnlar notation which is illust.ratcd in 
Table 11. Here the coefficients of the three simultaneous equations have 

Table 11 

k k 

1 2 0 Y1 X! 

0 3 1 X1 Y2 = ' X2 

2 2 4 ,ya X a 
A y X 

been arranged in the form of a matrix that may be denoted 4- The y's have 
been arranged in a vertical column in a matrix denoted y. The x's are also 
arranged in a vertical column matrix denoted x. The matrix A is of order 
3X3, while the matrices x and y are both of order 3 XL 

A matrix that consists of a single column will be called a colnmn vector. 
A matrix that consists of a single row will be called a row vector. The vec­
torial terminology is probably due to the fact that the elements in any array 
may be regarded as the Cartesian co-ordinates of a point in a space of as 
many dimensions as there are elements in the array. This point, together 
with the origin, determines a direction in space. In this manner any army 

-._of a matrix can be given a vectorial interpretation. 
The three matrices A, y, x, of Table 11 may be regarded as symbolizing 

the simultaneous equations (2). This necessitates that a particular opera­
tion be implied by the adjacent matrices A and y. In order that these ma­
trices shall symbolize the simultaneous equations, the following rule must 
be implied in Table 11: 

The first equation in (2) can be produced from the matrices by writing 
3 

(3) auyn + a12Y21 + a1sYs1 · = ), aliYil = Xu • 
'' ' ........ 

j•l 

In performing this operation with the matrices, a row of the first one is 
associated with a column of the second one. The first equation of (2) calls 
for the cross products of the corresponding elements of the first row of A and 
the first column of y. (In the present problem, y has only one column.) The 
cross product is illustrated by (3). 

The second equation (2) is produced by performing the same row--by-. 
column multiplication, using the second row of A and the first column of y. 
Then we have · 

(4) 
3 

~1Y11 + a22Y21 + ~aYa1 = L ~i'Yt1 ,..; X21 • 
i-1 
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The third equation (2) is produced by a similar operation on the third 
row of A and the first column of y. The sum of the three products is record­
ed in the third row and first column of x. The equation is 

(5) 
3 

as1Y11 + as2Y21 + assYs1 = ,2:: asiYil = X31 • 
j=l 

The three equations may be written in the more condensed form 

(6) 

This interpretation of two adjacent matrices is called matrix multiplication. 
In the present problem k = 1, because y has only one column. Since i can 
take three different values, namely, i = 1, 2, 3, the equation (6) represents 
all three of the simultaneous equations in summational notation. Table 11 
represents the rectangular notation. The three equations (2) may also be 
represented conveniently in the still more condensed matrix notation, 
~~ . 

(7) Ay=x, 

which is a matrix equation. The operation specified by this matrix equation 
is that if the matrix A is multiplied by the matrix y, row-by-column, the 
matrix product is another matrix, namely, x. This is an exceedingly power­
ful method of handling sets of equations, because many otherwise tedious 
numerical operations can be shunted, so that the calculations are performed 
orily on a final set of matrices rather than on many intermediate steps. Still 
more important is the fact that significant relations in a problem are con­
spicuous in the matrix notation but they may be obscure when the prob­
lem is handled in expanded algebraic or numerical form. 

Table 12 

i 
k 11 Y1 ih Ya 11 1 0 2 k 11 X1 X2 Xa 11 

y' j 2 3 2 x' 

0 1 4 

..4.' 

The same set of simultaneous equations (2) may be represented by the 
matrix multiplication shown in Table 12. The multiplication of the first row 
of y' (y' has only one row) and the first column of A' reproduces the first 
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equation of (2). It should be noted that the matrices of Table 12 are the 
transposes of the matrices of Table 11. The transpose of a column vector is 
a row vector with the same elements. 

The summational notation for the matrix multiplication of Table 12 is 

(8) 
3 

L Ykiai; = Xki • 

i=l 

The general element of A in Table 11 is aii· Hence the general element of A' 
in Table 12 is aii. The general element of y is Yik, so that the geneml ele­
ment of y' is Yki· The matrix equation for Table 12 is 

(9) y'A' = x', 

which represents the same set of equations as (7). 
In order to multiply one matrix by another, the number of columns of 

the first one must be the same as the number of rows of the second. The col­
umns of A in Table 11 are represented by the subscript j, and this is also the 
subscript for the rows of y. If the subscripts for the first matrix are i and j 
and the subscripts for the second matrix are j and k, then the j subscript is 
eliminated from the matrix product which has the subscripts i and k. The 
same rule can be verified in the matrix multiplication of Table 12, where the 
subscripts of the first matrix are k and j and those of the second matrix 
are j and i. Eliminating the middle subscript j, which is common, the ma­
trix product has the subscripts k and i. 

The matrix equations (7) and (9) illustrate the following matrix theorem: 
Theorem: The transpose of any product of matrices is the product of their 

transposes in reverse order. 
Hence, if AB= C, it follows that B' A'= C'. Applying this theorem to the 
present example, we have, by Table 11, Ay=x and, by the theorem, y'A' 
=x', which is the matrix equation for Table 12. 

If the x's are known in (2), then the y's may be found. Let the y's be 
expressed as linear functions of the z's in (10). 

(10) { 
Zr +z3 

2z2 +zs = 

Zr ;2z2 Ys · 



MATHEMATICAL INTRODUCTION 17 

This set of simultaneous equations is represented in Table 13. If the three 

Table 13 

1 0 1 Zl Y1 

0 2 1 Z2 Y2 

1 2 0 Za Ya 
B z y 

matrices of Table 13 are denoted B, z, and y, we can represent the three 
equations (10) in the single matrix equation, 

(11) Bz = y. 

Since the y's are known, the values of the z's can be determined. Substitut­
ing the known values of the y's in (10), we find that 

Equation (7) shows that the x's can be expressed linearly in terms of 
the y's. Equation (11) shows that the y's can be expressed linearly in terms 
of the z's. It is desired now to express the x's directly in terms of the z's 
without the intermediate y's. This can be done. From the equations 

(7) Ay= x, 

(11) Bz = y, 

it follows that 

A(Bz) = x, 

ABz = x. 

Let AB=C. Then 

(12) Cz = x. 

In order to express the x's in terms of the z's, the matrix product AB= C 
must be determined numerically. This matrix product is shown graphically 
in Table 14. Consider the first row of A and the first column of B. The cross 
product is 

(1)(1) + (2)(0) + (0)(1) = + 1. 
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This is therefore the element in the first row and the first column of the 
matrix product C. Consider, as another example, the second row of A and 
the third column of B. The cross product is 

(0)(1) + (3)(1) + (1)(0) = + 3 . 

This is the element c2a in the matrix C. 

'l'able 14 

1 2 0 1 0 1 1 4 3 

0 3 1 0 2 1 1 8 3 

2 2 4 1 2 0 6 12 4 

A B c 

Since the numerical values of the x's, the y's, and the z's are known, the 
matrix equation (12) may be tested graphically, as shown in Table 15. As a 

'l'able 15 

1 4 3 -~11:-1·1 

1 8 3 7 3 a 

6 12 4 -(~ .. 2 
c z X 

sample check, consider the second row of C and the first column of z. It 
should reproduce the value X21 = 3. 

Table 11,. shows the matrix product AB= C. If the order of the matrices 
A and B is interchanged in this multiplication, a different product is ob~ 
tained. This is readily verified numerically in Table 11,.; and it illustrates the 
principle that if AB= C, then, in general, BA~ C. Matrix multiplication is 
not commutative. In matrix algebra it is essential to note the order of the 
matrix factors because the order is not arbitrary, as in ordinary algebra, 
where ab= ba. 

The following is an example of matrix algebra. If, instead of (7) and (11), 
the transposed forms of these equations were used, we should have 

(9) 

(13) 

y'A' = x', 

z'B' = y'. 
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Substituting (13) in (9), 

(14) z'B'A' = x'. 

But 

(15) AB= C. 

Hence 

(16) B'A' = C'. 

Substituting (16) in (14), 

(17) z'C' = x', 

which could also be written directly as the transposed form of (12). 
In order that there shall be a unique solution for the simultaneous equa­

tions (2), the matrix A of the coefficients must be non-singular, i.e., lA I :;<!'0. 
This may be tested by trying to solve a set of non-homogeneous simultane­
ous equations with coefficients whose determinant does vanish. 

/,- The multiplication of matrices is associative. This is illustrated as fol­
lows: 

(AB)C = A(BC) = ABC. 

The matrix product (AB) may be determined and then postmultiplied by 
C, or the matrix product (BC) may be determined and then premultiplied 
by A. The product is the same. This principle can be extended to any 

1 number of matrix factors. For example, 

(ABC)D = (AB)(CD) = A(BCD) = ABCD . 

Note that the order of the matrix factors is retained. 
The sum, or difference, of two mXn matrices is the mXn matrix each of 

whose elements is the sum, or difference, of the corresponding elements in 
the given matrices. 

2 3 

4 5 11 = 
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The components may be written in any order. 

A+B=B+A; 

(A + B) + C = A + (B + C) = A+ B + C . 

If k and m are scalars, then 

kA + kB = k(A + B) ; 

kA + mA = (k + m)A . 

The multiplication of matrices is distributive. 

A(B +C) =AB+ AC .: 

(B + C)A = BA + CA . 

It can be shown that the rank of a matrix product cannot exceed the lowest 
rank of any of the factors. Thus, if the ranks of matrices A, B, and C are 
2, 4, and 3, respectively, then the rank of the matrix product ABC cannot 
exceed 2. 

It is sometimes useful to know that the determinant of the product of two 
square matrices is equal to the product of their determinants. The following is 
an example: 

Let lA I= I: :I = - 10, and let I B I = I ; : I = + 5 . 

Then 

1
22 261 

lA I· IBI = IABI = =-50= (-10)(+5). 
29 32 

In the matrix product AB, the matrix B is said to be premultiplied by the 
matrix A, or the matrix A is said to be postmultiplied by the matrix B. 

The operation of multiplying one matrix by another can be summarized 
for mnemonic purposes in the diagram of Figure 1. This diagram shows 
that rows of the first matrix are associated with columns of the second 
matrix and that the middle subscript is eliminated in the product. If the 
ith row of A is cross multiplied with the kth column of B, the cross product 
is recorded in the cell ik of C. 

There is nothing magical or profound in the particular rules of matrix 
multiplication that have become conventional. The row-by-column rule is 
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entirely arbitrary. It would have been possible to set up a column-by-row 
rule provided that the matrices had been so arranged that the rule would 
have reproduced the original equations which the matrix notation represent-

J K 

= 

B 

A AB=C 
FIGURE 1 

ed. It would also have been possible to have a notation which implied that 
one matrix was on top of another, but this would not have been so conven­
ient for writing habits that go from left to right. 

Diagonal matrices ·. 

· · ln the manipulation of systems of equations there occurs frequently a 
type of matrix in which all of the elements are zero except the diagonal ele­
ments. A matrix in which only the elements of the principal diagonal are 
non-vanishing is called a diagonal matrix. The following is a diagonal ma­
trix of order 4: 

a 0 0 0 

0 b 0 0 
= D = a diagonal matrix. 

0 0 c 0 

0 0 0 d 

It sometimes happens that all of the elements of a diagonal matrix are 
identical. Such a matrix is called a scalar matrix. The following is an ex­
ample: 

k 0 0 0 

0 k 0 0 

0 0 k 0 

0 0 0 k 

= K = a scalar matrix. 
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When a diagonal matrix has unity in each diagonal cell, it is called a 
unit matrix or the identity matrix. The following is an identity matrix of 
order 4: 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

= I = the identity matrix. 

The properties of diagonal matrices are very useful in handling sets of 
linear equations: 

1) Premultiplication DA with a diagonal m[1trix D multiplies each r·ow 
of A by the corresponding element in D. 

2) Postmultiplication AD with a diagonal matrix D multiplies each 
column of A by the corresponding element in D. 

11 : : 11 11 : : 11 = ll :: :: 11 ; 

D A DA 

11 : : 11 11 : : 11 = 11 :: :: 11· 
A D AD 

3) Premultiplication or postmultiplication with a scalar matrix K mul­
tiplies all elements of A by the constant element of K. This is a special case 
of the first two theorems. The reason why premultiplication with a scalar 
matrix has the same effect as postmultiplication is that if every row is mul­
tiplied by a constant p, the effect is the same as if every column is multiplied 
by the constant p. In either case every element of A is multiplied by p. 

11 : : 11 11 : : 11 11 :: :: 11 ; 

A K AK 

11 : ; 11 11 : : 11 = 11 :: :: 11 ; 

K A KA 

11 : : 1111 : : 11 =p 11 : : 11· 

K A pA 
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Since the effect of a scalar matrix is independent of its position before or 
after the other matrices in a matrix product, its constant element p can be 
used in the product instead of the scalar matrix K as shown in the third ex­
ample. This illustrates the following theorem: 

4) If K is a scalar matrix, then its constant element p may be substituted 
for the scalar matrix in a product. 

AK = KA = pA = Ap . 

A multiplier which is independent of the non-commutative rule of matrix 
algebra is called a scalar. 

5) To multiply a matrix A by a scalar p, in either order, pA or Ap, is to 
multiply each element of A by p. 

The identity matrix is a special case of the scalar matrix, and hence it is 
also independent of the non-commutative rule of matrix multiplication. 

I A IA=A 

11 : : 11 11 ~ : 11 11 : : 11· 

A I AI=A 

6) To multiply a matrix A by the identity matrix, in either order, AI or 
IA, is to reproduce the matrix A unaltered. 

AI= IA =A. 

The identity matrix I in matrix algebra corresponds to unity in ordinary 
algebra. Hence the identity matrix is suppressed, just as unity is suppressed 
in ordinary algebra. 

1X5=5, 

lXx=x, 

IA =A. 

The inverse 
If a matrix A is non-singular, i.e., I A I ~0, then there exists another 

unique matrix such that its multiplication by A produces the identity ma­
trix. This other matrix is called the inverse of A, and it is denoted A-1• 

Hence, if A is non-singular, 

AA-1 =I. 
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The inverse of A -l is A, so that 

AA -l = I = A -lA . 

Consider the ordinary algebraic equation, 

ax = y. 

If it is desired to state x explicitly, the equation is ordinarily wntten as 

1 
X= [r,Y. 

If the given matrix equation is 

AB= C 

and if it is desired to write it explicitly for B, this cannot be accomplished 
by ordinary division. A matrix is not a number but a rectangular table of 
numbers. There is an operation in matrix algebra which corresponds to 
division in ordinary algebra. If both members of the matrix equation AB 
= C are premultiplied by A - 1, we have 

A-1AB = A-1C. 
But 

A-1A =I. 
Hence 

IB = A-1C, 
or 

B = A-1C. 

This is the desired form. This example illustrates the operation in matrix 
algebra which corresponds to division in ordinary algebra. It consists in 
moving a premultiplying or postmultiplying factor from one member of the 
equation to the other member in the same relative position. This operation 
is illustrated in the following examples: 

If 

then 
ABC =M, 

BC= A-1M, 

C = B-1A-1M, 

CM-1 = B-1A-t, 
CM-1A = B-1, 

M-1A = C-tB-t. 
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Since this operation is analogous to ordinary division, the inverse of A is 
sometimes called the reciprocal of A. 

The inverse of any product of matrices is the product of their inverses in 
reverse order. 

Let 

But 

Hence 

ABC =M, 

BC= A-1M, 

C = B-1A-1M, 

I= C-1B-1A-1M, 

M-1 = C-1B-1A-1. 

(ABC)-1 = M-1 . 

(ABC)-1 = C-1B-1A-1. 

A method of writing the inverse of a given matrix is as follows: Let the 
given matrix be A with elements aii· 

1) Write the matrix M with elements mii which are the first minors of 
the elements aii; 

2) Reverse the signs of alternate elements of M so that it becomes the 
matrix E with elements eii= ( -l)i+imii; 

3) Write the transpose of E, namely, E' =F, with elements fii=eii· The 
matrix F is the adjoint of A; 

4) Divide each element of F by the value of the determinant I A 1. This 
is the inverse A - 1 with elements 

The writing of an inverse will be illustrated by the numerical example of 
equations (2). The given matrix equation is 

Ay= X. 

It is desired to find the inverse of A so that the equation 

y = A-1x 

may be written in numerical form. 
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1 2 0 

0 3 1 =A; 

2 2 4 

!AI =+14. 

10 -2 -6 

8 4 -2 =M, 

2 1 3 

10 2 -6 

8 4 2 =E, 

2 -1 3 

10 -8 2 

2 4 -1 =F, 

6 2 3 

H -:~\ ~4· 

1~4 -;1- -1'4 =A-1; lA -11 = +r\-

-1~4 "124 184· 

It is of interest to verify numerically the matrix equation y=A - 1x. It is 
written in rectangular notation in Table 16. 

Table 16 

H -,~ .. /,. 1 -H 
r\ ! .. -h 3 H 

-n -h ;4 2 r\ 
A-~ X y 

The characteristic equation 

The characteristic equation is of considerable theoretical interest in fac­
tor analysis, and it appears in several of the fundamental factor problems. 
For this reason it is described in this introduction. In a more complete 
didactic presentation of this subject, the characteristic equation should be 
introduced with some geometric and other interpretation, so that the sig-
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nificance of this equation might be apparent. The relation of the charac­
teristic equation to the problems of factor theory will appear in later 
chapters. 

If a constant (3 is added explicitly to each diagonal element of a square 
matrix A, the resulting matrix is called the characteristic matrix of A. It is 
illustrated as follows: 

an a12 a1s 1 0 0 (an+i3) a12 a1s 

a21 a22 a2s +(3 0 1 0 a21 (a22+,6) a2s 

as1 as2 ass 0 0 1 as1 as2 (ass+f3) 
A + (31 (A+(3I) 

Characteristic matrix of A. 

The determinant of the characteristic matrix is the characteristic determi­
nant of A. 

The expansion of a characteristic determinant of order r is a polynomial 
of degree r. When this polynomial is set equal to zero, the equation is called 
the characteristic equation of A. An example is the following equation: 

(1+(3) 

1 

1 

0 1 

1 =0. 

When the determinant is expanded, the characteristic equation becomes 

(38 + 5(32 + 7(3 + 2 = 0 . 

The coefficients of the expansion of a characteristic determinant can be 
written in terms of the principal minors without expanding the whole de­
terminant. Let the characteristic equation be as follows: 

(18) (3r + mlf3r-I + ~(3r-2 + • • • + mr = 0 • 

Then the coefficient m, is the sum of all the x-rowed principal minors in A. 
The coefficient m1 is the sum of all the 1-rowed principal minors of A. These 
are 1, 2, 2, and the sum is +5. The coefficient ~ is the sum of all the 
2-rowed principal minors of A. These are 
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The coefficient m2 = 2+1 +4 = +7. The coefficient ma is the sum of all prin­
cipal minors of order 3. This is the determinant I A I itself and its value is 
+2. The coefficient of the highest power of (3 is unity. These coefficients 
can be verified by expanding the determinant. 

The summational notation 

If a set of n numbers is to be summed, the operation may be indicated in 
the expanded form, 

(19) X1 + X2 + Xs + • • • + X,. = y . 

The same operation may be indicated in the more condensed summational 
form, namely, 

" 
(20) 2:x; = y' 

i=l 

in which the subscript 1: takes the successive integral values from 1 to n, 
inclusive. 

In statistical work it is pedantic to indicate the limits, because the sum­
mation is over the entire population except in rare cases, which can be 
specially indicated. It is acceptable practice in statistical work to write ~x 
without subscripts when the usual form of summation over the population 
is implied. In factor analysis this simple and convenient notation becomes 
ambiguous because summation may be over the factors, over the popula­
tion, or over the variables. It is therefore advisable to adopt the unam­
biguous double-subscript notation that is conventional in mathematics. 

As an example, the sum of the elements in the first row of Table 2 can be 
written in the form 

n 

au + a12 + ara + · · · + a1,. = L a11 • 
i•l 

Here it is the second subscript j, representing the columns, which is found 
in the summation sign. This means that the a's are to be summed for all 
values of j from 1 to n. The first subscript is fixed. The summation is there­
by confined to one row. 

The notation can be generalized to represent any row i. It then takes 
the form 

n 

a;1 + a;2 + a';s + · · · +a;,. = 2:a;;. 
i•l 
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This notation means that the a's are to be summed for a :fixed value of i, 
since i does not occur in the summation. The a's are to be summed in one 
row i for all the column values of j from 1 to n. 

By analogy, the sum of all the elements in a column j of Table 2 may be 
represented as follows: 

m 

ali + a2i + aai + ... +ami = 2:aii. 
i=l 

Here it is the column j that is fixed because it does not occur in the summa­
tion sign. The a's are to be summed in some specified columnj for all values 
of i from 1 to m. 

If it is desired to designate the sum of all the elements in the matrix, each 
of the m row-sums must be summed. This involves a summation over both 
i and j. We then have 

m n 

Sum of all elements in A = L L aii . 
i=l i=l 

Since it does not matter whether the rows are summed before the columns, 
or vice versa, we have 

n m m n 

L 2:aii = LLaii. 
i;=l i=l i=l j=l 

A matrix multiplication can also be designated by the summational no­
tation. Consider the matrix multiplication AB= C of Table 17. 

Table 17 

j(n) k(p) k(p) 

au a12 al3 Cu c,, Cra 
. bu b12 bra 

a21 azz azs Czr c,, Czs 
i(m) i(n) b,, b,, bzs =i)m) 

as1 as2 ass Cs1 Cs2 Cas 
b31 baz bss 

a" a42 a,s en C42 c,s 

A B AB=C 

Let A be a matrix of order mXn with general element a;i· Let B be a 
matrix of order nXp with general element bik· Then the product AB=C 
must be a matrix of order mXp with the general element Cik· The middle 
subscript j for the general element disappears in the product, and so does 
the middle dimension n in the product (mn) (np) = (mp). In the example, 
m=4, n=3, p=3. 
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The element c11 is obtained by the cross multiplication of the first row of 
A and the first column of B. In summational notation, 

(21) 
n 

anbn + a12b21 + a13bs1 = L a1ibi1 = Cn • 
J=l 

The second row of A and the first column of B: 

(22) 
n 

a21b11 + a22b21 + a23b31 = L a2ibi1 = C21 • 

i=l 

The ith row of A and the first column of B: 

(23) 

The ith row of A and the kth column of B: 

(24) 
n 

a;1b1k + a;2b2k + a;ab3k = L a;ibik = C;k • 

i=l 

The summation of (24) gives a single element in C. If it is desired to indi­
cate the sum of all the elements in the ith row of C, the summation will be 
over k with a fixed value fori. We have then 

(25) 

Finally, if the sum of all the elements in C is to be indicated, the summation 
must also be made for all rows. Then 

(26) 

The summation of (24) represents the multiplication of two matrices, a;i 

and bik, whose product is the matrix c;k. It can be visualized in Figure 1. 
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As an example of manipulation with the summational notation, consider 
the first term of equation (12-i). It is 

in which it is desired to substitute 

in order to simplify the first term. 
Since the order of summation is arbitrary, the order of the summations 

may be interchanged. Then the first term becomes 

1 r N 

N L L aJmx2mi · 
m=l i=l 

Since the subscript i does not occur in a}m, this factor is a constant during 
the summation over i. Hence it may be placed in front of the summation 
over i without altering the value of the first term, which then becomes 

1 r N 

NLaJmLx2mi · 
m=l i=l 

But the reciprocal of N is a scalar, and so it can be placed anywhere in the 
summation. Changing its relative position, the first term becomes 

and now the substitution can be made more clearly. Suppressing ~he part 
which is equal to unity, the first term simplifies into 

r 

L:aJm, 
m=l 

as it occurs in equation (18-i). These steps are more explicit than will or­
dinarily be found necessary, but they illustrate further the manner in which 
the summational notation can be handled. 
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Linear dependence 
A matrix of order mXn may be regarded as m sets of numbers with n 

numbers in each set. Each row of numbers is then a set. Table 18 is a matrix 

Table 18 

2 3 5 1 4 2 

4 6 10 2 8 4 

1 !· ~ t 2 1 

6 9 15 3 12 6 

of order 4 X 6. In this table every row can be expressed linearly in terms of 
the first row. By this is meant that for any row i there exists a constant c, 
such that 

(27) 

For the fourth row the constant Ci is 3, so that each element in the fourth 
row is three times the corresponding element in the first row. When any 
row can be so expressed in terms of the first row, the rows are 1Jroportional, 
and it can be shown that the columns are then also proportional. If two 
rows are not proportional, they are said to be linearly independent, for one 
of them cannot be expressed linearly in terms of the other. When each row 
can be expressed linearly in terms of one row, the rank of the matrix is 1. 
This means that all second-order minors vanish. This fact is readily verified 
in Table 18. 

The idea of proportionality can be generalized to two or more dimensions. 
An example of rank 2 is shown in Table 19. In this matrix any row can be 

Table 19 

754 672 

220 424 

5 4 2 6 5 4 

9 7 4 10 9 6 

expressed as a linear function of any two rows. In this particular matrix 
there are no two dependent rows. This requires that two constants c1 and 
£!2 (not both zero) exist such that 

(28) 

where the elements in the ith row are expressed linearly in terms of the 
first two rows. 
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In the following example the two constants for the third row of Table 19 
are determined. For the first two entries in the third row, 

(29) 
J 5 = 7 c1 + 2c2 , 

l4=5c1+2c2. 

Solving (29) simultaneously, we find that c1 =1/2 and c2 =3/4. Testing this 
on the last column, as an example, 

(2)(t) + (4)(!) = 4. 

A different set of constants must be determined for each successive inde­
pendent row. 

Since each of the rows in Table 19 can be expressed linearly in terms of 
the first two rows, it can be shown that the matrix of Table 19 is of rank 2. 
This implies that all third-order minors vanish. As an example, the fol­
lowing third-order minor of Table 19 vanishes. 

5 6 7 

4 6 5 =0. 

7 10 9 

It can be shown that if the rank of a matrix is r, then there exists a set 
of r columns, or rows, in terms of which each column, or row, can be linearly 
expressed. 

Geometric interpretations 
The most frequent form of equation for a straight line in a plane is prob­

ably 

(30) y = mx + p, 

in which x and y are the two variables while m and p are two independent 
parameters. This agrees with the well-known fact that any two points de­
termine a straight line. The multiplying constant m is the slope, and the 
additive constant pis they-intercept. In the present context it will be more 
useful to begin with the equation of a straight line in the more general form 

(31) 

This equation has two variables, x1 and X2, and three parameters, a1, a2, k. 
Since only two points are needed to determine the line, it follows that the 
three parameters are not independent. 
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Equation (31) can evidently be multiplied by any arbitrn.ry constant 
without affecting its geometrical representation in the plane. Then (31) 
becomes 

(32) 

Let the multiplier c be so chosen that the sum of the squares of the coefficients 
of the van:ablcs is equal to unit?J. Then 

(3:3) 

or 

(34) 
1 

c= -- - -
1/ ai +a~ 

(35) 

where 

(36) 

When the equation is written with this adjustment, it is said to be in 
normal form. This definition is applied not only to the equation of a line 
in a plane, and to the equation of a plane in a space of three dimensions, 
but also to the equation of a hyperplane of (n-1) dimensions in a space of 
n dimensions. The number of dimensions of the space defined by equation 
(35) is (n-1) where n is the number of variables. Hence equation (35) de­
fines a space of one dimension, a line, in a space of n = 2 dimensions, a plane. 

When a linear equation is in the normal form, the parameters have in­
teresting meaning. The parameters X1 and X2 are the direction cosines of the 
normal to the linear space which is defined by equation (35); and the 
parameter d is the distance from the origin to the same linear space. The 
normal to the line makes cos-1X1 with the x1-axis and cos-1X2 with the X2-

axis. The direction c9sines of a space are the cosines of the angles that its normal 
makes with the Cartesian co-ordinate axes. In the present case the space is a 
one-dimensional space, namely, that which is defined by equation (35). In 
order to avoid ambiguity, the normal is taken positive on the side which 
contains the origin. Equation (35) may be interpreted geometrically as 
defining a space of one dimension whose normal has the direction cosines 
X1 and X2 and which is distant d from the origin. 
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If the parameter d vanishes, then the space which is defined by the equa­
tion contains the origin. In equation (35) the line contains the origin if d 
is zero. 

Equation (35) locates a one-dimensional space (a line) in a two-dimen­
sional space (a plane). If a new variable, x 3, is added, the equation takes 
the form 

(37) 

It defines a space of two dimensions (a plane) in a space of three dimensions 
with three orthogonal axes. Here, as before, if the equation is in normal 
form, then d is the distance of the plane from the origin, and the three coeffi­
cients A-1, A-2, A.s, are the direction cosines of the normal to the plane. They are 
the cosines of the angles that the normal makes with intersecting lines that 
are parallel to the x1, x2, and xa axes, respectively. 

The direction cosines have the property that the sum of their squares is 
unity. In equation (35) the line is defined if the parameter d and one of the 
direction cosines are given. In equation (37) the plane is defined by its dis­
tance from the origin and any two of its direction cosines. The third direc­
tion cosine can be found from the fact that the sum of the squares of the 
direction cosines equals unity. If d vanishes in (37), the plane contains the 
origin. A plane through the origin is therefore defined by its direction co­
sines, which are the direction cosines of its normal. 

An equation of the same form in n variables is 

(38) 

It defines a hyperplane of (n-1) dimensions in a space of n dimensions. If 
(38) is in normal form, d is the distance of the hyperplane from the origin. 
The A.'s are the direction cosines of .the normal to the hyperplane and hence 

n 

(39) 2:~=+1. 
i=l 

In the present factor analysis the hyperplanes of primary interest contain 
the origin, so that the parameter d vanishes. Then 

(40) 

The n values of }~.; are said to be the direction cosines of the hyperplane L 
which is defined by its normal A. 
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A matrix may be given a geometric interpretation. Let the matrix A be 
of order mXn. Then the n elements of each row may be regarded as the 
Cartesian co-ordinates of a point in n dimensions. Since there are rn rows, 
the matrix may be thought of as defining the positions of rn points, one for 
each row, in a space of n dimensions. Table 20 is of order 6X3. It can there­
fore be regarded as defining the positions of six points in a space of three 
dimensions. 

Table 20 

1 2 - 4 

-4 1 -11 

-2 -3 5 

3 5 - 9 

4 -2 14 

0 1 - 3 

Let the rank of an mXn matrix A be r. Then it can be shown that the rn 
points are contained in a space of r dimensions which also conta1ns the 
origin. The rank of the matrix of Table 20 is 2. Hence the six points should 
lie in a plane which contains the origin. The equation of such a plane is 

(41) 

in which the x's are the three co-ordinates of each of the points in the plane 
and the A.'s are the direction cosines of the plane. The A.'s are not independ­
ent parameters because of the conditional equation (39). Hence any two A.'s 
define the plane. These may be found by any two of the six points which are 
not collinear with the origin. Since no two rows of Table 20 are propor­
tional, no two of the points are collinear with the origin. If two such points 
were found, then these two points would define a line through the origin and 
not a plane. 

Substituting the x's of the first two points of Table 20 in (41), 

(42) { 
AI + 2A.2 - 4A.a = 0 , 

- 4A.l + A.2 - llA.s = 0 . 

Solving for AI and A.2 in terms of A.s, we have 

(43) 
- 2A.s , 
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Substituting (43) in (39), 

(44) 

or 

and hence 

1 
Aa=~ 

V14' 

2 
Al = - V14. 

3 
:\2=~. 

V14 

1 ' 

The equation of the plane in normal form is therefore 

(45). 
2 3 1 

- -= X1 + ----c= X2 + ~ Xa = 0 . 
V14 V14 V14 

37 

All of the four remaining points must lie in this plane, since the rank of 
Table 20 is 2. The three coefficients are the direction cosines of the plane, 
i.e., the direction cosines of the normal to the plane. 

The distance of a point from the origin is V~x2, where the x's are its 
co-ordinates. For example, the distance of the fourth point from the origin 
is V32+52+ ( -9)2 = 10.72. If the sum of the squares of the co-ordinates of 
a point is equal to unity, then the point is at unit distance from the origin. 

Each point may be interpreted as defining the terminus of a vector from 
the origin. The scalar product of any two vectors is h1h2 cos cf>, where h1 and 
h2 are the lengths of the vectors and cf> is their angular separation. If the two 
vectors are of unit length, then the scalar product is the cosine of the angular 
separation. It can be shown that the scalar product of two vectors can be 
expressed in the form 

where i and l refer to points (rows) and j refers to co-ordinates (columns). 
For example, the scalar product of the vectors defined by the second and 
fourth points of Table 20 is 

(-4)(3) + (1)(5) + (-11)(-9) = + 92. 
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If the sum of the squares of the co-ordinates of each point is equal to unity, 
so that the points lie at unit distance from the origin, then the scalar prod­
uct, or cross product, is the cosine of the angular separation of the vectors 
at the origin. 

Orthogonal transformations 
The three simultaneous equations (2) may be regarded as representing 

the three co-ordinates of a point x (x1, x2, xs), the three co-ordinates of a 
point y (y1, y2,, Ys), and the law by which each point y is transformed into a 
corresponding point x. For every point y, there exists some other point x 
whose co-ordinates can be found by (2) when the co-ordinates of y are 
known. This relation is called a linear transformation by which the points y 
are moved to the corresponding points x. Every pair of the corresponding 
points are related by the linear transformation (2). The transformation is 
called linear when the equations by which the x's cn.n be found from the 
y's are of the first degree, as is the case in (2). 

If the transformation is of such a nature that the x's can be obtained 
from the y's by merely rotating the co-ordinate axes, then the transforma­
tion is an orthogonal transformation or rotational transformation. In order 
that a transformation shall be orthogonal, it is evidently necessary that the 
x's be at the same distance from the origin as the corresponding y's because 
the distance of a point from the origin remains invariant when the co-ordi­
nate axes are rotated. It is also necessary that the angular separations, or 
scalar products, be invariant, because the configuration of the points is not 
altered by rotating the co-ordinate axes. 

The matrix A of Table 11 is called the matrix of the transformation when it 
is regarded as the relation by which the points y are changed into the 
points x. A linear transformation is represented in the more general form 
by the square matrix of Table 21. It can be shown that a square matrix is 

Table 21 

an a12 a18 a1, 

a,t a22 an a,,. 

a at as, ass as,. 

a;,· 

ani an2 ana a.,. 

orthogonal, i.e., that it has the effect of rotating a set of points y into a set 
of points x, with the same configuration as the y's, if it satisfies the following 
conditions: 
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1) The sum of the squares of the elements in each row is equal to 
unity, i.e., 

(46) 

and 

2) The cross product of every pair of rows, i and l, is equal to zero, i.e., 

(47) 

when i,-6-l. It is immaterial whether the rotation is conceived as a rotation 
of the orthogonal co-ordinate axes in a fixed configuration of points or as a 
rotation of the configuration in a fixed reference frame of the co-ordinate 
axes. The result is the same. 

The two conditions, (46) and (47), are of such frequent occurrence that 
it is sometimes convenient to combine them in a single statement. This can 
be done by writing the conditions in the more condensed form 

(48) 

where the symbol o;z is known as Kronecker's delta. It is defined as follows: 

o;z = + 1 when i = l , 

oiz = 0 when i ~ l . 

It can be seen that with this definition of ou, the single statement (48) 
covers the two statements (46) and (47). 

If the matrix of a transformation is square and if it satisfies (48), then the 
following conditions are also satisfied: 

3) The sum of the squares of the elements in each column is unity, i.e., 

n 

(49) Lai; = + 1. 
i=ol 
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4) The cross product of any pair of columns is zero, i.e., 

(50) 

where j and k refer to columns. 
5) The determinant of the transformation is ± 1, i.e., 

(51) I A I = ± 1 . 

If an orthogonal co-ordinate axis is reversed in direction, then the corre­
sponding co-ordinate for each point is reversed in sign. If an odd number of 
orthogonal co-ordinate axes are reversed in direction in an orthogonal trans­
formation, then the determinant of the transformation is equal to -1. If 
an even number of axes are reversed, the determinant is equal to + 1. These 
two statements can be made with reference to the configuration. If the ro­
tational transformation retains the configuration of the points, the determi­
nant of the transformation is equal to + 1. If the rotation involves a sym­
metric distortion of the configuration, the determinant of the orthogonal 
transformation is equal to -1. 

Table 22 
x, X2 Y, y2 Y1 Y2 

a 1 -2 

11 

.8()6 
-.500 11 

- .134 -2.232 a 

b 2 3 .500 .866 3.232 1.598 b 

c -1 4 1.13·1 3.964 c 
G 

d 5 -2 3.330 -4.232 d 

e 4 1 3.964 -1.134 e 
A AG=B 

Each column of an orthogonal transformation shows the direction cosines 
of one of the new co-ordinate axes, referred to the given co-ordinate axes. 

A rotation of the co-ordinate axes implies that the given configuration 
and the transformed configuration are contained in the same space. The 
rows of a transformation correspond to the dimensions of the given configu­
ration, and the columns of a transformation correspond to the dimensions 
of the new configuration. If the transformation is merely a rotation of axes, 
it is evident that the matrix of an orthogonal transformation is necessarily 
square. If the matrix of a transformation is of order mXn where mr=n, 
then the transformation cannot be orthogonal, since the number of dimen­
sions of the given configuration and the number of dimensions of the trans­
formed configuration are not the same. However, such a matrix may satisfy 
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condition (47), and it is then said to be orthogonal by rows. If the condition 
is satisfied for columns, as in (50), instead of for rows, then the matrix is 
said to be orthogonal by columns. 

Table 22 is a numerical example of the rotation of five points in a plane. 
A is a matrix of order 5X2. The orthogonal transformation G is of order 
2X2. The matrix product AG=B is of order 5X2, and it shows the eo-

FIGURE 2 

ordinates of the same five points with reference to the new rotated co­
ordinate axes. In Figure 2 the five points have been plotted for the given 
orthogonal co-ordinates axes, X1 and X2, that are implied in A. 

Let it be desired to rotate these axes through an angle <t>=30°. The usual 
formulas for rotation of axes* can be written in the form of a 2X2 transfor­
mation as follows: 

11 
c~s <t> -sin <t> 11· 
Sill <f> COS <f> 

* W. F. Osgood and W. C. Graustein, Plane and Solid Analytic Geometry (New York: 
Macmillan Co., 1929), p. 220. 
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The first condition (46) gives 

cos2 cp + sin2 <P = + 1 , 

and the second condition (47) gives 

cos <P sin <P - cos <P sin <P = 0 . 

Hence this is an orthogonal transformation in which the other properties 
may be readily verified. 

c 
0 

b 
-------;'jl_ 

/' '\ 

FIGU.Rlll 3 

0 
d 

Substitution of cp=30° in the transformation produces the matrix G, and 
the multiplication AG produces B. The numerical values in B may be 
checked in Figure 2, where Y1 and Y2 have been drawn so that Y10X1=<P 
=30°. For example, the co-ordinates of the second point can be measured 
on the graph to be 3.23 and 1.60 for the two rotated axes, while they are 
2 and 3 for the two original axes. This :figure illustrates the geometric in-
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terpretation of an orthogonal transformation. The two columns of the trans­
formation G show the direction cosines of the new orthogonal reference 
vectors Y1 and Yz. 

Oblique transformations 

In Figure 2 the two co-ordinate axes Y1 and Y 2 are orthogonal. If it is 
desired to define the n points with reference to oblique reference axes, the 
transformation is effected in a similar way. In Figure 3 the same five points 
are plotted on the X1 and Xz axes which are implied in the given matrix A 
of Table 22. Here the new axes are oblique; Z1 is rotated 30° from X1, and 
Zz is rotated 45° from X2. 

In Table 23 are shown the numerical values for the corresponding oblique 
transformation. The matrix A contains the co-ordinates of the given five 

Table 23 

X1 Xz z1 Zz Z1 Zz 

a 1 -2 11 +.866 -.70711 .134 -2.121 . 
b 2 3 +.500 +.707 3.232 .707 

c -1 4 1.134 3.535 

d 5 -2 H 3.330 -4.949 

e 4 1 3.964 -2.121 
A AH=C 

points in a space defined by the two orthogonal reference axes X1 and Xz. 
The matrix His a square matrix of order 2 X 2. It is the matrix of the oblique 
transformation. Its columns show the direction cosines of the new oblique 
co-ordinate axes Z1 and Z2• These direction cosines may be verified in 
Figure 3. 

It should be noted that the sum of the squares of each column of H is 
equal to unity. Each column of H may be regarded as defining a unit vec­
tor in a space of two dimensions. The cross product of the columns of 
His 

which is the cosine of the angle between Z1 and Zz. 
The product AH = C shows the projection of each of the five points on 

each of the oblique axes Z1 and Zz. This interpretation can be verified by 
actual measurement on Figure 3. 



CHAPTER I 

THE FACTOR PROBLEM 

On the nature of science 
This volume is concerned with methods of discovering and identifying 

significant categories in psychology and in other social sciences. It is there­
fore of interest to consider some phases of science in general that bear on 
the problem of finding a methodology for a psychological science. 

It is the faith of all science that an unlimited number of phenomena 
can be comprehended in terms of a limited number of concepts or ideal 
constructs. Without this faith no science could ever have any motivation. 
To deny this faith is to affirm the primary chaos of nature and the con­
sequent futility of scientific effort. The constructs in terms of which nat­
ural phenomena are comprehended are man-made inventions. To dis­
cover a scientific law is merely to discover that a man-made scheme serves 
to unify, and thereby to simplify, comprehension of a certain class of natu­
ral phenomena. A scientific law is not to be thought of as having an inde­
pendent existence which some scientist is fortunate to stumble upon. A 
scientific law is not a part of nature. It is only a way of comprehending 
nature. 

A simple example is the concept "force." No one has ever seen a force. 
Only the movement of objects is seen. The faith of science is that some 
schematic representation is possible by which complexities of movement 
can be conceptually unified into an order. The error of a literal interpreta­
tion of a force vector as the pictorial representation of a corresponding 
physical entity is seen in the resolution of forces. If a particle moves with 
uniform acceleration in a certain direction, it is, of course, possible to de­
scribe the movement by one force, or by two, or by three or more coplanar 
forces. This resolution of a movement into several simultaneous and super­
imposed movements is frequently done in order that a convenient and habit­
ual reference frame may be retained. While the ideal constructs of science 
do not imply physical reality, they do not deny the possibility of some de­
gree of correspondence with physical reality. But this is a philosophical 
problem that is quite outside the domain of science. 

Consider, as another example, Coulomb's inverse-square law of electrical 
attraction. A postulated force is expressed as a function of the linear sepa­
ration of the charges. Now, if the charges were to be personified, they would 
probably be much surprised that their actions were being described in terms 
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of their linear separations. No one assumes that there is a string between 
the charges, but Coulomb's law implies that the length of such a string is to 
be used in our simplified scheme of comprehending the postulated charges. 
It is more likely that the whole space surrounding the charges is involved in 
the phenomena of attraction and that Coulomb's law is a fortunate short­
cut for representing approximately a part of the phenomena that are called 
charges and attractions. It is not unlikely that all of these entities will 
eventually vanish as such and become only aspects of an order more in­
volved than Coulomb's law implies but not so chaotic as to individualize 
completely every moment of nature. 

A science of psychology will deal with the activities of people as its cen­
tral theme. A large class of human activity is that which differentiates in­
dividuals as regards their overt accomplishments. Just as it is convenient 
to postulate physical forces in describing the movements of physical ob­
jects, so it is also natural to postulate abilities and their absence as primary 
causes of the successful completion of a task by some individuals and of the 
failure of other individuals in the same task. 

The criterion by which a new ideal construct in science is accepted or re­
jected is the degree to which it facilitates the comprehension of a class of 
phenomena which can be thought of as examples of a single construct 
rather than as individualized events. It is in this sense that the chief object 
of science is to minimize mental effort. But in order that this reduction shall 
be accepted as science, it must be demonstrated, either explicitly or by im­
plication, that the number of degrees of freedom of the construct is smaller 
than the number of degrees of freedom of the phenomena that the reduction 
is expected to subsume. Consider, as an example, any situation in which a 
rational equation is proposed as the law governing the relation between two 
variables. If three observations have been made and if the proposed equa­
tion has three independent parameters, then the number of degrees of free­
dom of the phenomena is the same as the number of degrees of freedom of 
the equation, and hence the formulation remains undemonstrated. If, on 
the other hand, one hundred experimentally independent observations are 
subsumed by a rational equation with three parameters, then the demon­
stration can be of scientific interest. The convincingness of a hypothesis 
can be gauged inversely by the ratio of its number of degrees of freedom to 
that of the phenomena which it has demonstrably covered. It is in the na­
ture of science that no scientific law can ever be proved to be right. It can 
only be shown to be plausible. The laws of science are not immutable. They 
a:re only human efforts toward parsimony in the comprehension of nature. 

If abilities are to be postulated as primary causes of individual differences 
in overt accomplishment, then the widely different achievements of indi-
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victuals must be demonstmblP functions of a limited numbt'r of reference 
9.bilities. This implies that individuals will be described in t.erms of a limited 
o.umber of faculties. This is contrary to the erroneous contention that since 
;very person is different from every other person in the world, people must 
11ot be chtssified and labeled. 

Each generalization in the scientific description of nature results in a loss 
n the extent to which the ideal constructs of science mut.ch the individual 
Jvents of experience. This is illustrated by simple experimcntR with a pon­
iulum in which the mass, the period, and the locus of the ccnter of gra.vity 
Nith reference to a fulcrum are involved in the ideal construct that leads 
;o experimental verification. But the construct matches only incompletely 
;he corresponding experimental situation. The construct sttys nothing about 
,he rusty set screw and other extraneous detail. From the viewpoint of im­
nediate experience, scientific description is necessarily incomplete. The sci­
mtist always finds his constructs immersed in the irrelevancies of experi­
mce. It seems appropriate to acknowledge this clu~mcterislic of science in 
ri.ew of the fact that it is a rather common notion that. the Aci<'ntific de­
;cription of a person is not V!tlid unless the so-called ''total situation" has 
)een engulfed. A study of people does not become scientific because it nt­
iempts to be complete, nor is it invalid because it is restricted. The seientific 
iescription of a person will be as incomplete from the viewpoint of common 
;ense as the description of other objects in scientific context. 

The development of scientific analysis in a new class of phenomena usuul­
Y meets with resistance. The faith of science that nature c!m be compre­
lended in terms of an order acknowledges no limitation whatever as regards 
Jasses of phenomena. But scientists are not free from prejudice against the 
lxtension of their faith to realms not habitually comprehended in the 
;cientific order. Examples of this resistance ~re numerous. It is not infre­
luent for a competent physical scientist to declare his belief that the phe­
wmena of living objects are, at least in some subtle way, beyond the reach 
>f rigorous scientific order. 

One of the forms in which this resistance appears is the assertion that, 
ince a scientific construct does not cover all enumerable detail of a class 
>f phenomena, it is therefore to be judged inapplicable. Since the analysis 
•f cell growth by mathematical and physical principles does not cover every­
hing that is known about cells, the biologist judges the analysis to be inap­
>licable. Since no mathematical analysis that can be conceived would cover 
,ll the subtle mysteries of personality, this realm is frequently judged to be 
1utside the domain of rigorous science. But physical scientists accept rigor~ 
1us scientific analyses about physical events that leave fully as much beyond 
he scientific constructs. Every explosion in the world has been different 
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from every other explosion, and no physicist can write equations to cover 
all of the detail of any explosive event. It is certain that no two thunder­
storms have been exactly alike, and yet the constructs of physics are applied 
in comprehending thunder and lightning without any demand that the de­
tail of the landscape be covered by the same scientific constructs. 

The attitudes of people on a controversial social issue have been appraised 
by allocating each person to a point in a linear continuum as regards his 
favorable or unfavorable affect toward the psychological object. Some so­
cial scientists have objected because two individuals may have the same 
attitude score toward, say, pacifism, and yet be totally different in their 
backgrounds and in the causes of their similar social views. If such critics 
were consistent, they would object also to the statement that two men have 
identical incomes, for one of them earns when the other one steals. They 
should also object to the statement that two men are of the same height. 
The comparison should be held invalid because one of the men is fat and 
the other is thin. This is again the resistance against invading with the 
generalizing and simplifying constructs of science a realm which is habitual­
ly comprehended only in terms of innumerable and individualized detaiL 
Every scientific construct limits itself to specified variables without any 
pretense to cover those aspects of a class of phenomena about which it has 
said nothing. As regards this characteristic of science, there is no difference 
between the scientific study of physical events and the scientific study of 
biological and psychological events. What is not generally understood, even 
by many scientists, is that no scientific law is ever intended to represent 
any event pictorially. The law is only an abstraction from the experimental 
situation. No experiment is ever completely repeated. 

There is an unlimited number of ways in which nature can be compre­
hended in terms of fundamental scientific concepts. One of the simplest 
ways in which a class of phenomena can be comprehended in terms of a 
limited number of concepts is probably that in which a linear attribute of 
an event is expressed as a linear function of primary causes. Even when the 
relations are preferably non-linear and mathematically involved, it is fre­
quently possible to use the simpler linear forms as first approximations. A 
well-known example of this type of relation is that in which the chroma of a 
spectral color is expressed as a linear function of two arbitrarily chosen pri­
maries. If two spectral colors are chosen arbitrarily for use as primaries, 
it is possible to express any intermediate color as a linear function of the 
two arbitrarily chosen primaries. The coefficients of the two terms of this 
linear function represent the angular sizes of the two sectors into which a 
color rotator is divided. When the rotator is spun, the intermediate color 
is seen. But here, as elsewhere in science, although the chroma of the result-
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ing color is expressed in terms of the linea,r function of the arbitrary pri­
maries, it does not follow that the saturation or gray-value is expressed by 
the same law. There is still debate about which colors are to be considered 
primary. This question can be settled only by discovering that a certain set 
of primaries gives the most parsimonious comprehension of some phase of 
color vision. A parallel in the description of human traits is their descrip­
tion, in first approximation, as linear functions of a limited number of ref­
erence traits. The final choice of a set of primary reference traits or faculties 
must be made in terms of the discovery that a particular set of reference 
traits renders most parsimonious our comprehension of a great variety of 
human traits. 

Psychological postulates and definitions 

The factorial methods have been developed prim11rily for the purpose of 
analyzing the relations of human traits. These are defined as follows: 

Definition 1. A trait is any attribute of an individual. 
The factorial methods are applicable i1lso in .the analysis of attributes of 
inanimate members of a group. The members of a statistical population 
may be moments in time or regions in spu.ce or any other entities, each of 
which has a set of attributes. This generalization will not be made explicit­
ly, but it is implied in the following chapters. Since the methods have been 
developed primarily with psychological categories in mind, these will be 
explicitly discussed even though the same methods are applicable to prob­
lems which involve the attributes of inanimate members of a statistical 
group. 

It is useful to distinguish between those traits which are descriptive of 
the individual as he appears to others and those traits which are exemplified 
primarily in the things that he can do. This distinction is involved in the 
definition of "ability." 

Definition 2. An ability is a trait which is defined by what an individual 
can do. 

This definition implies that there are as many abilities as there are enumer­
able things that individuals can do. Each ability is therefore objectively de­
fined in terms of a specified task and of a specified method of appraising it. 

Definition 3. The task, together with the method of appraising it, which 
defines an ability is called a test. 

Definition 4. The linear evaluation of a test performance is called a score. 
It is implied in these definitions that an index of ability is covaria.nt with 

the score in the test which defines the ability, and that a true index of 
ability is covariant with the true score in the test. 

Let there beN individuals in an experimental population, and let there 
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be n tests. Let S;; be the raw score of individual i in test j, and let Eii be 
the absolute variable error of the score. Then the true score Tii of individual 
i in test j is defined by the relation 

In psychological investigations it is sometimes desirable to postulate 
that the frequency distribution of the indices of a particular ability is nor­
mal in the experimental population, while in some investigations this is not 
a desirable restriction. Hence two indices of ability will be defined in ac­
cordance with these two cases. Both indices are so defined as to be covariant 
with the true score in the test which defines the ability, but they differ as 
regards the assumption of normality of the distribution of ability in the ex­
perimental population. 

Case 1, assuming that the distribution of ability is not necessarily Gaussian: 
Let v;;=aT;;+b, in which the parameter band the positive parameter a 

are so chosen that the following conditions are satisfied: 
N 

1) LV;;= 0; 
i=l 

N 

2) LVJ; =N. 
i=l 

Then v1, is an index of the ability j in individual i which is a linear function 
of the true score T;; in the test j. Since this index is a linear function of the 
true score, it follows that the shape of the frequency distribution of true 
scores is retained in the frequency distribution of indices of the correspond­
ing ability. This index will be called the standard score in ability j. 

Case 2, assuming that the distribution of ability is Gaussian: 
Let <t>(T;;) =t;; be the monotonic increasing function which satisfies the 

three following conditions: 
N 

1) :Z:t;; = 0; 
i=l 
N 

2) Lt], = N; 
i=l 

3) the frequency distribution oft;. inN is Gaussian. 
The index t1, will be called the normalized standard score in ability j or simply 
the standard score in ability j. It is assumed that in each investigation in 
which factorial methods are used, the statement will be explicitly made as 
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to whether a Gaussian distribution of ability has been assumed for the ex­
perimental population. The frequency distribution of raw scores in psycho­
logical tests is arbitrary, since the scores can be adjusted as regards skew­
ness in any desired direction and to any desired extent by merely inserting 
or removing relatively easy or rehtively difficult test items. Since this is a 
matter of judgment on the part of the person who assembles the psychologi­
cal tests, no inference can be made concerning the skewness or normality of 
the distribution of a particular ability from the arbitrary skewness or arti­
ficial normality of the distribution of raw scores. 

It is desirable to develop the factorial methods in such a manner that they 
are independent of the assumption of normality of ability in any particular 
experimental population. In the present theoretical development of the factorial 
methods it will not be assumed that any of the distributions of ability are normal. 

The application of the factorial methods in science rests on a fundamental 
postulate. 

Postulate. The standard scores of all individuals in an unlimited number of 
abilities can be expressed, in first approximation, as linear functions 
of their standard scores in a limited number of ab1:lities. 

The correlation between the true scores in two tests will be referred to as 
the correlation between the two abilities which are defined by the tests. In 
statistical work it is customary to refer to two variables as independent 
when their correlation is zero. The term independence will be used with three 
different meanings. They will be designated by appropriate adjectives un­
less the context makes the designation unnecessary. 

Definition 5. A set of n abilities are linearly independent if the rank of the 
matrix of their true intercorrelations is n. 

Definition 6. Two abilities are statistically independent in a population if 
their correlation is zero in that population. 

Definition 7. Two observations are experimentally independent if they are 
experimentally distinct, so that one is not derived from the other by a 
constraint either of the experimental situation or of the computations. 

In one sense, no two observations can ever be experimentally independ­
ent. The term can be used only with reference to the state of knowledge 
at the time the observations are made. 

It is clarifying to interpret geometrically the relations of abilities. In 
such a context two abilities that are uncorrelated in a population will be 
called ortho(}onal in that population. Two abilities that are correlated in a 
population will be called oblique in that population. 

There is special interest in the limited number of abilities in terms of 
which all other abilities can be defined, since these are the landmarks in 
terms of which all abilities can be comptehended. 
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Definition 8. If the standard scores of N individuals inn abilities are ex­
pressed as linear functions of their scores in r linearly independent 
abilities, where r< n, then the r abilities will be called reference abilities. 

It will be shown that if a battery of tests can be described with reference 
tor orthogonal abilities, there exists an infinite number of sets of r orthogo­
nal abilities in terms of which the description can be made with equal ac­
curacy. An arbitrary set of r orthogonal abilities may be chosen for pur­
poses of description. These are the statistically independent or orthogonal 
reference abilities. If a battery of tests can be described in terms of r or­
thogonal reference abilities, the tests can also be described by a set of r 
oblique reference abilities. It is not necessary that a reference ability be 
represented by a test in which it is involved exclusively. While each of the 
tests that are used in experimental work defines an ability, it may happen 
that the reference abilities in terms of which tests and individuals are de­
scribed are not represented by actual tests but by linear combinations of 
several tests. A linear combination of tests may be thought of as a com­
posite test. 

The nXr matrix of coefficients of the r reference abilities in terms of 
which the standard scores in each of the n abilities can be linearly expressed 
is not unique. The most parsimonious comprehension of the n abilities in 
terms of r reference abilities is obtained when the number of vanishing 
coefficients of the n linear functions is maximized. 

Definition 9. If the N standard scores in each of n diversified abilities can 
be expressed as linear functions of fewer than r of the r independent ref­
erence abilities, then that set of r reference abilities for which the num­
ber of vanishing coefficients is a maximum will be called primary 
abilities. 

If a large and diversified battery of tests can be described in terms of r ref­
erence abilities and if a particular set of r primary abilities can be found 
such that each test can be described in terms of less than r of these abilities, 
then the primary abilities have significance because of their identification 
with phenomena extraneous to the test scores and their intercorrelations 
even if the extraneous phenomena are unknown. 

It is conceivable, and not improbable, that some reference abilities will 
be found to be sufficiently elemental that they can be declared to be either 
present or absent in each individual without intermediate gradations in 
amount or degree of presence. 

Definition 10. If only two numerical values occur in the population N for 
the standard scores in a primary ability, then the primary ability is a 
unitary ability. 

This is a genetic interpretation of factors. 
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The underlying idea from which the present factorial analysis originates 
is a very simple one. If there are N individuals in a random sample of the 
population and if each of these individuals has demonstrated his abilities 
by doing his best on n separate tests, then there will be nN test scores to be 
explained. At the present stage of development of psychology and of ge­
netics there are no available ideal constructs for representing the mental 
abilities. The simplest possible formulation seems to be an analysis of the 
variance of each test into linear components.* It is almost certain that this 
simple type of analysis will not be the ultimate one, but it is likely that the 
principal primary abilities will be discovered by factorial analysis of the 
variance of each test. As soon as some of the primary abilities have been 
isolated, detailed studies of inheritance should be undertaken. 

The performance of an individual on a test is determined in part by the 
abilities that are called for by the test and in part by the degree to which 
the individual possesses these abilities. An individual's performance on a 
test may be regarded as a sum of the contributions of his primary abilities. 
His abilities are not called for to the same extent by the different tests, and 
it therefore seems natural to describe each of his test scores as a sum of 
weighted linear contributions of his different primary abilities. The weights 
are descriptive of the tests. This simple formulation of the problem is 
flexible enough to serve the descriptive purposes of psychology until more 
refined, and perhaps less obvious, constructs will be called for by future ex­
perimental inquiry and by the attainment of more accurate psychological 
measurement than now seems to be possible. 

The assumption that a performance can be described. approximately as a 
sum of weighted linear contributions of several independent factors can be 
represented in the following equation:t 

(1) 

in which si, represents the standard score of individual i in test j. The x's 
represent standard scores in the q statistically independent arbitrary ref­
erence abilities, while the a's represent factor loadings in the tests. The x's 
describe the individuals, and the a's describe the tests. The first term repre­
sents the contribution of the arbitrary reference ability No. 1 to the test 
performance sii· It is determined by the amount of the first arbitrary ref­
erence ability that the subject possesses, namely, xli, and the extent to 
which the test calls for the first ability, namely, ail· Similar reasoning ap­
plies to the contribution of each other ability to the test performance. If 
the primary abilities are oblique, these orthogonal reference abilities may 

* The variance is the square of the standard deviation. 
t "Multiple Factor Analysis," p. 409. 
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be regarded as arbitrary. They can be rotated or transformed into the pri­
mary abilities by methods that will be described. 

There is no loss of generality in reducing all performances to standard 
scores. This reduction involves a translation of the origin of the raw test 
scores to the mean score of the distribution and a stretching of the scale so 
as to make the standard deviation unity. The shape of the distribution is 
not altered by reducing the raw scores to standard scores. 

It should be noted that, even if each individual can be described in terms 
of a limited number of independent reference abilities, it is still possible for 
every person to be different from every other person in the world. Each 
person might be described in terms of his standard scores in a limited num­
ber of independent abilities. The number of permutations of these scores 
would probably be sufficient to guarantee the retention of individualities. 

With a limited number of abilities this formulation not only allows that 
every person shall be different from every other person but it also allows 
the widest possible differences between several individuals who attain the 
same objective performance in a test. This may be readily seen by consider­
ing a hypothetical example. Assume that a test calls for two abilities, such 
as ability in abstraction and ability in the manipulation of numbers. Several 
individuals try the test and attain the same score. One of them may possess 
a high degree of ability in making the abstractions involved in the test, but 
he may be slow in numerical manipulation. Another may be slow in formu­
lating the abstract part of the problem, but he may make up for this de­
ficiency by superior numerical speed. The objective result might be the 
same. The purposi of factor analysis is to obtain a quantitative description 
of each primary ability in each individual by means of tasks that require 
these abilities in different amounts. Since every task is probably composite 
in the primary abilities required, it is necessary to make the appraisal of the 
abilities of individuals by analytical methods. This is exactly the object of 
the multiple-factor methods as applied to the problem of describing the 
abilities of people. 

Factor analysis is reminiscent of faculty psychology. It is true that the 
object of factor analysis is to discover the mental faculties. The severe re­
strictions that are imposed by the logic of factor analysis make it an arduous 
task to isolate each new mental faculty, because it is necessary to prove that 
it is called for by the experimental observations. Factor analysis does not 
allow that a new faculty be added as soon as a new name can be found for 
the things that people can do. In order to prove that reasoning and ab­
straction are two different faculties, for example, it will be necessary to 
show that the tasks which call for such activities really do involve two fac­
tors, and not one. 

There is an interesting difference between the logic of multiple correlation 
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and that of factor analysis. In multiple correlation it is necessary to desig­
nate one of the variables as dependent and all of the others as independent, 
and the problem is then to predict the one test score from all the rest. In 
factor analysis there is no problem of prediction of any test scores, and there 
is no distinction between independence and dependence among the given 
variables. The dependent variables are the primary abilities of the indi­
vidual subjects which are to be estimated in terms of the given tests. 

In the psychology of the future it may be found useful to postulate a dif­
ferent form of ideal construct for the description of mental endowment than 
the simple one that is implied in equation (1). The ideal constructs of the 
future may involve elements with location in a space frame with spatial, 
dynamic, and temporal constraints analogous to the ideal constructs of 
genetics. It would be unfortunate if some initial success with the analytical 
methods to be described here should lead us to commit ourselves to them 
with such force of habit as to retard the development of entirely different 
constructs that may be indicated by improvements in measurement and by 
inconsistencies between theory and experiment. 

Matrix formulation 

Let N be the number of individuals in a random sample of the population, 
and let n be the number of tests from which the primary abilities are to be 
isolated. The raw data for factorial analysis consist of the entries in an 
nXN table of standard scores in which each of theN subjects is represented 
by n test scores. This table will be referred to as an nXN score matrix S. 

Equation (1) implies that the matrix S is the product of two matrices, 
namely, one matrix with elements a which are descriptive of the tests and 
another matrix with elements x which are descriptive of the individuals. 
The former will be called the factorial matrix F4 and the latter the popula­
tion matrix P 4· 

In setting up these two matrices, an assumption will be made concerning 
the nature of the factors in the present psychological problem, namely, that 
there are at least three kinds of factors involved in the variance of each test. 
These factors are (a) the common factors or abilities, (b) the specific factors 
or abilities, and (c) the chance error factors. By common factor is meant any 
factor or ability which is called for by more than one of the n tests in a 
battery. By specific factor or ability is meant any factor or ability which is 
called for by only one of the n tests. By error factor is meant the variable 
chance error which is a part of the total variance of the test. 

It is evident that an ability which is a common factor for a test in one bat­
tery may become a part of the specific factor in the same test when it is placed in 
another test battery. Whether any particular ability is common or specific 
depends on the battery as a whole. 
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In equation (1) test A is defined by the weights or test coefficients a11, 

ai2, ••• , a;q. These weights show the extent to which the test calls for each 
one of a set of reference abilities. The test coefficients therefore constitute 
a psychological description of the test. It is a fundamental criterion for a 
valid method of isolating primary abilities that the weights of the primary abili­
ties for a test must remain invariant when it is moved from one test battery to 
another test battery. If this criterion is not fulfilled, the psychological de­
scription of a test will evidently be as variable as the arbitrarily chosen bat­
teries into which the test may be placed. Under such conditions no stable 
identification of primary mental abilities can be expected. The factorial 
methods to be presented are consistent with this criterion, and stable iden­
tification of the primary abilities can therefore be expected. This criterion 
assumes that the several test batteries are given to the same population. 
The primary abilities that define a test in one population should be identical 
with the primary abilities which define it in a second population. 

A test may call for two or more abilities that are unique for that test in 
a particular battery. Then the specific variance of the test should be divided 
into parts, one part for each of the several specific abilities. In factorial 
analysis all of the abilities that are specific for a test combine into a single 
variance. 

Table 1 represents a population matrix in which the attributes of each 
member of the population N are recorded with reference to the common 
factors, the specific factors, and the error factors. 

The notation is as follows: 
Subscript i refers to a person; 
Subscripts j and k refer to tests; 
Subscripts m and M refer to common factors. 

Let x refer to common factors; 
y refer to specific factors; 
z refer to error factors. 

Let Xmi=the standard score of individual i in the common factor m; 
Y;•=the standard score of individual i in the specific factor of testj; 
z;i= e;i/ £;, where e;i is the absolute variable error in the standard score 

s;i, and £; is the standard error of Sfi· 

Let r=number of common factors; 
n=number of tests; 
N =number of individuals in a random sample of the population. 

An interpretation of the cell entries of the population matrix P" is then 
as follows: Each column is descriptive of one individual. The first r entries 
show his standard scores in the r common abilities. The next n entries show 
his standard scores in the n specific abilities. It is here assumed that every 
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psychological test in a finite test battery calls for some specific ability, al­
though it may be of minor significance. This assumption fits the usual case. 
It is only in an unusual test battery (if such exists at all) that the number 
of specifics can be smaller than the number of tests. 'rhe present analysis 
would be essentially the same even for the ideal case in which specifics were 

r 
common 
factors 

n 
specific 
factors 

n 
error 

factors 

Table 1 

Population Matrix P4 

N 

Xn X12 X13 ... X1N 

X21 X22 X23 .. X2N 

Xa1 Xa2 X as .. X3N 

. .. ... ... Xmi ... 

Xrl Xr2 Xrs .. XrN 

Yn Y12 Yta ... YtN 

Y21 Y22 Y23 ... Y2N 

Yat Ya2 Yaa .. YaN 

... ... ... Y;• ... 

Ynl Yn2 Yna ... YnN 

zu Z12 Zta .. ZtN 

Z21 Z22 Z2a ... Z.N 

Zat Z32 Zaa ... ZaN 

... ... ... Zji . .. 
Znt Zn2 Zn3 ... ZnN 

assumed to be absent. The last n cells of each column represent the vari­
able errors in the n standard test scores of an individual. 

The notation r for the number of common factors may be confusing on 
first sight, since the same letter is used for the coefficient of correlation; but 
the correlation will always be designated with a double subscript for the two 
variables. The notation r is retained for the number of common factors 
since it is a customary notation for the rank of a matrix, and it will be shown 
that the number of common factors is the rank of the correlational matrix. 
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Since equation (1) implies the product of two matrices, it is of interest to 
write both of them. The x's in (1) refer to the population matrix P 4 which 
is descriptive of the subjects. The a's in (1) are descriptive of the tests. The 
description of the tests can be written in the form of a test matrix or factorial 
matrix, which is shown in Table 2. 

n 
tests 

r common factors 

au a12 a13 ... a!r 

a21 a22 ~3 ... ~r 
au as2 a as .. asr 

... .. . .. . aim . .. 
a,. I an2 ans ... anr 

Table 2 

Factorial Matrix F, 

n specific factors 

bu 

b22 

baa 

b;; 

bnn 

n error factors 

Cu 

C22 

Caa 

C;, 

Cnn 

The additional notation is as follows: 
aim=loading of the common factor m in test}, 
bii=loading of the specific factor of test j in test j, 
c;;=loading of the error factor of test j in test j. 

Each row of the factorial matrix describes a test. The first r columns are 
filled, since each test may have a loading in each of the common abilities. 
A common-factor test loading is frequently zero; and this is, in fact, the 
situation that should be explicitly planned for in setting up factorial experi­
ments. Since, by definition, there is only one specific factor in each test, the 
second section of F 4 is necessarily a diagonal arrangement of the specific 
factor loadings b. The same is true for the error factor loadings c, which 
have a diagonal arrangement. 

It will be assumed that the first r columns of F 4 are linearly independent. 
This is a postulate concerning the test battery which is represented in F 4• 

Postulate. 
The n tests which constitute the battery are so selected that the columns 
of the factorial matrix are linearly independeni. 

It would be difficult to set up a battery which would violate this postu­
late. It would be a rare occurrence for the columns of F to be depend­
ent when the number of tests is considerably in excess of the number of 
factors. If such a battery were to be assembled, the factorial solution would 
be a matrix F which reproduced R with less than the true number of refer­
ence abilities. This is probably a remote contingency. The geometrical rep-
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resentation of such a solution would be a set of n radial vectors, one for each 
test, which would lie in a space of a number of dimensions less than the 
number of common factors. 

Tables 1 and 2 show the two matrices whose row-by-column multiplica­
tion is implied in an equation of the type (1). These two matlices are the 
population matrix P 4 and the test matrix or factorial matrix F 4• Rewriting 
(1) in matrix notation, we have 

(2) 

Inspection of the matlices F 4 and P 4 reveals that they may be written in 
several sections. The population matrix may be written in three sections, 
as shown in Table 3. Comparison of Tables 1 and 3 shows that the matrix P 4 

r 
corn-
m on 

factors 

n 
specific 
factors 

n 
error 

factors 

Table 3 

Three Components of the Population Matrix 

N N 

Xn X!z X13 ... xlN 

Xo1 Xzz Xza ... X2N 

Xol Xa2 X30 ... X aN 0 
... ...... Xm> ... 
Xrl Xr2 Xr& ... XrN 

Yu YI2 Y" ... Y1N 

Y2l Y22 Y2a ... Y2N 

0 Yu Ya2 Yaa ... YaN 

... ... ... Y;; . .. 
Ynl Yn2 Yns ... YnN 

0 0 

Matrix P1 Matrix P 2 

for common factors for specific factors 

N 

0 

0 

Zu Z12 Z13 ... Z!N 

Zz! Zz2 Zza ... Z2N 

Za1 Za2 Zaa ... ZaN 

... ... • . • Zfi . .. 
Zn! Zn2 z,., ... ZnN 

Matrix P 3 

for error factors 
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may be written as the sum of three matrices, namely, 

matrix P 1 for the common factors, 
matrix P2 for the specific factors, 
matrix P3 for the error factors, 

so that 

(3) 

59 

The factorial matrix F4 may also be expressed as a sum of three parts in a 
similar manner. This is shown in Table 4-. 

Table 4 
Three Components of the Factorial Matrix 

r n n 

au a12 a13 air 

a21 a22 a23 a2r 

F!= a31 aa2 a33 a,r 
n 0 0 

. . . ... . . . a; m 

ani an2 an3 anT 

r n n 

bu 

~ 

0 baa 0 
b;; 

bnn 

r n n 

Cu 

C22 

0 0 Cu 

Ct; 

c,.,. 
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The three parts represent the common factors, the specific factors, and 
the error factors. The factorial matrix F 4 may be written as a sum of these 
three parts, namely, 

(4) 

Since, by definition, there is only one specific factor in each test, the middle 
section, Dr, is a diagonal matrix. By the same reasoning the third section, 
D2, is a diagonal matrix in which each entry shows the error factor of a test. 

Returning now to equation (2), we may express the standard scores in 
terms of the three kinds of factors. Substituting (3) and (4) in (2), we have 

(5) S = (FL + D1 + D2)(P1 + P2 + Ps), 

S = F1P1 + D1P2 + D2Ps . 

A single element of the nXN matrix S is the standard score of individual 
i in testj. It can be written as follows: 

r 

(6) Sj; = L ajmXmi + biiYii + CiiZfi • 

m=l 

N 

By definition, the sum of the standard scores, L s1;, of the population N in 
i=l 

test j is equal to zero. The sum may be written as follows: 

N r N N N 

(7) LSji = 2:aimLXmi + biiLYii + CjjLZfi = 0. 
i=l m=l i=l i=l i=l 

By definition, the sum of the squares of the standard scores of theN subjects 
must equal N. Then 

(8) 

and hence 

(9) 
N 

~ L sji = 1 = total variance of test j • 
i=l 
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Since the factors are uncorrelated, we have 

(10) 

where m and M refer to any pair of common abilities (m~M), and where j 
and k refer to any pair of tests (j~k). For the same reason the following 
cross products also vanish: 

N N N N 

(11) "L:XmiYii = LXmiZji = LYiiZki = LYiiZji = 0. 
i=l i=l ' i=l i=l 

Substituting (6) in (9) and ignoring the vanishing cross products of (10) 
and (11), we have 

Since Xmi and Yii are standard scores, 

(13) 

Since 

it follows that 

(14) ' 

Then 

(15) 

and 

(16) 

1 N 1 N 

N 2:x2mi = N LY]i = 1 • 
i=l i=l 

e,i 
Z·· =-

1> £, ' 
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Hence 

(17) 

Substituting (13) and (17) in (12), we have 

r 

(18) L a]m + bji + Si = 1 ' 
m=l 

in which the total variance of test j is expressed as a sum of three variances 
due to (a) the common factors, (b) the specific factors, and (c) the error fac­
tors. The (r+2) test coefficients in terms of which test j is described are the 
r values of aim and the values of bH and Cif. Equation (18) can be restated 
as follows: 

Theorem. The sum of the squares of the test coefficients of a test is equal to 
unity. 

In fact, aJm, the square of a test coefficient, is that part of the total vari­
ance of a test j which is attributable to the factor m. In the same manner 
bji is that part of the variance of the test j which is attributable to the spe­
cific factor in test j. Also, Si is the part of the variance of test j which is 
due to the variable chance errors in the scores of test j. 

Communality 
It has been shown that the total variance of a test can be expressed as 

the sum of three variances which are due to (a) the abilities which are com­
mon to two or more of the tests, (b) the abilities which are unique in that 
they are called for by only one test, and (c) the variable errors. It will be 
convenient to name these three parts of the total variance. The following 
terminology* will be used: 

r 

L a]m = hj = communality of test j , 
m=l 

b]i = b~ = specijicity of test j , 

CiJ = S = error variance of test j . 

The concept of communality is pivotal in factor analysis, and it will be nec­
essary to refer to it frequently. 

Definition 11. The communality of a test is its common factor variance. 

*"Theory of Multiple Factors," p. 8. 
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The object of factor analysis is to isolate the r values a;m for each test j 
and the r values Xmi for each person i. 

Since, in factor analysis, the specificity and the error variance combine 
into a single variance that is unique for each test, it will be convenient to 
combine them in the following manner: 

bJ + cJ == UJ == uniqueness of test j , 

so that 

(19) hJ + UJ = 1. 

Equation (19) shows that the variance of a test may be expressed as the 
sum of two parts, namely, the communality and the uniqueness. 

Definition 12. The uniqueness of a test is the complement of its commu­
nality. 

An interpretation of (19) is that the total variance of a test can be divided 
into two parts: namely, the communality, that part of its variance which 
is due to factors common to other tests in the battery; and the uniqueness, 
that part of its variance which is due to factors not common to other tests 
in the battery. 

This distinction between communality and uniqueness is crucial in fac­
torial analysis. If a test calls for several abilities which are unique in that 
they are not called for by any other tests in the battery, then these unique 
abilities combine with the error variance into a single specific variance for 
the test. The isolation of these unique abilities and the appraisal of individ­
uals with reference to them cannot be effected by factorial methods until 
the test is inserted in a battery with other tests that do contain these abili­
ties. Then the abilities which combine into a single specific factor in one 
battery become separate common factors in the new battery. They can 
then be isolated. 

An object of psychological inquiry is to isolate an increasing number of 
abilities until the specific variance of each important test shall be reduced 
to a minimum. It is not likely that any single test will be completely de­
scribed in terms of the factors which it has in common with those of one 
battery. In order to isolate all of the abilities that are called for by a test, 
it will probably be necessary to insert it in several test batteries in succes­
sion. The specific variance of a test should be regarded as a challenge; it is 
that part of the total variance of a test which is unique in a particular bat­
tery, and hence its factorial composition is unknown. In order to test a hy­
pothesis concerning the abilities which are involved in the specific variance 
of a test, the test should be combined with others which involve the hypo-
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thetical abilities. If the specific variance is reduced the hypothesis is sus­
tained. 

For the next few years it will probably be more interesting to isolate new 
abilities than to reduce the specificity in particular tests. Increased knowl­
edge of the primary mental abilities will facilitate the type of experiment 
by which the specificities of particular tests may be reduced. It will prob­
ably be found that a considerable fraction of the total variance of each test 
is attributable to factors of such limited social significance that the complete 
elimination of the specificity of each test will not be essential in the early 
stages of the scientific study of human abilities. 

The intercorrelations 

Since s;; are standard scores, the intercorrelation between two tests j 
and k can be written in the simple form 

(20) 
1 N 

Tik = N L SjiSki • 

i=l 

This implies the multiplication of two matrices. The elements of a moment 
matrix M may be defined as follows: 

(21) 

so that we have, in matrix notation, 

(22) M=SS'. 

Substituting (5) in (22), 

Six of the terms of this product vanish. Hence 
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The population matrix P1 is orthogonal by rows, as can be seen by reference 
to (10) and (13). Hence 

(26) 

in which Ds is a diagonal matrix of order qXq and where 

q = 2n + r = total number of factors. 

The matrix Ds has the constant element N in the r diagonal cells of the 
first r rows and columns, and zero in all other cells. 

Similar reasoning applies to P2• Hence 

(27) 

in which D4 is a diagonal matrix of order qXq with constant element N in 
then diagonal cells of the rows and columns (r+l) to (r+n) inclusive, and 
zero in all other cells. 

By the same reasoning 

(28) 

in which Ds is a diagonal matrix of order qXq with constant element N in 
then diagonal cells of the'rows.and columns (r+n+ 1) to (r+2n), inclusive, 
and zero in all other cells. 

Substituting (26), (27), and (28) in (25), 

(29). 

(30) 

(31) 

By (20) and (21) we have 

(32) 

where R1 is a square ma'irix of order n, the cells of which contain the true 
intercorrelations of the fallible tests. From (31) and (32) it follows that 

(33) 

or 

(34) 
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The correlational entries of R1 are as follows: 

(35) 

(36) 

and 

(37) 

r 

rkk = L a%m + b~ + c~ = 1 , 
m=l 

rkk = h% + b% + c1c = 1 , 

r 

rik = L aimakm, 
m=l 

wherej rf k. 

Equations (35) and (37) show that the terms Di and D~ of (34) affect only 
the diagonal entries of R1• If a new matrix R is defined by the relation 

(38) 

then R1 and R are identical except for the diagonal entries. By (35) the 
diagonal entry of R1 is 1. The diagonal entry of R in the columnj and row j 
is the communality hj. The matrix R will be called the reduced matrix of the 
true correlations of fallible tests. It will be referred to more briefly as a "re­
duced correlational matrix." The matrix R1 will be called the complete ma­
trix of correlations of fallible tests. It will be referred to as a "complete corre­
lational matrix" in the sense that the complete variance of each test is repre­
sented by the diagonal entries. 

Let F be the matrix formed by then rows and the first r columns of F1• 

Then, by (38), 

(39) 

in which the reduced correlational matrix is defined in terms of the common 
factors. The matrix F is an nXr-rowed matrix which shows the weights of 
the r common factors in the n tests. This matrix will be called the "matrix 
of the common factors" or, more briefly, the "factorial matrix." Since in 
factorial analysis it is the common factors that are of principal interest, 
there is no confusion in referring to F as the factorial matrix without quali­
fication for the common factors. 

The reliability coefficient 

It is customary in psychological work to write the reliability coefficient in 
the diagonal cells of a correlation matrix. By the present analysis it is seen 
that the diagonal entries of R1 are unity, while the diagonal entries of R are 
the communalities h1. The relation between the reliability and the com-
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munality of a test may be shown by considering in detail the factorial ma­
trix for a test j, a parallel test j', another test k, and its parallel test k'. The 
factorial matrix for these four tests is shown in Table 5. 

Let there be r common factors in the four tests. Let b} be the specific vari­
ance in test j. Since j and j' are parallel tests, it is evident that they must 
require the same common abilities and the same specific ability. Hence b; is 
recorded in the same column of F 4 for both j and j'. For the same reason bk 
must be common to tests k and k', which are parallel. But the variable er­
rors are uncorrelated by definition, even for parallel tests. Hence F 4 of 
Table 5 shows a separate error factor for each of the four tests. 

Table 5 

Factorial Matrix F4 for Four Tests, j and Its Parallelj', and k 
and Its Parallel k'. 

a;1 a;• 

a;1 ai2 

akl ak2 

akt ak2 

r 
common 
factors 

a;, ... 
a;s ... 

aks ... 
aka ... 

air 

air 

akr 

akr 

Two 
specific 
factors 

b; 0 

b; 0 

0 bk 

0 bk 

C; 

0 

0 

0 

Four 
error 

factors 

0 0 

C;' 0 

0 Ck 

0 0 

0 

0 

0 

Ck' 

The true correlation between the fallible parallel tests k and k' is the re­
liability of k. The complete correlational matrix is 

(40) 

But D2 in Table 5 does not contribute to the reliability coefficient r;;• which 
is not a diagonal entry. The matrix D1 does contribute to the reliability 
coefficient because the specificity is an additional common factor in the 
special case of Table 5. Hence 

r 

(41) Tkk' = La~m + b~, 
m=l 

or 

( 42) r~o~o' = h7., + b~ = reliability of test k • 

By (36) and (42), 

(43) r~o~o' = 1 - ~ ~ 
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Equation (43) merely states that the reliability coefficient of a test is the com­
plement of its error variance. 

Since 

(44) h}, = 1- u% 

and 

(45) u~ = b~ + ~, 
it follows that 

(46) 

Theorem. The communality of a test is always smaller than the reliability 
except in the limiting case where the specific factor is absent, in which 
case the communality and the reliability are equal. 

It is of interest to note that the uniqueness cannot be separated into its 
two parts, the specificity and the error variance, by factorial methods. In 
order to estimate the specific variance of a test, it is necessary to estimate 
its reliability by experimental means. The uniqueness can be determined 
by factor methods. The specificity is then 

(47) 

where 

(48) t1, = 1 - rw . 

Since rkl</ can be estimated only more or less roughly by various experi­
mental methods, it is clear that estimates of specific variance are necessarily 
equally uncertain. 

The terminology for the different parts of the variance of a test is sum­
marized as follows: 

Total variance = hj. + b~ + 0, = 1 . 

Reliability = h% + bz =. 1 - c% • 

Communality = h~ = 1- u%. 

Specificity b% • 

Uniqueness 

Error variance = 

The population space 

b%+c~=u%. 

~ = 1- rkk'. 

The population matrix of Table 1 may be regarded as exhibiting N co­
ordinates for each of (r+2n) points in a. population space of N dimensions. 
Each individual of an infinite population may be regarded as defining an 
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orthogonal reference vector. The sample of the population may be regarded 
as defining a set of orthogonal reference axes in as many dimensions as there 
are individuals in the sample. The factors may be regarded as vectors in 
the population space. By (13) and (17) it is seen that the (r+2n) factorial 
vectors are all at the distance VN from the origin in the population space. 
By (10) and (11) these vectors are orthogonal in the same space. Hence the 
entries of P4 may be regarded as VN times the direction cosines of (r+2n) 
orthogonal factorial vectors in the population space. Since the factors are 
represented by orthogonal vectors in the population space, it follows that 
the total factor space is a subspace of the population space. 

The factorial matrix F4 may be regarded as the co-ordinates of n points 
in the same space. By (18) these points are at unit distance from the origin. 
The entries ofF 4 may be regarded as the direction cosines of n unit test vec­
tors in the factor space. 

The score matrix may be regarded as exhibiting the co-ordinates of each 
test in the population space of N dimensions. The cells of the moment ma­
trix M show N times the scalar products of pairs of test vectors. The com­
plete correlational matrix R1 shows the scalar products of pairs of test vec­
tors in the population space, while the reduced correlational matrix R shows 
the scalar products of the projections of these test vectors in the common­
factor subspace of the population space. Each test is represented by a unit 
vector in the population space. The square of the length of its projection 
in the common-factor subspace is its communality. 

The common-factor space 

The geometrical representation of the factorial matrix is fundamental in 
factor analysis. The factor matrix of Table 2 can be regarded as exhibiting 
the (r+2n) co-ordinates of n points in a total factor space of (r+2n) ilimen­
sions. The points may also be regarded as the termini of as many test vec­
tors. Each test is then a unit vector in the total factor space. The scalar 
product of a pair of test vectors is the correlation between the two tests. 

Since it is the common factors that are of primary interest in factor anal­
ysis, it is profitable to consider mainly the common-factor space. The com­
mon-factor space is defined by the first r columns of the factorial matrix F4. 
It shows the r co-ordinates of each of n tests in a common-factor space of r 
dimensions. Here, again, the scalar product of a pair of test vectors is the 
correlation between the tests. The correlation is unaffected by the projec­
tions of the test vectors into the specific space and into the error space be­
cause these projections are orthogonal by definition. The length of each 
test vector in the common-factor space is the square root of its communal­
ity. The complement of the communality of each test is the square root of 
its projection in the unique factor space. 



CHAPTER II 

THE FUNDAMENTAL FACTOR THEOREM 

The correlational matrices 
The factor theorem which is basic for the present analysis is equation 

(39-i), namely, 

FF' = R. 

It states, in matrix notation: 
Theorem 1. The product of the factorial matrix and its transpose is the re­

duced correlational matrix. 
In the theoretical development of this theorem in the previous chapter the 

attributes of the individuals and of the tests were chosen as natural start­
ing points, so that R could be written if F were known. The present scien- · 
ti:fic problem is the reverse. It is the intercorrelations, Ro, that are known. 
The object of the factorial analysis is to find F. The theory, as well as the 
statistical methods that are involved in factor analysis, is implied in this re-­
versal, namely, that when R is given experimentally, the problem is to 
find F. 

By the definition of a correlation coefficient in (22-i) and (32-i) it follows 
that 

(1) Rt =~SS', 

and hence the correlational matrix is symmetric and factorable. It can be 
shown that R1 is a positive-definite matrix. From this follows the funda­
mental factor theorem: 

Theorem 2. For any correlational matrix R there exists a corresponding 
factorial matrix F such that FF' =R. 

The bold-~aced notation R refers to any correlational matrix. It may 
have any values in the diagonals which preserve the Gramian properties of 
the matrix. Hence R may contain unity or the reliabilities or the com­
munalities in the diagonal cells. The bold-faced notation F refers to any 
factorial matrix which reproduces R. 

To write the factorial description of the tests in the form of matrix F im­
plies, of course, that an orthogonal co-ordinate system is given. In the re­
verse problem an interesting indeterminacy appears as regards the co-ordi-

70 
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nate system in that the co-ordinate reference axes are not defined by the cor­
relational matrix R. It has been shown that the entries of R which are the 
true correlations of fallible tests can be regarded as the scalar products of 
pairs of vectors. Such a product is a function of the scalars of the two vec­
tors and the angle of separation between the vectors. But all three of these 
quantities are independent of the location of the orthogonal axes of refer­
ence. Rotation of the orthogonal co-ordinates implies: 

Theorem 3. An infinite number of matrices F can be written which will re­
produce a given correlational matrix R. 

In order that a unique solution ofF may be found for any given matrix R, 
it will therefore be necessary to impose further restrictions on the solution. 
Such additional criteria are to be found in the psychological considerations 
that govern the problem. 

Considerable psychological interest attaches to the signs of the co-ordi­
nates which constitute the entries of F. If the variables are traits of people, 
it is usually possible to ascribe acceptable meanings to both positive and 
negative co-ordinates. If cheerfulness is one of the orthogonal axes, there is 
no difficulty in defining a personality trait as a vector with either positive or 
negative projection on the reference axis of cheerfulness. Thus, grouchiness 
might be a vector with a negative projection on cheerfulness. 

The case seems to be different with those traits which concern the things 
that people can do. These are the traits which have been defined as abilities. 
An individual can, of course, be described as above or below the mean of a 
random sample of the population with regard to any specified ability; but, 
with current psychological concepts, it is preferable to avoid a formulation 
by which a task might have a negative projection on an axis of reference 
which defines an ability. One psychological interpretation would be that 
the performance of such a task is actually facilitated by some sort of ability 
which is less than totally absent! 

Since the signs of the entries in F are of considerable interest, the follow­
ing theorems will be found useful. 

Theorem 4. The signs of all the entries in a column of F may be changed 
without altering the correlational matrix R. 

This may be seen from the factor theorem 1. It may also be inferred from 
the geometrical consideration that the scalar products of Rare independent, 
not only of the precise locations of the orthogonal co-ordinate axes, but also 
of reversal of their direction, as represented by a reversal of sign of the co­
ordinates in a column of F. This geometrical fact has a psychological coun­
terpart. The correlation between any two traits remains unaffected by the 
arbitrary decision to call one of the component reference traits "plus cheer­
fulness" or "minus gloominess." The theorem can be inferred algebraically 
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from (35-i) and (37-i), where it is seen that a change in sign of a;m and akm 
for a fixed column m does not alter the value of rik· 

Theorem 5. If all of the signs are reversed in a row ofF, then all the signs 
are ~·eversed in the corresponding row and the corresponding column 
of R. 

To change the signs in a row of F is to reverse the direction of a test 
vector. Its scalar remains the same, while its angular separation 4> from 
any other test vector is changed to the supplement of 4>. Hence the absolute 
values of the correlations of this test with the other tests remain unaltered, 
but their signs are reversed. The psychological interpretation can be shown 
by an example, namely, that if one variable correlates positively with "plus 
tactfulness," then it will correlate negatively with "minus tactfulness," 
which might be defined as "plus tactlessness." 

This theorem can also be inferred algebraically from (37-i), where it is 
seen that a change in sign of a;m for a test j alters the sign of r ik where 
j~k. From (35-i) it is seen that when akm is reversed in sign for a test k, 
the value of r;,. is not changed in sign for j=k. The self-correlation remains 
positive for all possible reversals of sign of tests and factors. 

The number of independent factors 
One of the principal problems in factor analysis is to ascertain the number 

of linearly independent factors that must be postulated in order to describe 
the scores in the tests as linear combinations of the factors. The columns of 
F represent independent factors, so that the number of independent factors 
is the number of columns of F. But this is also the rank of F. It can be 
shown that the ranks of Rand ofF are always the same. Hence we have:* 

Theorem 6. The number of linearly independent factors represented by the 
intercorrelations of n tests is equal to the rank of their correlational 
matrix R. 

Owing to sampling errors, the experimentally obtained correlation coeffi­
cients are not the true intercorrelations which are defined as the cell entries 
of R. The experimentally obtained correlations constitute a square matrix 
of order n which will be designated Ro. The distribution of discrepancies be­
tween the experimental values in R0 and the corresponding true correlations 
of the fallible tests in R should have a dispersion not excessively greater 
than that to be expected from the known standard errors of the experi­
mental coefficients. 

Since the sampling errors in Ro are fortuitous, it should be expected that 
the rank of Ro is equal to its order, namely n. The theorem concerning the 
number of factors shows that the number of common factors that are re­
quired in order to account exactly for the coefficients in Ro is equal to the 

*"Theory of Multiple Factors," p. 20. 
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number of tests. Such a solution is of no scientific interest. It corresponds 
to the more obvious situation in which the number of parameters in a hy­
pothesis is equal to the number of observations. In a simple curve-fitting 
problem the analogous situation would be that in which a curve with r in­
dependent parameters is fitted to a set of r points. The significance of an 
equation so chosen is not convincing. One of the fundamental principles of 
science is that the convincingness of a scientific hypothesis varies with the 
degree to which it is overdetermined by the data. To postulate as many 
reference abilities as there are tests constitutes the absurdity of postulating 
as many categories as there are facts to be explained or described. To do 
so would be to acknowledge the defeat of scientific effort. 

The problem of describing factorially the variables whose experimental 
intercorrelations are given in Ro is essentially that of finding another ma­
trix R (a reduced correlational matrix) of lowest possible rank whose cell 
entries do not deviate from those of Ro by more than might be expected from 
the sampling errors in the experimental coefficients of R0• If such a matrix R 
can be found, in which the rank r< n, a scientifically significant solution F 
may be possible. The converse is not necessarily valid, since the present 
reasoning is based on a set of postulates which by no means exhaust the 
possible ideal constructs in terms of which the variables may be described. 
But in any event the number of degrees of freedom of the construct must be 
considerably smaller than that of the experimental data that are to be uni­
fied. 

In dealing with the experimentally obtained values in the correlational 
matrix R 0, it must be remembered that the diagonal entries are unknown. 
The communalities are numbers between 0 and + 1. If the smallest number 
of factors in terms of which the scores can be linearly expressed is r, then the 
factorial matrix F will haver linearly independent columns. But the num­
ber of columns is then the rank of F. Since the rank of F and the rank of R 
are always the same, we have the following theorem: 

Theorem 7. The smallest number of independent factors that will account 
for the intercorrelations of n tests is the minimum rank of the correla­
tional matrix with the diagonal entries treated as unknown positive val­
ues between 0 and + 1. 

Algebraic and configurational uniqueness 
It has been shown that if a factorial matrix F has been found such that 

FF' = R, the solution F is not algebraically unique because the co-ordinate 
system of F may be rotated arbitrarily without affecting the reproduction 
of the correlations in R. * Such rotation alters the numerical entries in F. 
It is in this sense that the matrix F is not algebraically unique. 

*"Theory of Multiple Factors," p. 10. 
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The entries in F may be regarded as the orthogonal co-ordinates of n 
points in the common-factor space. These points constitute the termini of 
the test vectors whose scalar products are shown in R. In this sense both F 
and R represent the same configuration. If there exists only one configura­
tion that will satisfy R, then there is only one configuration that can be rep­
resented by F. Rotation of the co-ordinate system does not alter the con­
figuration either in R or in F. It is in this sense that F may be a unique solu­
tion to the factor problem which is stated in R. If, on the other hand, the 
given matrix R with unknown diagonal entries does not define a unique con­
figuration, then any corresponding matrix F cannot be unique. 

Since the psychological problem consists in describing the abilities that 
are represented in the common-factor space, it seems evident that no psy­
chologically meaningful solution can be expected unless the given matrix R 
defines a unique configuration in the common-factor space. It is therefore of 
considerable importance to ascertain the conditions under which a unique 
configuration is defined by the given intercorrelations. 

This problem may be clarified by a very simple but extreme example of a 
correlational matrix which does not define a unique configuration. Consider 
a set of two tests. The correlational matrix is of order 2; and it contains only 
one intercorrelation in addition to the two communalities, which are un­
known. If two abilities are involved, the rank of the correlational matrix 
must be 2. The two diagonals may be given any values between 0 and 1 
by which the rank remains 2. Any pair of diagonal values defines the sca­
lars of the two vectors. The angular separation is determined so that the 
scalar product is equal to the observed intercorrelation of the two tests. 
It is evident that for each pair of arbitrary diagonal values a different con­
figuration will be obtained. Evidently, then, the two tests are not sufficient 
to define two common factors or abilities. The same type of reasoning can 
be extended to more tests and to higher dimensions. 

The relation between the number of tests nand the number of independ­
ent factors r is subject to a limitation with regard to the present scientific 
problem. The number of reference abilities in n tests must satisfy one of the 
three following possibilities, namely, r>n, r=n, or r<n. By the factor the­
orem (1) it is seen that n tests will produce a correlational matrix whose 
rank will not exceed its order n. If, then, r>n, the factors cannot be iso­
lated by factorial methods. If more than n factors are involved, it is neces­
sary to augment the test battery with additional tests before the reference 
factors can be isolated. If r=n, there are as many factors as there are tests. 
Such a solution is always possible, and it is therefore trivial as far as the sci­
entific problem is concerned. The solution in which r=n violates the funda­
mental postulate of science that every valid hypothesis is overdetermined 
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by the data. This case is discussed further in chapter iv on "The Principal 
Axes." The only allowable case is that in which r < n. This leads to the fol­
lowing postulate. 

Postulate. The number of reference abilities in a test battery is less than the 
number of tests. 

This condition must be satisfied, or the reference abilities cannot be iso­
lated by factorial methods. In setting up a test battery for the purpose of 
discovering the primary abilities, the experimenter must so select the tests 
that the number of primary abilities is smaller than the number of tests in 
the battery. A more exact relation between rand n which must be satisfied 
in order that a unique solution shall exist will now be shown. 

The number of intercorrelations in R which are to determine the config­
uration is 

n(n-1) 
2 

These intercorrelations constitute the observations. The number of parame­
ters in F is nr, but this number can be reduced. If the first co-ordinate axis 
is passed through the first test, then 

The second orthogonal axis may be so placed that test 2 lies in the I-II 
plane. Then 

a28 = a24 = . . . = a2r = 0 . 

Table 1 

r co=on factors 

a11 0 0 0 0 

ll21 ll22 0 0 0 

a81 a02 aaa 0 0 
"' ti 
2 
1:! 

arl ar2 ars a., a •• 

a,! an2 a, a an, a,. 

This process can be continued until there are one or more zero co-ordinates 
for each of the first (r-1) tests. The factorial matrix will then appear like 
Table 1, which has been arranged so as to represent n tests and r factqrs. 
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The number of parameters in F then becomes 

nr - !r(r-1) . 

In order that there shall be a unique solution, the number of experimentally 
independent values in Ro must equal or exceed the number of linearly inde­
pendent* parameters in F. Hence 

(2) 
r(r-1) < n(n-1) 

nr---2-= 2. 

The condition for a maximum value of r for a given value of n is represented 
by substituting an equality sign for the inequality. The condition then be­
comes 

(3) 

or 

(4) 

r(r-1) n(n-1) 
nr- -2- = 2 

2nr- r(r-1) - n(n-1) = 0. 

Solving the quadratic in r, we have the following theorem. 
Theorem 8. In order that the correlational matrix R with unknown diagonals 

for n tests and r common factors shall represent a unique configuration, 
it is in general necessary that 

(5) < (2n+1) - V8n + 1 
r= 2 . 

The suppression of the positive sign before the radical in (5) is justified by 
the postulate that r<n. When the equality sign is used in (5), the value 
of r becomes integral for certain values of n. Then the number of independ­
ent parameters of F is exactly equal to the number of experimentally inde­
pendent coefficients in Ro. Such is the case when n=6 and r=3. 

* In mathematical and scientific use the term independence has several different mean­
ings. The context usually indicates clearly enough which of several meanings is implied. 
It may be useful to enumerate three of these meanings. Linear independence is here used 
in the sense in which the term is defined in current mathematical textbooks. The term 
statistical inclependence is here used to mean zero correlation, i.e., the case in which cross 
products of two variables vanish. Its geometrical representation is the orthogonality of 
a pair of vectors. Several values are here said to be experimentaUy independent if they 
have been separately determined in experimentation. 



THE FUNDAMENTAL FACTOR THEOREM 77 

Since (4) is symmetric inn and r, n can be expressed explicitly in terms of 
r by analogy from (5), so that 

(6) > (2r+l) + -..l&+J: 
n = 2 . 

This relation shows the minimum number of tests required for the deter­
mination of r factors. Formula (6) shows, for example, that there must be at 
least eight tests in order to determine four factors. 

It is useful to have a table to show the smallest number of tests that will 
just determine a given number of factors or the largest number of factors 
that can just be determined by a given number of tests. This information is 
summarized for ten factors in Table 2. 

Table 2 

No. of Factors No. of Tests No. of Factors No. of Tests 
r n r n 

1.............. 3* 6............. 10* 
2. ... . . . . . . . . . . 5 7............. 12 
3.............. 6* 8............. 13 
4.............. 8 9............. 14 
5.............. 9 10............. 15* 

*The asterisks refer to integral values of both rand n in (6). 

The case of n tests and n factors 
There is a simple solution which is satisfactory as long as the factor prob­

lem is regarded only in its mathematical aspects but which is fictitious as a 
solution to the present psychological problem. Since this simple solution 
with as many factors as there are tests is certain to occur to anyone who 
studies the factor problem, some discussion of its limitations is in order even 
though it can be shown to be psychologically trivial. 

In this solution each test is represented by a radial unit test vector in 
space of n dimensions. Since the scalars are all unity, the angular separa­
tions between the vectors must be adjusted in order that the correlations 
shall represent scalar products of these vectors. In the correlational matrix 
there are n(n-1)/2 experimentally independent correlation coefficients 
where unity is written in each diagonal cell. In the factorial matrix with as 
many factors as there are tests the number of independent parameters is 
also n(n-1)/2, since the factorial matrix is normalized by rows. Conse­
quently, it may be expected that an exact solution exists in the form of a 
square matrix F of order n and rank n which reproduces exactly the experi­
mentally obtained correlation coefficients in Ro. 
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The fallacious character of the solution in which there are as many factors 
as there are tests can be seen by considering the fact that it assumes as many 
degrees of freedom in the hypothesis F as there are independent experi­
mental observations in Ro. This violates the postulate of science that a 
valid hypothesis is overdetermined by the data. Hence the solution is sci­
entifically trivial even though it is mathematically valid. 

That the description of n tests by as many factors is an ·erroneous solu­
tion can be seen as well from other considerations. If the number of postu­
lated common factors is equal to the number of tests, then it is possible to 
account for the intercorrelations of Ro exactly by the n common factors. But 
the experimentally obtained correlations in Ro contain the effects of at least 
three sources of variance which are known to be unique for each test. These 
are (a) the variable chance errors in the scores of theN individuals, (b) the 
specific factors or abilities which are almost certain to be involved in each 
test of any finite battery, and (c) the sampling errors in the coefficients of 
R0• All three of these sources of variance are unique for each test; and hence 
they must be accounted for by unique factors, i.e., factors which are, by 
definition, not common factors. But the solution in which n common factors 
account exactly for the n tests leaves no part of the variance to the unique 
factors that are known to exist. Hence such a solution can be discarded by 
psychological considerations apart from mathematical reasoning. The rea­
son why these considerations are not immediately evident in dealing \vith 
the factor problem is that the existence of the three sources of unique vari­
ance in then tests is a scientific fact quite extraneous to the correlational 
matrix Ro. In other words, more is known about the tests than is given in 
the correlational matrix. This additional information, which is not given by 
the intercorrelations as such, is our knowledge that each test is influenced by 
factors that are unique and not common. Although it seems evident from 
scientific, as well as psychological, considerations that the case of n com­
mon factors for n tests is trivial, there is some interest in knowing that such 
a solution can be written quite readily for any correlation table. 

A method of factoring any symmetric matrix* 
The solution to be described is a simple general method of factoring any 

symmetric matrix. It will be called the diagonal method. Let Table 3 repre­
sent a correlational matrix R, and let Table 4- represent a factorial matrix F 
of order nXr in which r is the rank ofF and the rank of R. It will be as­
sumed that F has been rotated as described in a preceding section (Table 1) 
so as to minimize the number of independent parameters. 

By the factor theorem (1), 

(7) 

*"Theory of Multiple Factors," p. 13. 
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If the diagonal self-correlations are known, then a11 is known. If the self­
correlations are unknown, then ru may be set equal to unity, in which case 
a11 is also unity. 

The correlation 

(8) 

and hence 

(9) 

so that the entries in the first column of F can be determined. 

Table 3 

n 

ru r12 rl3 r, .. 

T12 r22 r2a r2n 

n r1a r2s raa ran 

(rk; =r;k) 

r,, r2n ran r,., 

Table 4 
r 

an 0 0 0 0 

a21 ~2 0 0 0 

asr as2 ass 0 0 
n 

arl ar2 ars arr 

a ~cm 

a,.r a,.2 a,. a anr 

The correlation 

(10) T22=~1+4, 

so that 

(11) 4 = r22- 4-
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Here, as before, a given diagonal entry may be used; but if the diagonal 
entry is unknown, it can be given an arbitrary value of unity, which means 
that F shall represent the total variance of each test. 

The correlation 

(12) 

so that 

(13) 

and hence the second column of F can be determined. 
The correlation 

(14) 

so that 

(15) 

The correlation 

(16) 

so that 

(17) 

and hence the third column of F can be determined. 
If R is of rank r, there will be r columns of F. If this procedure is con­

tinued to column (r+1), it will be found that the entries in such a column 
all vanish. It will be seen by equations of the type (8), (12), (16), that each 
of the coefficients in R determines a parameter in F if r = n. 

This method illustrates the following theorems. 
Theorem 9. Any symmetric matrix A of order nXn and of rank r can be 

jactored into the matrix B and its transpose B' where B is a matrix of 
order n Xr and of rank r. 

Theorem 10. Any symmetric matrix A of order nXn and of rank r in 
which all but r of its diagonal entries are unknown can be factored into 
an nXr matrix B and its transpose B' where B is a matrix of order 
nXr and of rank r. 
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A simple numerical example is given in Table 5 which shows the intercor­
relations of four fictitious tests with unity in the diagonal cells. The rank 
is 4. The corresponding factorial matrix is shown in Table 6. In Table 7 the 
same intercorrelations are reproduced with communalities in the diagonal 
cells by which the rank of the matrix is reduced to 2. Corresponding fac­
torial matrices are shown in Table 8. 

Table 5 

Fictitious Correlational Matrix 

I II Ill IV 
1 1.00 + .56 + .24 - .61 

2 + .56 1.00 - .12 - .63 

3 + .24 - .12 1.00 - .18 

4 - .61 - .63 - .18 1.00 

Table 6 
Factorial Matrix Which Reproduces the Arbitrary 

Symmetric Matrix of Table 5 
I II Ill IV 

1 +1.000 000 0 0 0 

2 + .560 000 +.828 493 0 0 

3 + .240 000 -.307 064 + .920 930 0 

4 -.610000 -.348102 -.152552 +.695308 

The rank of a matrix 
Since the number of linearly independent factors has been shown to be 

the rank of the correlational matrix, it is of some interest to investigate the 
possible means for determining the rank of a matrix. The rank is defined as 



82 THE VECTORS OF MIND 

the highest order of the non-vanishing minors, but to expand all of the 
minors even of a specified order is a prohibitive task when n is large. For the 

Table 7 

The Same Correlational Matrix as in 
Table 5 except for Communalities in 
Diagonal Cells Which Reduce the Rank 
to 2 

I II Ill IV 
1 +.58 +.56 +.24 -.61 

2 +.M +.U -.~ -.~ 

3 +. 24 - .12 +. 72 - .18 

4 -.61 -.63 -.18 +.65 

scientific problem it is not of much value to have methods of determining 
the rank, because the rank of a correlational matrix Ro with experimentally 
obtained coefficients is known to be equal to its order. This is evident be-

Table 8 

Factorial Matrices Which Reproduce the Symmetric 
Matrix Table 7 

I II I II 
1 +.70 +.30 1 +· 761577 .000000 

2 +.50 +.70 2 +.735316 +.446442 

3 +.60 -.60 3 + .315135 -.787839 

4 -.70 -.40 4 -.800969 -.091915 

cause sampling errors and chance errors in the scores are fortuitous compo­
nents in the coefficients. 

The theorem to be described here is useful for estimating the rank of a 
matrix when the cell entries can be assumed to be free from experimental 
errors. It may be useful in estimating the rank of Ro containing experi-
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mental coefficients when n is large, but it is not likely to be useful when n 
is as small as 10 or 15. The theorem is relevant to the factor problem, and 
some useful adaptation of it may be made to fallible data. 

Theorem 11. If any matrix of rank r is sectioned into a composite square 
matrix of order s where s >r, then the determinant of the composite 
matrix vanishes. 

Table 9 

14 12 6 8 2 

6 104 21 9 17 

7 6 3 4 1 

35 30 15 20 5 

The matrix will be said to be sectioned when the columns have been di­
vided into s groups, and when the rows have also been divided into the same 
number of groups. Let r=2 as an example. Since s>r, we' may let s=3. 
Then then columns of R will be divided into three groups of p, (q-p), and 
(n-q) columns, respectively; while the n rows of R will be divided into 
three groups oft, (u-t), and (n-u) rows, respectively. The matrix R will 
then be sectioned. 

Table 10 

26 14 2 

110 30 17 

78 42 6 

The composite matrix will be defined as the square matrix of orders in 
which the entries are the sums of the elements in the corresponding parts of 
the sectioned matrix. The example of Table 9 illustrates the formation of a 
composite matrix. This 4X5 matrix is of rank 2. It has been sectioned into 
a 3X3 square matrix by arbitrarily dividing the columns into three groups 
of 2, 2, and 1 columns, respectively, and by arbitrarily dividing the rows 
into three groups of 1, 1, and 2 rows, respectively. The composite matrix is 
shown in Table 10. Its determinant vanishes. 

The proof of the theorem will be written for rank 2, but it can readily be 
generalized for any rank. If R is of !'!8'nk 2, it is possible to find two rows that 



84 THE VECTORS OF MIND 

are linearly independent. Let these be the first and second rows. Then the 
elements of the jth row can be expressed as a linear function of the first two 
rows so that 

(18) 

It is evident that the sum of the first p entries of row j can also be expressed 
as the same linear function of the corresponding~ sums in the first two rows. 
We have then 

(19) 

p p p 

Lri" = m1 Lr1k + 1n:l L:r21c. 
k=l k=l k=l 

Similar summations may be written for the other two groups of columns so 
that 

(20) 

(21) 

These summations may be represented in an nX3 matrix as shown in 
Table 11. Since each of the rows can be expressed as a linear function of the 
first two rows, it follows that the rank of this nX3 matrix is also 2. The col­
umns may be so arranged that the third column of this matrix may be ex­
pressed in terms of the first two columns. This reduction by columns is 
similar to the reduction by rows that has been described. This reduction 
by columns gives a 3 X 3 composite matrix whose rank is 2, and hence its de­
terminant vanishes. If the rank of R is equal to or greater than the orders 
of the square composite matrix, then the determinant of the composite does 
not necessarily vanish. 

This theorem and other considerations about the rank of a matrix are of 
analytical interest because of the fact that the rank has been shown to be 
equal to the number of linearly independent common factors which are nec­
essary to account for the intercorrelations. It does not seem to be feasible to 
apply this theorem directly to the determination of the communalities be-
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cause of the sampling errors in the coefficients. It is possible that the the­
orem can be applied with profit to a large matrix whose rank is only a frac­
tion of its order. 

Methods of estimating communalities 
Before the correlational matrix R can be factored into the matrices F and 

F' which constitute the solution, it is necessary to compute or to estimate 
the communalities. If the cell entries of the correlational matrix are in­
fallible, the computation of the communalities is a relatively simple matter; 

Table 11 

p q n 

Lr1k = bu Lr1k = b12 Lr1k = b13 
1 P+l q+1 

p q n 

Lr2k = b21 Lr2k = b22 Lr2k = b23 
1 P+l q+1 

p q n 

L:rak = b31 L:rak = ba2 L:rak = baa 
1 P+l q+l 

. 

p q n 

L:rnh = bnl L:rnk = bn2 L:rnk = bna 
1 P+l q+1 

but if the coefficients are experimentally obtained values, the communalities 
can be at best only estimated. Fortunately, the estimates of the communal­
ities need not be at all close when the number of tests or variables is large. 
When the number of tests is as small as ten or twelve, it becomes essential 
to ascertain the communalities with some degree of exactness. 

In this section several methods of computing or estimating the commu­
nalities will be described. Most of these methods are not suitable for pur­
poses of computation, partly because of the limitation that experimental 
data are affected by sampling errors and partly because some of the methods 
are prohibitive in arithmeticallabor. Those who study the factor problem 
analytically will find these methods of some interest. 

One of the simplest of these methods is used as a first estimate for the 
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centroid method which is described in the next chapter. By successive ap­
proximations the communalities may be determined to any required degree 
of exactness. 

1. Expansion of a minor of order (r+ 1) 

If the correlation coefficients are infallible, a simple procedure for com-
puting the communalities is as follows: In order to compute the communal-
ity of a testj, select any minor in the correlational matrix which contains the 
diagonal entry for test j but no other diagonal entries, and which is of order 
greater than the rank. By definition of the rank of a matrix this minor must 
vanish. Its expansion is a linear equation in one unknown by which the 

Table 12 

1 2 3 4 5 6 7 8 

1 .56 .16 .24 .72 .64 .40 .24 

2 .56 .38 .49 .67 .72 .63 .53 

3 .16 .38 .48 .24 .40 .52 .54 

4 .24 .49 .48 .34 .52 .64 .65 

5 .72 .67 .24 .34 .76 .52 .35 

6 .64 .72 .40 .52 .76 .68 .56 

7 .40 .63 .52 .64 .52 .68 .71 

8 .24 .53 .54 .65 .35 .56 .71 

communality may be computed. It is evident that this simple method is not 
applicable to fallible data, and consequently the method is not practically 
useful. It is possible that this method may be generalized into a useful sum­
mation formula. 

In Table 12 are reproduced the intercorrelations of eight hypothetical 
variables. The rank of the matrix is 2. Table 13 shows a minor of order 3 
with one unknown entry, namely, the communality for variable No. 1. In 
order that the expansion of the determinant of Table 13 shall vanish, the 
unknown diagonal entry must be .64. If the rank is unknown and if it is 
assumed too high (say 3), it will be found that the coefficients of h~, as well 
as the numerical terms, all vanish. This indeterminacy can be removed by 
assuming a lower rank. An exception is the case in which the minor of Table 
13 is of rank 2 when some other minor in Table 12 of order 3 or higher does 
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not vanish. Such a situation would be discovered routinely by the centroid 
method, so that it is not necessary to evaluate all possible minors of order 3 
in Table 12. 

2. Grouping of similar tests 

If the test battery is large enough so that each test belongs in a constella­
tion of similar tests, then the tests in each constellation will be represented 
by vectors in the common-factor space with relatively small angular separa­
tions. The communality of a test is the square of the length of its vector. 
If the angular separations between seve~al test vectors are relatively small, 
then the projection of a test vector on the centroid vector of the constella­
tion will be nearly the same as the length of the vector. The square of the 
projection may be used as an estimate of the communality of the test with 
the knowledge that the estimate will be slightly too low. The projection of 

1 

4 

5 

Table 13 

1 2 

h2 
1 .56 

.24 .49 

.72 .67 

3 

.16 

.48 

.24 

each test vector on the best fitting single vector for the constellation is es­
sentially the same as the loading of the test with the single common factor 
which best describes the intercorrelations of the tests in the constellation. 
Relatively simple methods for dealing with the special case of rank one are 
described in chapter v. 

3. Grouping of three tests 
A special case of the preceding method is that of using only three tests in 

a constellation. Since the intercorrelations of three tests can always be ac­
counted for exactly by a single common factor, this method does not con­
tain any check of internal consistency. To obtain such a check for a single 
common factor requires at least four tests. This is Spearman's problem, 
which is discussed in chapter v. 

One procedure for estimating the communality of a test j is to select the 
two other tests which have the highest correlations with testj. Let these two 
additional tests be k and Z. If the test battery is so constructed that each 
postulated ability is represented by several tests, it can be expected that the 
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three tests j, k, and Z will be represented by test vectors with relatively 
small angular separations. If this condition is satisfied, the three vectors can 
be represented approximately by their projections on a common centroid 
vector, so that the intercorrelations are nearly accounted for by a single 
factor common to the three tests. We have then 

(22) rik = ailakl, 

(23) ril = OjlOll 1 

(24) rkz = ak1a11 , 

so that 

(25) 
Tk! ak1 -=-, 
Tj! ail 

or 

(26) 
a,1rkz 

akl = --. 
Tjl 

But 

(27) rik = ailakl, 

and hence 

(28) 
ak~rz 

Tjk = --. 
r;z 

so that 

(29) 2 TjkT;z 
a-1 = --. 
~ Tkl ' 

where tests k and l are selected because of high correlations with j. 
This formula is familiar. In fact, it is Spearman's* formula for the correla­

tion of a test with the common factor g, but it is here used under quite dif­
ferent circumstances and with different assumptions. Spearman uses this 
formula to ascertain the correlation of a test with the central intellective 
factor under the assumption that only one principal factor is operative. 
Here two tests are selected because they correlate highest with test j under 
the assumption that the intercorrelations of these three tests may be de­
scribed in terms of a single common factor, but it is also assumed that there 
are different common factors for different sets of three tests that may be 
selected in the battery. It is not assumed that the common factor is the 

*The Abilities of Man (Msemillan Co., 1927), Appendix, eq. (19). 



THE FUNDAMENTAL FACTOR THEOREM 89 

same for all combinations of three tests. The formula is used here merely to 
estimate the communality of each test. 

The diagonal entry for test j is then 

(30) 

where tests k and l are the two tests that correlate highest withj. This pro­
cedure is continued in estimating the diagonal entry for each of the n col­
umns. In general, these values should be slightly too low. 

If as many as four tests of each kind have been included in the battery, 
then an estimate of the communality of each of them may be taken as the 
average of four sets of three tests. 

One useful circumstance is that the estimate of the communality is of 
significanee only when the number of variables is relatively small-say eight 
or ten. When the number of variables is as large as thirty or forty, any 
value between 0 and + 1 may be recorded in the diagonal cell of each column 
without affecting noticeably the resulting factor loadings as determined by 
the centroid method. The reason for this is that the diagonal entry has a 
very slight effect on the relative order of magnitude of the sum of a column. 

In selecting the tests k and l which are to be used for estimating the com­
munality of j, it is probably best first to correct for attenuation. Then the 
two highest correlations in each column indicate which two tests to select 
for each column. The communalities are determined by equation (30), in 
which raw coefficients are used. The correction for attenuation may be used 
only to ascertain which tests are to be selected in each column, although this 
refinement is probably not essential. 

4. Highest coefficient in each column 
Inspection of equation (30) for estimating the communality of a test sug­

gests a further simplification in the estimate. The numerator contains the 
product of the two highest correlations in the column for test j. The de­
nominator is the intercorrelation of the two tests so selected, namely, k and 
l. If these coefficients are of the same order of magnitude, then the esti­
mated communality of testj will be nearly equal to the highest intercorrela­
tion in column j. This is the method that has been found in practice to give 
consistently better results than any of the many other much more elaborate 
methods that have been tried so far. This method is used as a first approxi­
mation in the centroid method of extracting the test coefficients. 

5. Linear dependence of rows or columns 
If the rank of a correlational matrix is r, then any row may be expressed 

linearly in terms of any r independent rows. It may be possible to general-
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ize this principle into a method of computing the communalities for fallible 
data. 

Since the rank of the correlational matrix of Table 12 is 2, any row can be 
expressed as a linear function of any two independent rows. Table 13 shows 
a third-order minor of Table 12 in which the first row can be expressed as a 
linear function of the second and third rows. The two multipliers may be 
determined from columns 2 and 3 by equations of the type (18). When these 
are known, the communality may be computed. 

Another example will be shown with reference to Table 12. Assume that 
the second and third rows are independent. Consider a 3X6 matrix con­
sisting of the first three rows of Table 12 and all of its columns except 2 and 
3. This matrix may be assumed to be also of rank 2; and it contains only 

Table 14 

1 2 3 4 

1 h'f .56 .16 .24 
---

5 .72 .67 .24 .34 

6 .64 .72 .40 .52 

7 .40 .63 .52 .64 

8 .24 .53 .54 .65 

one unknown entry, namely, the communality of the first variable. If the 
first row is expressed linearly in terms of the second and third rows, the two 
multiplying coefficients may be determined from any pair of independent 
columns. When these are known, the unknown communality may be com­
puted. 

6. Sectioning of the matrix 

A correlational matrix is square, and it may be divided into four quad­
rants in such a way that all of the unknown diagonal entries lie in the upper 
left and the lower right quadrants. All of the entries in the upper right and 
lower left quadrants are known. These two quadrants are symmetric about 
the diagonal. A part of the matrix of Table 12 may be sectioned, as shown 
in Table 14-. A composite matrix of rank 2 may be formed as shown in Table 
15, in which the first row can be expressed as a linear function of the second 
and third rows. The two multiplying constants may be determined from 
the second and third columns of Table 15. When these multipliers are 
known, the communality of the first variable may be computed. The same 
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procedure can be repeated with the second and with each succeeding row of 
Table 12. In this manner all of the communalities in the upper left quadrant 
of Table 12 may be determined. The same method can be used to determine 
the communalities in the lower right quadrant of Table 12. The reason these 
procedures have been investigated is the belief that if a communality is ex­
pressed as a function of a large number of fallible coefficients the determina­
tion is more stable than when the determination is made with a small num­
ber of fallible coefficients. 

7. Expansion of principal minors of order (n -1) 

It is possible to write n principal minors of order (n-1) in a square 
matrix of order n. If the expansion of each of these n principal minors of 
order (n-1) is set equal to zero, the rank of the matrix is assumed to be not 

1 

5,6 

7,8 

Table 15 

1 

1.36 

.64 

2 3,4 

.56 .40 

1.39 1.50 

1.16 2.35 

greater than (n-2). This follows from the property of a Gramian matrix 
that if all of its principal minors of order m vanish, then the rank of the 
matrix does not exceed (m-1). Since there are n principal minors of order 
(n-1), their expansions give as many equations as there are unknown diag­
onal entries. A unique solution is obtained if the inequality (5) is satisfied. 
If this inequality is not satisfied, there should be no unique solution. In tbis 
method it is not necessary to know the rank. These considerations are of 
some analytical interest, but they do not seem to lend themselves to com­
puting purposes. 

8. Expansion of principal minors of order (r+a) 
This should be a special case of the preceding method but less laborious. 

It is not necessary that the rank be known, but it is assumed that (r+a) is 
taken larger than the rank. The simplest case is that in which a= 1. Tbis 
method requires that the number of tests covered by the expanded principal 
minors is such as to satisfy inequality (5) even though all the tests in the 
correlational matrix are not utilized. The development of this type of anal­
ysis would be of interest, but it does not seem likely to yield practical com­
puting methods. 



CHAPTER III 

THE CENTROID METHOD 

Principles of the method 

The centroid method is a general method of factoring a symmetric matrix 
with real elements.* Its application to the factor problem involves finding 
F when R is known, so as to satisfy the fundamental factor theorem, 
FF' =R. The chief requirements of a method of factoring the correlational 
matrix are that it must be applicable even though the diagonal elements are 
unknown and that it must be applicable even though the intercorrelations 
are subject to sampling errors. These two requirements preclude the use of 
the diagonal method of chapter ii, which is very simple in application when 
the entries are infallible and the diagonals known. 

The purpose of the centroid method in factor analysis is merely to factor 
the correlational matrix. Any other method would serve the purpose equal­
ly well provided that the minimum rank of R with unknown diagonals is not 
altered. When the correlational matrix has been factored into F and F', the 
entries ofF cannot be given scientific interpretation until F has been rotated 
so that the new reference axes represent primary factors. 

Each correlation coefficient in R may be expressed in the form (37-i) 

(I) 

in which there are as many terms in the right member as there are factors 
in R. The numerical values of aim are determined by the arbitrary locations 
of the orthogonal reference vectors, since airn is the projection of the trait 
vector j on the reference vector m. The subscript j defines a row of R, and 
the subscript k defines a column of R. 

The traits are represented by a set of n trait vectors in a space of r dimen­
sions, and the scalar product of each pair of vectors is the correlation be­
tween them. It has been shown that this configuration represents the inter­
correlations and that these are independent of the locations of the orthog­
onal reference vectors that are implied in (1). Hence the reference vectors 
may be rotated without any effect on the intercorrelations. 

*The first form of the centroid method was described in "Multiple Factor Analysis." 
It was improved by the elimination of arbitrary subgroups in "A Simplified Multiple 
Factor Method." The method has been further improved as described in this chapter. 

92 
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Let the co-ordinate system be rotated so that the centroid of the system 
lies in the first axis of reference. The case in which the centroid is at the 
origin will be discussed in a later paragraph. Then 

(2) 

Summing (2) for all traits j in column k of R, we have 

n n n n 

(3) 2> ik = a~1 2>.11 + a~2 L aj2 + .. · + a~r L a}r ; 
j=l j=l j=l j=l 

and summing for all columns k so as to include all entries in R, we have 

But 
n n 

(5) 2:a~m = 2:a}m, 
k=l j=l 

and hence 

The r co-ordinates of the centroid of the system of n points are 

12:n ' - a·2 
n ' ' 

... ' 
i=l 

The co-ordinate axes have been so rotated that the centroid lies in the first 
axis of reference. The centroid therefore has zero projections on all the re­
maining (r-1) co-ordinate axes. Hence 

(7) 

so that the r co-ordinates of the centroid are 

n 

!. ""a'1 n..L... J ' 
j=l 

0' 0' ... , 0. 
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Substituting (7) in (6), we have 

(8) 

in which r 1 is defined as the sum of all the coefficients in R including the 
diagonal terms. The first co-ordinate of the centroid is also its distance from 
the origin, since the remaining (r-1) co-ordinates vanish. Hence the dis­
tance of the centroid from the origin is 

(9) 

or, by (8), 

(10) 
n n 1 LLrik =;;; v~. 

k=l j=l 

Substituting (7) in (3), we have 

(11) 

and from (8) it follows that 

(12) 

where rk is the sum of all the coefficients in column k of R. If the sum of the 
coefficients in column k and the sum of all the coefficients in R are known, 
the projection of the vector k on the first axis of reference through the cen­
troid is also known, namely, 

(13) 

By (13) the first co-ordinate of each trait may be found . 
The numerical value of the first term in the right member of (2) is known 

by (13), and hence (2) may be transposed so as to show the first-factor 
residuals. Let the first-factor residuals from which the second co-ordinates 
are to be found be designated r2·ik for j and k. We have then from (2) 
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Summing for column k, 

From (7) it follows that 

(16) 

The sum of the residuals is zero in each column. 
The number of terms in the right member of (2) is the rank of R. The 

number of terms in the right member of (15) is (r-1), and hence this is the 
rank of the table of first-factor residuals. The entries in the residual table 
may be regarded as the scalar products of all pairs of residual vectors in a 
space of (r-1) dimensions. From (7) it is seen that the (r-1) co-ordinates 
of the centroid of the residual vectors are zero, and hence the centroid is at 
the origin in the (r-1) subspace. This precludes the direct application of 
formulae of the type (13) in determining the second and subsequent co-ordi­
nates of then points. 

In order to make the centroid method applicable in this situation, where 
the centroid of the system is at the origin, it is necessary to remove the cen­
troid from the origin. In order to accomplish this purpose without destroy­
ing the identities of the traits, a new concept will be introduced. Every 
point represents a trait. The diametrically opposite point represents the 
diametrically opposite trait, which will be called the reflection or image of the 
given trait. If a trait +A is represented by the co-ordinates a11, a12, ••• , 

a1r, then the co-ordinates of the reflected trait -A are -a11, -a12, ••• , 

-a1r. Either the point or its reflection through the origin may be used to 
represent the trait as long as the proper sign is attached to it. In this sense 
the score on A may be replaced by the same score with negative sign to rep­
resent -A. Both scores represent the same trait except for sign. If A repre­
sents the trait "tactfulness," then -A represents "plus tactlessness," or 
"minus tactfulness." The identity of the trait is easily established with a 
simple reversal of sign. If some of the traits are reversed in sign, the cen­
troid of the system will be removed from the origin without disturbing the 
identities of the traits, To reverse the signs in a row of P is to reflect the 
point through the origin, and it has been shown that this reversal of sign 
causes a reversal of sign in the corresponding row and in the corresponding 
column of R. The reflection of a trait is accomplished merely by changing 
the signs of the correlation coefficients in its row and in its column of R or 
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in the residual table. The correlation coefficients in Ro have the same rela­
tion to the common-factor space as the residual coefficients have to the 
residual subspace. 

The next question is to decide which traits to reverse in sign. If all of 
them are reversed, it is clear that the correlational matrix, or the residual 
table, remains unaffected and the· centroid remains at the origin. It is neces­
sary, therefore, to reverse the signs of only some of the traits in the battery. 
It is desirable to account for as much as possible of the residual variance by 
each successive factor, and this should be a guiding consideration in deciding 
upon the traits which are to be reversed. If there is a clustering of traits in 
the (r-1) subspace which is balanced by a scattering of traits on the oppo­
site side of the centroid, it is desirable to pass the second reference axis 
through the cluster. The second axis may be passed anywhere in the resid­
ual subspace because it is orthogonal to the first axis of reference, which has 
already been located through the centroid of the original system. Since the 
subspaces are frequently of order higher than the third, it is not feasible to 
use any direct graphical methods for finding the clusters. Rather simple 
considerations should make it possible to accomplish the same purpose 
analytically. 

If a trait is in a cluster, its correlations will be high and positive with the 
remaining traits in the cluster; while if it is unique, in the sense that it is 
relatively remote from the other traits, its correlations with the other traits 
will be near zero. If a remote trait is reflected, its correlations will be re­
versed in sign, so that the majority of them are positive. The principle to be 
applied here is that every trait the majority of whose correlations are nega­
tive is to be reversed in sign. This will tend to bring all of them into a 
hemisphere, and the centroid will then be removed from the origin without 
destroying the identities of the traits. 

When the sign reversals have been made so that the majority of the cor­
relations for each trait are positive or zero, the centroid method may again 
be applied as before, by rotating the co-ordinate axes about the first cen­
troid axis so that the centroid of the residual configuration lies in the second 
axis of reference. This axis will be orthogonal to the first axis of reference 
because the (r-1) subspace is orthogonal to the first axis of reference. 

It will be found that the majority of the points in the subspace will have 
projections on the second centroid axis which are positive or zero. If ·it is 
desired, it is always possible to make a few additional sign changes so as to 
insure that the sum of every column in the residual table is positive or 
zero. This guarantees that the projection of every point in the subspace 
will have a positive projection on the new centroid axis. This additional ad­
justment is probably not ordinarily worth the additional computation, be-
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cause it will not noticeably affect the location of the new centroid axis. The 
principle recommended for practical computations is to reverse the signs of 
one trait at a time until the number of negative coefficients in the residual 
table is less than n/2. It will be shown that this computation can be easily 
routinized. 

After reflection, let (14) be written in the form 

(17) 

The value of aj; is equal to either +a;·2 or -aj2, depending on whether j 
has been reversed in sign. The correlation r~. ik is equal to the residual cor­
relation r2. ik if neither j nor k has been reflected or if both of them have been 
reflected. If only one of the traits j and k has been reflected, then r~ . ik = 
-r2. fk· 

After the reflections, let the residual vectors in the residual subspace be 
rotated so that the new centroid lies in the second orthogonal reference axis. 
Then 

(18) 

Summing (18) in a manner similar to that shown in (3) and proceeding as 
in (3) to (12), inclusive, we have 

(19) 

where r~"' is defined as the sum of the first-factor residual coefficients in 
column k after reflection, and r~t is defined as the sum of all the first-factor 
residual coefficients after reflection. From (19) the values of a~' may be 
found. If k has not been changed in sign, this is the second co-ordinate of 
k. If k has been changed in sign, then the second co-ordinate of k is -a~'. 

The procedure for the remaining factors is the same. When the sign re­
versals have been made, the centroid method is used again by rotating the 
co-ordinate system about the axes that have been established, so that the 
centroid of the residual configuration lies in the next orthogonal reference 
axis. Each successive residual table is reduced in rank by 1. When r factors 
have been extracted, the rth-factor residuals all vanish if the rank of R is r. 

A useful check on the arithmetical work is as follows: Summing (13) for 
all tests k, · 

n l n 

2::a~1 = 11r L}k · 
k=l Tt k=l 

(20) 
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But by (8), (11), and (12), 

(21) 

and hence 

(22) 

The sum of the factor loadings is equal to the square root of the sum of all 
coefficients in the correlation table. This check is applicable for each of the 
successive factors. 

Example 1. Unity in the diagonal cells 
A small correlation table will be used in four examples of the centroid 

method. The examples differ only in the diagonal entries. In Table 1 are 
shown the intercorrelations of three fictitious variables with self-correla-

Table 1 

++1 +-2 ++3 

++1 ++1.000000 -+ .480000 ++ .560000 
+-2 -+ .480000 ++1.000000 -+ .420000 
++3 ++ .560000 -+ .420000 ++1.000000 

A + .080000 - .900000 + .140000 
B +1.040000 + .900000 + .980000 
c +1.000000 +1.000000 +1.000000 
D +2.040000 +1.900000 +1.980000 5.920000 
E + .838435 + .780895 + .813775 2.433105 
K + .838435 - .780895 + .813775 .4109975 

tions of unity. Before each entry there are two signs. The first one is the 
given sign. The given variables may be designated by number and sign, 
as +1, +2, +3. In order to displace the centroid from the origin, the signs 
may be reversed so that the sum of the coefficients in each column (omitting 
the diagonal entry) shall be positive. In row A these column sums are re­
corded. The second column has the largest negative sum. In this example 
there is only one column with negative sum. Hence, variable 2 is reversed 
in sign. These sign reversals in both column 2 and row 2 are shown by the 
second sign before each coefficient. 

The new sums (omitting diagonals) are shown in row B. All of the sums 
are now positive. If negative sums remained, further sign reversals would 
be made, as shown in subsequent examples. In row C is shown the diagonal 



THE CENTROID METHOD 99 

entry for each column and in row D is shown the sum of all coefficients in 
each column. 

The last entry in row D is the sum of all coefficients in the table. It is r 1 

in (8). The square root of this sum is also recorded; and immediately below 
this is recorded its reciprocal, as required in (13). In row E is shown the 
first-factor loading for each of the three variables with signs used in Table 1. 
In row K are shown the first-factor loadings with signs which correspond to 
the original positive signs of the variables. 

In order to extract the second factor, Table 2 is prepared with the resid­
uals (14). In computing these residuals, the given variables are taken with 
the following signs, +1, -2, +3. These are the signs used in computing 
row E in Table 1. The factor loadings in row E then correspond to a't1 in 
(14). 

Table 2 

++I -+2 ++3 

++I ++.297027 -+ .174730 --.122297 
-+2 -+ .174730 ++.390203 -+ .215473 
++3 --.122297 - + .215473 ++ .337770 

~0 .000000 .000000 .000000 
A -.297027 -.390203 -.337770 
B +.052433 +.390203 +.093176 
c +.297027 +.390203 +.337770 
D +.349460 + .780406 +.430946 1.560812 
E +.279719 +.624662 +.344943 1.249325 
K +.279719 +.624662 +.344943 .800432 

In row ~o of Table 2 are shown the sums of the columns. These all vanish, 
as proved by (16). Row A shows the sum of the coefficients in each column 
(omitting the diagonal entry). The second column has the largest negative 
sum. Hence, variable 2 is reversed in sign. 

After reversing the signs of the residuals for variable 2, the new sums are 
recorded in row B (omitting diagonals). The diagonal entry for each column 
is recorded in row C. The sum of all coefficients in each column is shown in 
row D. The same procedure as before gives the second-factor loadings 
shown in row E. Row K is the same as row E because all three of the vari­
ables happen to be positive. 

Table 3 was prepared in order to extract the third-factor loadings. In it 
are recorded first the residuals from Table 2. The first sign is positive for 
each of the three variables because that is the sign arrangement which re­
sulted after the sign reversal for the second factor. In row ~o is recorded the 
sum for each column which is zero. This is a check on the arithmetical work. 
Row A shows the sum of each column, omitting the diagonal entry. Since 
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both the first and the third columns have the same negative sum, it is im­
material which of them is reversed in sign for the extraction of the third­
factor loadings. The first variable was here reversed in sign. In row B are 
recorded the new sums, omitting the diagonal entries. In row C are 
recorded the diagonal entries. In practice the repetition of row C is not 
needed, since the diagonal entries are available in the correlation table. 
Row D is the sum of rows B and C. The sum of all entries in row D is re­
corded at the right. It is the sum of all the coefficients in the residual table. 
Next below it is its square root; and next below that is recorded the recipro­
cal, as before. The multiplier is then applied to row D; and the result is row 
E, which contains the third-factor loadings with the signs of the variables 
after reversals for the third factor. In row K are recorded the third-factor 
loadings which correspond to the three variables taken with positive sign. 

Table 3 

+-1 ++2 ++3 

+-1 ++.218784 +- .000000 -+.218784 
++2 +-.000000 ++.000000 ++ .000000 
++3 -+.218784 ++.000000 ++.218784 

~0 .000000 .000000 .000000 
A -.218784 .000000 -.218784 
B +.218784 .000000 +.218784 
c +.218784 .000000 +.218784 
D +.437568 .000000 + .437568 .875136 
E +.467744 .000000 + .467744 .935487 
K -.467744 .000000 +.467744 1.068962 

If the same process is repeated in the attempt to extract a fourth factor 
from the residuals of Table 3, it will be found that all of the residuals vanish 
exactly. Hence the intercorrelations have been described in terms of as 
many factors as there are variables. The rank of the given Table 1 is 3, and 
this is also the number of factors which will exactly account for the inter­
correlations. 

The three factor loadings for each of the three variables are summarized 
in the upper half of Table 4. These factors reproduce the given intercorre­
lations in Table 1. In the lower half of Table 4 are recorded the factor load­
ings with the signs which correspond to those with which the factoring of 
Table 1 was made. In that table the second variable was reversed in sign. 
When the factor loadings are taken with signs to correspond to the signs of 
the variables with which the factoring is made, the sum of each column 
after the first vanishes. This is shown at the bottom of Table 4. 
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Example 2. Communalities in the diagonal cells 
In the first example unity was recorded in each diagonal cell. As a con­

sequence, the rank of the correlational matrix became equal to its order, 
namely, 3. In the present example the communality is recorded in each 

Table 4-

I II Ill 

+I + .838435 + .279719 -.467744 
+2 - .780895 +.624662 .000000 
+3 + .8I3775 +.344943 + .467744 

I II Ill 

+I + .838435 +.279719 -.467744 
-2 + .780895 -.624662 .000000 
+3 + .8I3775 +.344943 +.467744 

1: +2.433105 .000000 .000000 

diagonal, with the result that the rank of the matrix is reduced to I. The 
procedure of extracting the factor loadings is here exactly the same as in the 
previous example. 

Table 5 shows the given intercorrelations, as well as the diagonal commu­
nality-entries which are assumed to be known in this example. The calcula-

Table 5 

++I +-2 ++3 

++I ++ .640000 -+ .480000 ++ .560000 
+-2 -+ .480000 ++ .360000 -+ .420000 
++3 ++ .560000 -+ .420000 ++ .490000 

A + .080000 - .900000 + .140000 
B +I.040000 + .900000 + .980000 
c + .640000 + .360000 + .490000 
D +1.680000 +I.260000 +1.470000 4.410000 
E + .800000 + .600000 + .700000 2.IOOOOO 
K + .800000 - .600000 + .700000 .476I905 

tions are summarized in the several rows below the correlational matrix. 
Row A shows the sum of the coefficients in each column, omitting the diag­
onal entry. The largest negative sum is for the second column, and hence 
the second variable is reversed in sign. The resulting sums, omitting diag­
onals, are recorded in row B. The diagonal entries are repeated in row G. 
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Row D is the sum of rows Band C. Hence row D shows the sum of all the 
coefficients in each column. The total at the right of this row is the sum of 
all the coefficients in the table. Immediately below it is its square root, and 
below that is the reciprocal. This is the multiplier by which row E is ob­
tained from row D. Row E shows the factor loading for each variable with 
the sign that was used for the factoring. Reversing the sign of the second 
variable, we have the factor loadings in row K, which represent the load­
ings when all of the variables are taken with positive sign. 

If an attempt is made to obtain second-factor loadings for these three 
variables, it will be found that all of the residuals vanish. Hence one factor 
is sufficient to describe all of the intercorrelations in this table. The rank of 
the given correlation table is therefore 1, although its order is 3. 

Example 3. Each diagonal entry greater than the communality and less 
than unity 
In the first example it was shown that when unity is recorded in the diag­

onals of the correlational matrix, the intercorrelations can be described ex­
actly in terms of as many factors as there are variables. In the second ex-

Table 6 

+1 +2 +3 

+1 +.700000 -.480000 +.560000 
+2 -.480000 +.500000 -.420000 
+3 +.560000 -.420000 +.600000 

ample it was shown that when the communalities are recorded in the diag­
onal cells, the rank of the matrix is reduced, so that a single factor is suffi­
cient for the particular example here used. In the third example an arbi­
trary diagonal entry is recorded which is greater than the communality but 
less than unity. The resulting correlational matrix can be described in 
terms of as many factors as there are tests or variables. 

Table 6 is such a matrix in which the diagonal entries exceed the commu­
nalities by arbitrary increments. The extraction of the factors is effected 
in exactly the same manner as has been described in the first two examples. 
The result is summarized in Table 7, which shows the three factor loadings 
for each of the three variables. The third-factor residuals vanish exactly. 

Example 4. Each diagonal entry less than the communality 
It is of some interest to know that the centroid method of factoring a 

symmetric matrix is applicable not only to those matrices whose factors are 
real but also to those symmetric matrices whose factors are imaginary. 
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When the diagonal entries are made less than the communalities, the Gram­
ian properties of the correlational matrix are destroyed and the factors are 
then imaginary. The fourth example illustrates this case. Table 8 contains 

Table 7 

I II III 

+1 +.800900 +.124013 -.207798 
+2 -.644402 +.291112 .000000 
+3 +.727254 +.J67098 +.207798 

Table 8 

+1 +2 +3 

+1 +.600000 -.480000 +.560000 
+2 -.480000 +.250000 -.420000 
+3 +.560000 -.420000 +.400000 

the same intercorrelations as those of Table 1, but the diagonal entries have 
been reduced below the communalities by arbitrary decrements. Applica­
tion of the centroid method in exactly the same manner as for the previous 
examples gives the factor loadings shown in Table 9. The second and third 
columns of the factorial matrix of Table 9 are imaginary. The co-ordinates 
of this table reproduce the intercorrelations exactly and the third-factor 
residuals all vanish. 

Table 9 

I II HI 

+1 +.803111 +.106981i - .183145i 
+2 -.563157 +.259126i .000000 
+3 +.675789 +.152146i +.183148i 

Example 6. A fictitious eight-variable problem with known communalities 
The first four examples are intended to show the factoring of a symmetric 

matrix with four different conditions as regards the diagonal entries. The 
fifth example is intended to illustrate a variant procedure in selecting the 
variables which are to be reversed in sign. The sign-reversing method which 
is described here for the fifth example is recommended for roost practical 
problems, since it is simpler in computation than the more complete method 
of the first four examples and since the simpler method gives results that are 
almost identical with those of the more elaborate sign-changing method. 
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Table 10 shows the intercorrelations of eight variables whose self-correla­
tions are known. All of the intercorrelations are here taken to be positive. 
At the bottom of each column is recorded the sum of the coefficients in the 
column, including the diagonal entry. The reason for taking the sum of all 
the entries in this example is that no sign reversals are necessary for the 
first factor when all of the given intercorrelations are positive. In the lower 
right corner of the table are shown the entries which are required to deter­
mine the multiplying factor. In the last row of the table are the first-factor 
loadings. 

Table 10 

1 2 3 4 5 6 7 8 
- -------------------

1 .64 .56 .16 .24 .72 .64 .40 .24 
2 .56 .65 .38 .49 .67 .72 .63 .53 
3 .16 .38 .40 .48 .24 .40 .52 .54 
4 .24 ~9 .48 .58 .34 .52 .64 .65 
5 .72 .67 .24 .34 .82 .76 .52 .35 
6 .64 .72 .40 .52 .76 .80 .68 .56 
7 .40 .63 .52 .64 .52 .68 .74 .71 
8 .24 .53 .54 .65 .35 .56 .71 .73 

- --------------------
D 3.60 4.63 3.12 3.94 4.42 5.08 4.84 4.31 33.94 = "i:,D 

5.8258047 = y"i:,D 
K .617940 . 794740 .535548 .676301 . 758693 .871983 830787 . 739812 .17165011 = 1/y"i:,D 

The first-factor residuals are shown in Table 11. In front of each residual 
there are one, two, or three signs. Each sign is recorded in the first, the sec­
ond, or the third position. The first sign is the sign of the residual as ob­
tained from the given coefficients and the factor loadings of Table 10. In 
row l:a is shown the sum for all the coefficients in each column. These sums 
vanish, as shown in (16). 

In order to select the variables which are to be reversed in sign so as to 
move the centroid of the system as far as possible from the origin, Table 12 
was prepared. It will be referred to as the sign table. This table illustrates 
a variant method of sign changing. At the top of the table are listed the 
variables from 1 to 8. In the first row is shown the number of nego::Ltive en­
tries in each column of Table 11. It so happens that in this example the num­
ber of negative entries is four for each column. Ordinarily these sums are 
not all the same. 

The usual procedure is to select for sign reversal that variable whose col­
umn has the largest number of negative entries. Since this is four for each 
column, it is immaterial which of the variables is chosen for the first sign 
reversal. The first variable is so chosen. It is recorded at the right of the 
second row in Table 12. The fact that the first variable is to be reversed in 
sign is also indicated by the cross at the top of column 1. 

There are eight entries in each column of Table 11; but since the diagonal 



Table 11 

Computation of Second-Factor Loadings 
-----·- - -· --- -~~-

+-1 +-2 ++3 ++4 +-5 +-6 ++7 ++8 

+-1 +-+ .258150 +--l-.068898 -+ .170937 -+ .177913 +-+ .251173 +-+.101167 -+ .113377 -+ .217159 
-1--2 +-+ .068898 +-+ .018388 -+ .045621 -+ .047•183 +-+ .067036 +-+.027000 -+ . 030260 -+ .057958 
++3 - + .170937 - -l-.045621 + .113188 + .117808- + .166317- -1-.066989 + .075074 + .14379.'5 
++4 - + .177913- + .047483 + .117808 + .122617 - + .173105- + .069723 + .078138 + .149664 
+~5 +-+ .251173 +-+.067036 -+ .166317 -+ .173105 +-+ .244385 +--1-.098433 -+ .110312 -+ .211290 
+-6 +-+ .101167 +- + .027000 -+ .066080 -+ .069723 +- + .098433 +-+ .039646 -+ .044432 -+ .085103 
++7 - + .113377 - + .030260 + .076074 + .078138 - + .110312- +.044432 + .049793 + .095374 
++8 - + ,217159 - + .057058 + .143795 + .149664- + .211290- + .085103 + .095374 + .182678 

Zo + .000002 .000000 + .000001 +.000003 + .000003 - .000001 -.000002 + .000001 
D 1.358774 .362644 .899729 . 936451 1.322051 .532493 .5907130 1.113021 7.151923 ~ "ZD 

2.674308 ~ 1/>iJ) 
E + .508084 + .135603 + .336434 + .350166 + .494353 + .199114 + 223146 + .•127408 .3739285~1/yZD 
K - .608084 -.135603 -1-.336434 +.350166 - .494353 - .199114 + 223146 + .427408 .000000 ~ "ZK 

----- --- -- -- - -

Table 12 

Table of Sign Changes 

X X X X 
1 2 3 4 5 6 7 8 Check k; 
~~ ----------------~-

4 4 4 4 4 4 4 4 32 1 
3 5 3 3 5 5 3 3 30 2 
2 2 2 2 6 6 2 2 24 5 
1 1 1 1 1 7 1 1 14 6 
0 0 0 0 0 0 0 0 0 

---
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entry is always positive, there are only seven entries in each column that 
are subject to sign reversal. In the first column of Table 11 there are four 
negative and three positive items, ignoring the diagonal entry. Hence, 
when the first variable is changed in sign, there will be three negative signs 
in the first column. This is the first entry in the second row of Table 12. 

Each of the succeeding entries in the second row of Table 12 is determined 
in the following manner. If the sign in the first row of Table 11 is positive, 
then the entry in the first row of Table 12 is augmented by 1. If the sign in 
the first row of Table 11 is negative, then the entry in the first row of Table 
12 is reduced by 1. In this manner the remaining entries in the second row 
of Table 12 are determined. 

The procedure is summarized with the following notation: 

ri; =given correlation or residual; 

N; =number of negative signs in the jth column of the given table of 
correlations or residuals; 

n =number of variables; 

Ai; =the entry in the ith row andjth column in the sign table; 

B;; = + 1 or -1. The sign of B;; agrees with the sign of r ;;; 

C; =+1 or -1. The sign is taken negative if variable j has been re­
versed in sign an odd number of times. Otherwise it is taken 
positive; 

k, =variable which is reversed in sign in row i; 

Aik =A;; where j =ki. A;k is the largest value of A;; in row i. 

The successive steps in reflecting the variables are as follows: 

I) The first row of the sign table contains N; in column j; 

2) Select the highest value of N;. Let it be column k. The variable k is 
to be reversed in sign; 

3) Record kat the end of row 2; 
4) Make a cross or check mark at the top of column k; 
5) Record A;; in the next row where 

(23) A if = n - 1 - N; when j = k, 

and 

(24) 

If a correlational entry is zero, count it as positive. 
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6) Find Aik, the highest value in row i. Check the top of its column and 
record the number of the column at the end of row (i+ 1); 

7) Record Ai;, as in step 5, for each row of the sign table until all entries 
Ai;<n/2. 

The columns which are checked are to be reflected in the table of correla­
tions or residuals. 

A check on the arithmetical work of each row i is as follows: 

n n 

(25) LAi; = LACi-lli - 2[Aci-llk - A;k]. 
j=l j=l 

The sign table shows that variables 1, 2, 5, and 6 are to be reflected. The 
signs are reversed in the second position for these four rows in Table 11. Then 
the signs are reversed in the third position for the four columns. After mak­
ing these sign reversals as shown in Table 11, each residual is to be taken 
with the sign that is next in front of it, irrespective of its position. 

The rows and columns are designated by numbers. The sign reversals are 
also recorded in front of these numbers so as to show at a glance which of 
the variables have been reflected. 

In row D is recorded the sum of each column after reflection. At the low­
er right corner of the table are shown the entries for the multiplier. In 
row E are shown the resulting second-factor loadings with signs to corre­
spond to the reflected variables. In row K are shown the factor loadings for 
the original unreflected variables. 

A check on the arithmetical work is that the sum of row E must equal 
V'2.D. This is the check described by (22). 

A repetition of the same procedure for the second-factor residuals shows 
that they all vanish. Therefore the given coefficients in Table 10 can be ac­
counted for exactly by two factors. 

Table 13 gives a summary of the factor loadings for the eight variables. 
Two factor loadings are shown for each variable. The cross products in this 
table reproduce the correlations of the original unreflected variables. 

The two methods of sign changing that have been described may be com­
pared as follows: In the first and more complete method, that trait is re­
flected which has the largest absolute negative sum of coefficients in its col­
umn. After reflecting this trait, the sums are again determined, and the 
trait with the largest negative sum of coefficients is reflected. This pro­
cedure is continued until all of the sums of columns are positive, when the 
diagonal entries are ignored. In the second and shorter method, that trait 
is reversed in sign which has the largest number of negative coefficients in its 
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columns. After the reflection, the trait which has the largest number of 
negative coefficients is reflected. This process is continued until no trait re­
mains for which the number of negative coefficients exceeds (n-1)/2. The 
two methods may be combined by using the shorter method first. When the 
number of negative signs has been minimized as described, there may still 
remain one or more small negative column sums, omitting the diagonal en­
tries. The first method can then be used until all of the column sums are 
positive. This is the procedure which is illustrated in example 6, but in 
practice it is probably not worth the additional labor to make any refine­
ments beyond the shorter procedure. The first method can be arranged 
with a check column in a manner similar to that of (25). 

1 
2 
3 
4 
5 
6 
7 
8 

::!; 

Table 13 

Factor Loadings in Fictitious 
Eight-Variable Example 

I I! 

+ .617940 -.508084 
+ .794740 -.135603 
+ .535548 +.336434 
+ .676301 +.350166 
+ .758693 -.494353 
+ .871983 -.199114 
+ .830787 + .223146 
+ .739812 +.427408 

+5.825804 .000000 

Example 6. The centroid method with unknown diagonals "!("""""~ ,fA ~~ 
In the previous examples it has been assumed that the diagonal entries 

were known. The sixth example illustrates the application of the centroid 
method to an actual set of data. Since the communalities are unknown, the 
diagonal entries are also unknown. The diagonal entry will be estimated by 
method No. 4 in chapter ii. Fortunately, the diagonal entry may be given 
any value between zero and unity without affecting the results markedly, 
especially when the number of variables is as large as twenty or thirty or 
more. Hence even rough estimates of the diagonal entries are sufficient for 
reasonably accurate factor loadings by the centroid method. 

Table 14 contains the intercorrelations of fifteen psychological tests that 
were used by Professor Brigham in a recent experimental study. The tests 
will be identified by the same numbers that were used by Brigham. * In each 

* Carl C. Brigham, A Study of Error (New York: College Entrance Examination 
Board, 1932), p. 275. 



Table 14 
Computation of F'irst-Ji'actor Loadings 

10 2 5 3 • 1 8 7 9 6 15 14 17 11 18 Check 
~~~ ---------------------------------

10 (.641) .641 .564. .527 .424 .463 .242 .277 .265 .225 .273 .199 .303 .252 .217 5.513 
2 .641 (.641) .538 .496 .394 .458 .233 .240 .175 .203 .216 .122 .236 .221 .159 4.976 
5 .564 .538 (.564) .484 .428 .425 .203 .227 .252 .176 .189 .141 .245 .185 .200 4 821 
3 .527 .496 .484 (.567) .488 .567 .346 .388 .332 .356 .313 .219 .363 .393 .275 6.114 
4 .424 .394 .428 .488 (.488) .436 .297 .294 .342 .376 .287 .265 .314 .274 .332 5.139 
1 .463 .458 .425 .567 .436 (.567) .410 .424 .285 .356 .296 .223 .336 .355 284 5.8S5 
8 .242 .233 .203 .346 .297 .410 (.410) .367 .328 .392 .245 .182 .312 .345 .232 4 . .54<1 
7 .277 .240 .227 .388 .294 .424 .367 (.437) .350 .437 .289 .209 .365 .337 .162 4.803 
9 .265 .175 .252 .332 .342 .285 .328 .350 (.477) .477 .202 .301 .367 .2% .234 4.G85 
6 .225 .203 .176 .356 .376 .356 .392 .437 .477 (.477) .252 .303 .450 .345 .200 5.025 

15 .273 .216 .189 .313 .287 .296 .245 .289 .202 .252 (.356) .276 .356 .352 .179 4.081 
14 .199 .122 .141 .219 .265 .223 .182 .209 .301 .303 .276 ( .353) .353 332 .200 3.678 
17 .303 .236 .245 .363 .314 .336 .312 .365 .367 .450 .356 .353 (.522) .522 .272 5.316 
11 .252 .224 .185 .393 .274 .355. .345 .337 .298 .315 .352 .332 .522 (.522) .39R 5.134 
18 .217 .159 .200 .275 .332 .284 .232 .162 .234 .200 .179 .200 .272 .398 (.398) 3.742 

D 5.513 4.976 4.821 6.114 5.439 5.885 4.544 4.803 4.685 5.025 4.081 3.678 5.316 5.134 3.742 73.756 
E .642 .579 .561 .712 .633 .685 .529 .559 .546 .585 .475 .428 .619 .598 .436 8.5R7 
[( .642 .579 .561 .712 .633 .685 .529 .559 .546 .585 .475 .428 .G19 .598 .436 8.587 



Table 16 

Computation of Second-Factor Loadings 

++ID ++2 ++5 I ++3 ++4 ++I I +-8 +-7 +-9 I -6 +-15 I +-H +-17 I +-ll ~~~- Check 

++10-1- ( 269)-j- 269 + 204 + 070 + 018 + 023 ' + 098 + 082 -1- 086 -1- 151 -1- 032 + 076 + .094 -\- 132 - -l- OG3 1 667 
++ 2-\- 269 + ( 269)-\- 213 + 081)1+_ 027 + 061 1- + 073 ~ + 081 - + 141 - + 136 - + 05!J - + 1261::_ + .122 - + 122 - + 093 1 879 ++ 5-\- 204 + 213 + ( 213)-\- 085 + 073 + 041 - + 004 - + 087 - -\- 054 - -\- 152 - + 077 - -\- 099\=--- -\- .102 - -\- 150 - -\- <H5 1 689 

tt !1t grg + g~~ + g~g + ( g~~'t < ?gr):t gbg = + g~§ = t &8 = + gg~ + 2= 88J = t &it = + ggg I= + ·&~~ = + ?~~ J+ ~ 8E~ ~8h 
++ rj+ o2a + 061 + ou + o79J+ oo2 + ( 089)-\- - 048 + - 041 - 1 o89 - + 045 - + o2u - -1 010 - + 088 - + 055 - + ms 597 +- 8-+ 098 -+ 073 -+ 094 -+ 031 -+ 038 +- 048 +-+( 098)+-+ 071 +-+ 0391+-+ 083 -+- 000 -+- 0441-+- 015 +-+ 0291+-+ 001 5!2 +- ~-+ 082 -+ 084 -+ 087 -+ 010 -+ 060 +- 041 +-+ 071 +-+ ( 110) +-+ 045 1-l--+ 110 +-+ 023 -+- 030 +-+ 019 +-+ 00~ -+- 082 551 +- 0--j- 086 -+ 141 -+ 054 -+ 057 -+ 004 -+ 08fl +-+ 039 +-+ 045 +--!-( 158)-\---l- 158 -+- 057 +-+ 067 +-+ 029 -+- 029 --\-- 004 837 

+=1~ =+ 6~~ :t ~~g =t M? =t 8~1 ±+ g~~ =+ 8M ±+± gg~ t=t Mg ±+± ~~~ ±+± c M~)+±+ c g~~ > t:t 2~~ 1t=t g~~ +±+ &~~ =t= g~~ l 1 !g~ 
+-1 -+ 076 -+ 126 -+ 099 -+ 086 -+ 006 -+ 070 -+- 044- -+- 030 +-+ 067 +-+ 053 +-+ 073 +-+( 126)1+-+ 088 +-+ 076 +-+ 013 885 
+-17-+ 094 -+ 122 -+ 102 -+ 078 -+ 078 -+ 088 -+- 015 +-+ 019 +-+ 029 + + 088 +-+ 062 +-+ 088 +-+( 152) +-+ 152 +-+ 002 1 139 
+-11-+ 132 -+ 122 -+ 150 -+ 033 -+ 105 -+ 055 +-+ 029 +-+ 0031~!r:~~) -+- 005 +-+ ons +-+ 0781+-+ 152 +-+( 152) +-+ 137 1 180 
+-18-+ 063 -+ 093 -+ 015 -+ 035 +- 056 -+ 015 +-+ 001 -+- 082_~ -+- 055 -+- 028 +-+ 013 +-+ 002 +-+ 137 +-+( 137) 316 

''[ 001 + 004 + 005 - 001 + .001 + .002 + 002 ~21 .004 ~~~~~~~{)15 
D + 1.667 -\-1.879 + 1.689 + .857 -\- .505 -\- .507 -\- .542 -\- 551 + .8:-!7 + 1.103 + .422 + 88'l + l.I.39 + 1.180 + .3Hi 14.169 

~ t :::~ t ::g~ t :::~ + :~~~ + J~~ + :i~& + :i!~ 1 + li~ + .. ~~~ + .. ~~~ + :n~ + ~~~ + :~g3 + .. ~~~ + .8~1 3 ·bga 
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diagonal cell is recorded the highest correlation in the column. In row D is 
shown the sum of each column. In the lower right corner are recorded the 
sums required for the multiplier, and in row E are recorded the resulting 
first-factor loadings. These sums are checked by (22). Since all of the tests 
are positively intercorrelated, it is not necessary to reverse any of the signs 
in this table. The row K shows the factor loadings with the original signs of 
the tests. Since no sign changes are necessary, the last two rows are identi­
cal. 

Table 15 shows the first-factor residuals. The diagonal entries are re­
corded first as residuals from the previous table. The sum of each column of 
residuals, including the diagonal, is recorded in row ~0 • Each of these sums 
should be zero. Since the residuals are recorded to three decimals, the sum 

Table 16 

X X X X X X X X X 
k, 10 2 5 3 4 1 8 7 9 6 15 14 17 11 18 Check 

- - - -- - - - - - - - - - - - -- -
9 9 9 9 7 7 8 7 9 8 10 8 7 8 9 124 15 
8 8 8 8 6 6 7 8 8 7 4 9 8 9 8 112 14 
7 7 7 7 5 5 6 7 9 8 3 5 9 10 9 104 11 
6 6 6 6 4 4 7 8 8 7 2 4 10 4 10 92 18 
5 5 5 5 5 3 8 7 7 6 3 3 11 3 4 80 17 
4 4 4 4 4 2 7 8 8 7 2 2 3 2 3 64 7 
3 3 3 3 3 3 8 6 9 8 1 3 2 1 4 60 9 
2 2 2 2 2 2 9 5 5 9 2 2 1 2 5 52 6 
1 1 1 1 3 1 10 4 4 5 3 1 0 3 6 44 8 
0 0 0 0 2 2 4 3 3 4 4 2 1 2 5 32 

of the residuals in each column will be zero except for the discrepancies 
which are caused by rounding off the third decimal of each residual. The 
fact that these sums vanish within a small discrepancy in the last decimal 
place proves the arithmetical work. 

Before the second-factor loadings can be extracted, some of the variables 
must be reflected. In order to ascertain which variables to reflect, Table 16 
is prepared. A cross (X) at the top of a column indicates that the test of 
that column is to be reflected. The procedure in preparing this table is 
similar to that of the tables of sign changing which have already been de­
scribed. 

The sign changes are indicated in Table 15. A sign in the first position is 
the sign of the residual. The change of sign in each row is indicated in the 
second position. The change of sign in each column is shown in the third 
position. The sign next in front of the residual is the sign which is used in 
summing each column for the second-factor loading. 



Table 17 

Computation of Third-Factor Loadings 

+-10 +-Z +-5 ++> I +H +H -+8 -+7 -+• -H --15 --14~--17 ~--11 I --'-18 !check 
HO +-+<.Ms>+-+ .04s +-+ .oos 1-:--t .oa1 -+ .o4t -+ .047 +-+ .os4 +-+ .on -+- .mz +-+ .ozr -+ --.oi8 -+ .ozs -+ .o4o -+ .oo1 '+- .o2o ~ 
+- 2 +-+ .01.8 +--1-{.0."il)--\-- .011 -+ .030 -+ .040 -+ .018 -\--+ .001 +-+ .011 +-+ .030 -+- .010 +- 003 +- .009 -+ .029 -+ .03-1 it- .051 .208 +- 5 +-+ .005 -+- .011 +-+{.046)-+ .017 i+- .013 -+ .030 +-+ .029 +-+ .021 -+- .04-6 +-+ .020 +- .027 -+ .007 -+ .0341+- .009 +- .007 .090 ++ 3 - + .031 - + .030 - + .017 + (.043)-\- .006 + .043 - + .002 - + .023 + - .000 - + .006 - .001 + .032 + .009 - _Q;-)8 + .01() .213 

tt i : t :&tj : t :81g ~ + :z~g + :8~~ ~ <:8~~>:; c:Z~i>± + :8ii ± + :8~~ + ~ :8~~ = t :8M + :8~i + :8~~ it :8~& t :88~ \+ :88~ Jt! -+ 8 +-+ .034 +-+ .001 +-+ .020 -+ ,002 +- .019 -+ .071 +-+(.078)+-+ .050 +-+ .007 +-+ .041 -+ .022 -+ .078 -+ .059 -+ .016 -+ .011 .480 
-+ 7 +-+ .017 +-+ .011 +-+ .021 -+ .023 +- .040 -+ .064 +-+ .050 +-+< 094)+-+ .013 +-+ .067 +- .007 -+ .064 -+ .025 -+ 043 -+ .094 530 -+ 9 -+- .012 -\---\- .030 -+- .046 -\-- .006 -+ .026 -\-- .054 -\---\- .007 +-+ .013 +--t-(.098)-\---\- .OU3 -+ .082 -\-- .015 -+ .038 -+ .098 -+ .02;:) .:l75 
--\- 6 +-+ .021 -+- .010 +-+ .020 -+ .006 -+ .045 -+ .002 +-+ .041 +-+ .OG7 +-+ .093 -\---\-{.097)--\- 059 -+ .016 --\- .001 -+ .ml7 -+ .080 .635 
--15 ..... + .018 + - .003 + - .027 - .001 - .001 + .011 - + .022 + - .007 - + .082 - + .059 + (.082)-\- .047 + 028 + .033 - .037 .300 
--14 - + .028 + - .009 - + .007 + .032 - .025 + .033 - + .078 - + .004 + - .015 - + .016 + .OH + ( 078)1+ .017 + .002 ~- .007 .346 
--17 - + .040 - + .029 - + .034 + .009 + .037 + .040 - + .059 - + .025 - + .038 - + .001 + 028 + 017 + ( 059)-\- 057 - .023 .450 
--11 - + .007 - -\- .034 -\- - .009 - .038 -\- .063 -\- .005 - -\- .016 - -\- .043 - -\- .098 - + .097 -\- 033 + 002 + 057 -\- ( 111)-\- .111 .G30 
--18 + - .026 + - .051 + - .007 + .016 - .007 + .002 - + .011 - + .094 - + .023 - + 080 - 037 - 007 - 023 + 111 + (.111) .230 

:En .000 + .001 .003 - .002 + .001 + .001 .001 + .002 + .002 .002 000 + 001 001 + 001 
-;- .V<H I .001 D + .34.7 + .208 + .096 + .213 + .14.1 + .364 + .480 + .539 + .375 + .635 + .306 + .346 + .450 + .li30 

E + .150 + .O<JO + .041 + .092 + .061 + .157 + .207 + .233 + .102 + .274. + .132 + .14.9 + .194 + .272 
K .150 .090 041 -\- .092 -\- .061 -\- .157 -\- .207 + .233 + .162 + .274 .132 - .14D .lD-1 - .272 

+ .230 5 360 
-\- .OOH 2.313 

.099 .059 
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Each diagonal residual is erased. In each diagonal is recorded, instead, 
the largest residual of the column, irrespective of its sign. The diagonal 
entry is always recorded with positive sign. 

The sum of each column is shown in row D. In row E is recorded the sec­
ond-factor loading for each test after reflection. In row K is recorded the 
second-factor loading for each test taken with positive sign. 

Table 17 shows the second-factor residuals, and Table 18 is the corre­
sponding table of sign changes. The procedure is the same as for the pre­
ceding tables. The sum of each column, including the diagonal residual en­
try, is shown in row ::Z:o. The fact that all of these sums vanish within a small 
discrepancy in the last decimal proves the arithmetical work. The diagonal 
residual entries are then erased, and the absolute maximum of each column 
is recorded in the diagonal cell. The sign changes indicated in Table 18 are 
then made. The sum of each column, without the diagonal, is shown in the 
first row of Table 19. There are several negative entries in this row, namely, 
for columns 2 and 9. Variable 9 is changed in sign. The new sums, omitting 
diagonals, are recorded in the second row of Table 19. The second entry is 
still negative. The second variable is changed in sign, and the new sums are 
recorded in the third row. A negative sign appears in column 4. The fourth 
variable is then changed, and the sums are recorded in the last row. All 
sums are now positive. The entries in the last row of Table 19 are added 
to the diagonal entries in Table 17. The sums are recorded in row D of Table 
17. The factor loadings are recorded in row E. In row K are found the 
third-factor loadings for the original unreflected tests. 

Tables 20 and 21 are prepared in a similar way for determining the fourth­
factor loadings. 

Tables 22, 23, and 24 are prepared for the fourth-factor residuals and the 
fifth-factor loadings. The residuals in Table 22 are so small that they can be 
ignored. The standard deviation of discrepancies is .024. 

The five factor loadings for each of Brigham's fifteen tests are summarized 
in Table 25. The contributions of the fifth factor to the correlations can be 
ignored. Each of the given intercorrelations can be reproduced from the 
first four factor loadings of this table within the discrepancies which are re­
corded in Table 22. It is an error, frequently made, to attempt a psychologi­
cal interpretation of the factors in Table 25. It is not unlikely that each col­
umn of this table has psychological meaning, but there is no guaranty that 
such interpretation will be useful or fundamentally significant. The table 
represents merely the arbitrary centroid co-ordinates of a set of fifteen 
points in a space of five dimensions. The orthogonal reference axes which 
are obtained by the centroid method and which are represented by the five 
columns of Table 25 must be rotated into a new set of orthogonal or oblique 



Table 18 

X X X X X X 

"' 10 2 0 3 4 1 8 7 • 6 15 14 17 11 18 Check 
- 7 ----------1-----

f----:7 --8 ------'11 8 6 8 8 7 7 6 7 9 7 7 8 110 
9 6 7 7 7 6 8 7 8 5 6 6 7 6 7 102 10 
5 7 8 6 6 5 9 8 7 4 5 5 6 5 8 94 8 
4 8 9 5 7 4 5 9 8 3 4 4 5 4 7 86 5 
3 7 5 4 8 3 4 10 7 2 5 3 4 5 8 78 7 
2 8 4 3 9 2 3 4 8 1 6 2 3 4 7 66 4 
3 7 3 4 5 1 2 3 7 2 5 1 4 5 6 58 

' ~ - - -----~ 

Table 19 
-

X X X 
ReB.ected Variables 10 2 5 3 • 1 8 7 • 6 15 14 

"n 
18 2: J:, ----~ -- -

2:(10, 5, 4, 8, 7, 6) .145 -.017 .190 .110 .058 .403 .424 .477 -.165 .282 .068 .366 .183 .129 .309 2.962 9 
:&(10, 5, 4, 8, 7, 6, 9) .121 -.077 .098 .098 .006 .295 .438 .503 .165 .468 .232 .336 .259 .325 .355 3.622 2 
2:(10, 5, 4, 8, 7, 6, 9, 2) .217 .077 .076 .158 -.074 .331 .440 .525 .225 .448 .226 .318 .317 .393 .253 3.930 4 
l:(lO, 5, 4, 8, 7, 6,9, 2, 4) .299 .157 .050 .170 .074 .293 .402 .445 .277 .538 .224 .268 .391 .519 .119 4.226 

- ---- - --- - - -



Table !10 

Computation of Fourth-Factor Loadings 

--10 --2 --5 ++3 +-4 ++I ++B ++7 ! +-9 +-fi ! -+15 --14 r-17 -+11 -+18 Check 
-c----------

--10 (.041)+ .034 - .001 + .017 + - .032 + .023 + ,003 - .018 - + .0361- + 020 - + .002 + .000 + .011 - + .03:! - + .041 .2l7 
-- 2 + .034 + (.000)- .015 + .022 + - .035 + .004 - .018 - .010 + - .015 - + 035 - + .015 - .022 + .012 + - .010 - + .060 .117 
-- 5 - .001 - .015 + (.053)+ .013 - + .016 + 024 + .021 + .011 - + .053 + - .009 - + .032 + .001 + .026 - + .020 - + .011 .256 
++a + .017 + .o22 + .ota + ( ona) ooo + 029 - .011 + .oo2 - + .o21 - + oto - + Ot3 + .01s ,- .oog - + .ooa + - .001 .247 +- 4 +- .032 +- .035 -+ .016 .000 +-:j:< 073)-+ 029 -+ .032 -+ .054 +-+ .016 +-+ 028 -+- 0091-+ .034 [+- .025 +-+ .046 -+- .073 .15:! ++ 1 + .023 + ,0(14 + ,Q24 + 029 - 029 + ( 079)-1- .039 + .027 - + 070 1- + Q41 - + 010 + .OJQ + .QJQ - + 038 - + ,QH ,456 
++ 8 + .003 - .018 + .021 - 017 ~ + .032 + .039 + (.047)+ .002 - + .0271- + Olt3 - + 005 + .047 + .019 - + .040 - + .009 .272 ++ 7 - .018 - .OlO + .011 + .002 ~ + .054 .027 + .002 -1- (.071)- + .025 + - 003 - + 038 + .029 - .020 - + .020 + - 071 .157 
+- 9 -+ .036 +- .015 -+ .053 -+ .021 +-+ .016 -+ .079 -+ .027 -+ .025 +--f-(.079).+-+ 049 +-+ 061 -+ .039 +- .0071+-+ .0.54 +-+ .007 .524 +- 6 -+ .020 -+ .035 +- .009 -+ .019 -f--+ .028 -+ .041 -+ .016 +- .003 +-+ 040 +-+( 058)-f---1- 023 I_+ .025 -+ .052 +-+ 022 +-+ .053 .424 
--f-15 -+ .002 -+ .OH'i -+ .032 -+ ,013 -+- .009 -+ .010 -+ .005 -+ .038 +-+ .om +-+ 023~+--H 061)1+- 027 +- .002~-+- ooa -+- .050 .169 
--14 + .006 - .022 + .001 + .018 - + .034 + .010 + .01_7 + .029 - + .039 - + 025 + - 0271+ (.0·17)- .012 - + .039 - + .022 .25fl 
--17 + .011 + .012 + .026 - .009 + - .025 + .010 + .019 - .020 + - .007 - + 052 + - 002 - .012 + (.052)+ - .004 - + 042 .145 
-:j:n -+ .034 +- .010 -+ .020 -+ .oea +-+ .046 -+ .oas -+ .040 +-+ .o2o +-+ .OM +-+ 022 -+- ooa -+ .039 +- .oo-1 +-+< os-n+-+ .084 .527 
- 18 -+ .041 -+ .060 ~+ .011 +~ .007 -+- .073 -+ .014 -+ .009 -- .071 +-+ .007 +-+ 053 -+- 050 1-+ .022 -+ .042 +-+ .0841+-+(.084) ~ 

~ + :m + :m t :~~ t :~~ + :~a t :~u t :~~ + jg? t :gg1 t :~g~ I t :~8ij + :g~~ t :n; 1 + :~~ + :gg~ 1:n~ 
B + .107 .057 + .126 + .121 + .076 + .224 + .134 + .077 + .257 + .2081 + .083 + .126 + .071 + .259 + .111 2.037 
K - .107 - .057 - .126 + .121 - .076 + .224 + .134 + .077 - .257 - .208 + .083 - .126 - .071 + .259 + .111 - .019 

Table 21 

X X X X X X 
ki 10 2 5 3 4 I 8 7 0 6 15 14 17 11 18 Check 

- - - - - - - - -- - - - - - - ---
7 7 7 6 7 6 8 7 7 7 10 7 5 8 9 108 15 
ij 0 6 5 6 5 7 6 8 8 4 8 6 7 8 96 9 
5 7 5 4 7 4 6 5 6 9 3 7 7 8 9 92 6 
4 6 6 3 8 3 5 6 5 5 2 6 6 9 10 84 18 
3 5 5 4 7 2 4 7 4 4 3 5 5 10 4 72 11 
2 6 4 3 8 l 3 6 3 3 4 4 6 4 3 ()Q 4 
3 7 3 4 6 0 2 5 2 2 5 3 7 3 4 56 



Table 22 

ComzJUlation of Fifth-Factor Loadings 

-+tO -+2 -+5 +-3 l -~~--~=-;:------~-; I +-7- ----~=;~- --6 r-~-15 --14 ~~~~~Check 
+10 + +(.040)+-+ .028 -+- .014 +-+ .004 -+ .04-0 -+- .001 -+ .011 -+- .026 +-+ M9 -+ .0021-+- .007 -+ .007 +- .003 +- .006 +- .029 .055 -+ 2 +-+ .028 +-+(.054)-+- .022 +-+ .015 -+ .039 -+- .009 -+ .02H -+- .014 -+- .030 +- .023 +-+ .010 -+ .029 +- .008 -+ .025 +- .054 .006 -+ 5 -+- .014 -+- .022 +-+(.035) -+- .002 +- .006 -+- .004 +- .004 +-+ .001 +-+ .021 -+ .035 +-+ .022 -+ .015 +- .017 -+ .013 -+ 003 .076 +- 3 +-+ .004 +-+ .015 -+- .002 +-+(.0:13)-+ .009 +-+ .002 -+ .0331-+- .007 -+- .010 -+ .006 +-+ .0031+- .0031-+ .018 +- .0321-+ .020 .089 += t =+± :&W :+± :&g~ ±+: :88: +-i :88~ t- <:g~~)+-+(8§i>+- :86~ +-+ :Si~ +-+ :8gi ±+ :&\~ =+± :8M ±+ :8~~ =+ :2'~2 ±+ :&~8 i=+ :&~~ :Z~~ ++ s - + .on - + .026 + - .oo<t - + .oaa + .o22 + - .009 + (.033)- + .oos - + .001 - .o12 - + .ooo I+ .o3o + .oon + .ooo~- .006 .159 +- 7 -+- .026 -+- .014 +-+ ,001 -+- .007 +- .04.8 +-+ .010 -+ .008 +-+(.080)+-+ .005 -+ .DUI +-+ .032 +- .019 -+ .025 .000 -+ .080 .146 -+ 9 +-+ .009 -+- .030 +-+ .021 -+- .010 -+ .004 +-+ .021 -+ .001 +-+ .005 +-+(.040)-+ .004 +-+ .040 +- .001 -+ .025 -+ .ota -+ .o22 .154 

-- 6 - + .002 + - .023 - + .035 - + .006 + .012 - + .DOG - .012 - + .019 - + .004 + (.037H- - .006 - .001 + .037 - .0321+ .030 .114 
+-15 -+- .007 +-+ .010 +-+ .022 +-+ 003 -+ .015 -+- .009 -+ .006 +-+ .032 +-+ .040 +- . 006 +-+(.059) -+ .037 -+ .008 -+ .024 -+ .059 .293 
--14 - + .007 - + .029 - + .015 + - 003 + 024 - + 018 + .030 + - .019 + - .007 - .001 - + .037 + (.037)- .021 + .006 + .008 .160 
--17 + - .003 + - .008 + - .017 - + 018 - 030 rl+ 1006 + .009 - + .025 - + .025 + .037 - + .008 - .021 + (.Oa7)- .022 + .034 .0c;}8 
++11 + - .006 - + .025 - + .013 + - 032 + 026 - + 020 + .006 .000 - + .010 - .032 - + .021 + .0061- .022 + (.055)1+ .055 .150 
++IS+ - .029 + - .054 - + .003 - + 020 - 081 - + 011 - .006 - + .080 - + .022 + .030 - + .05\J + .008 + .034 + .055 + (.081) .233 

xo + .oot + .oo1 .ooo + ooz l-.=------om:-+ - oo1 - .001 + .om + .om + .om + .oo2 .ooo .ooo - .ooz .ooo .oo4 
D + .055 + .006 + .076 + 089 + 095 + 071 I + .159 + .146 + .1!H + .114 + .203 + .160 + .098 + .150 I + .23311.969 

if: t :8~~ :t :8!~ + :8~ + gg~ 2= g~~ ~ gg~ t :iU + :i&t t :ii~ 2= :S~i + :~&& + :ii! + :g~g t Jg~ + :~g~ -1 :1?~ 

Table 28 
--

X X X X X X ., 10 2 5 3 4 I 8 7 g 6 15 14 17 li 18 Cheok 
-~ -~ -~ -~ -~ -~ -~ -~ -~ -~ -~ -~ -~ -~ ---

8 8 8 8 7 9 8 7 8 9 8 7 8 7 8 118 1 
7 7 7 9 8 5 9 8 9 8 7 6 7 6 7 110 3 
8 8 6 5 7 4 8 7 8 7 8 7 6 7 6 102 10 
6 9 5 4 6 5 7 6 9 6 7 6 7 8 7 98 2 
5 5 4 3 5 6 6 5 8 7 8 5 8 7 8 90 9 
4 6 5 4 4 5 5 6 6 6 9 6 7 6 7 86 15 
5 5 6 3 3 6 4 7 5 7 5 5 6 5 6 78 

--·---··---- ·----



1'able 24 

10 I 2 
X X 

!Wflected Teats 6 3 4 1 8 7 g 6 15 14 17 11 18 z ki 

};(1, 3, 10, 2, 0, 15) - 0951~ -.039 .074 .122 .038 .118 -.064 .072 -.031 .126 .131 .045 .069 -.014 .826 7 
Z(l, 3, 10, 2, 9, 15, 7) .043 .056 -.041 .060 .026 .058 .134 .064 .082 .007 .190 .093 .095 .069 .146 1.082 5 
};(1, 3, 10, 2, 9, 15, 7, 5) .015 .012 .041 .056 .014 .050 .126 .066 .124 .077 .234 .123 .061 .095 .152 1.246 

1'able 25 

I II Ill IV V 

10 .642 .443 -.150 -.107 .039 
2 .579 .499 -.090 -.057 .047 
5 .561 .449 -.041 -.126 .054 
3 .712 .228 .092 .121 -.063 
4 .633 .134 .051 -.076 -.068 
1 .685 .159 .157 .224 -.051 
8 .529 -.144 .207 .134 .113 
7 .559 -.146 .233 .077 -.104 
g .546 -.222 .162 -.257 .117 
6 .585 -.293 .274 -.208 -.081 

15 .475 -.112 -.132 .083 -.209 
14 .428 ~.235 -.140 -.126 -.114 
17 .619 -.303 -.194 -.071 -.070 
11 .598 -.313 -.272 .259 .107 
18 .436 -.084 -.099 .111 .166 
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reference axes before psychological interpretation can be made with confi­
dence. It has been shown that there exists an infinite set of orthogonal refer­
ence axes in terms of which the fifteen test vectors may be described as well 
as by those which are obtained by the centroid method. One of the principal 
problems in factor theory is to find a computationally feasible criterion by 
which this rotation can be effected uniquely and by which the reference 
axes so obtained have fundamental psychological meaning. The solution of 
this problem is described in several of the subsequent chapters. These solu­
tions all begin with a given factorial matrix like that of Table 25. All of the 
solutions will be presented with the same set of illustrative data wherever 
feasible. 

Correction for uniqueness 

It has been shown that the factorial matrL'i: represents the co-ordinates of 
the termini of n trait vectors in a common-factor space of r dimensions. 
Table 25 represents therefore the co-ordinates of fifteen points in five dimen­
sions. The square of the length of each trait vector represents its commu­
nality. If the traits could be freed from the variable errors and from the 
specific factor, then the intercorrelations would be augmented in a manner 
analogous to the correction for attenuation. In correcting a coefficient for 
attenuation, the variable errors are removed. When a correlation between 
two traits is corrected not only for the variable errors but also for the specific 
factor in each test, the augmented correlation coefficient will be said to be 
"corrected for uniqueness." Hence the coefficients which are corrected for 
uniqueness are higher than those which are corrected only for attenuation. 

The geometrical interpretation of the correction for uniqueness is of some 
interest. It has been shown that the correlation between two traits is the 
scalar product of the two trait vectors in the common-factor space. If each 
of the vectors is extended to meet the unit sphere so that each vector be­
comes a unit vector, then the scalar product of two such vectors is the cosine 
of their angular separation. The traits can then be represented as points on 
the surface of a hypersphere, and the angular separation between pairs of 
points represents the correlation after correction for uniqueness. For some 
problems in which the common-factor space can be reduced to three dimen­
sions certain graphical methods are available in which each trait is repre­
sented as a point on the surface of a sphere. The plotting of the trait vectors 
on the surface of a sphere is facilitated by correcting the coefficients for 
uniqueness, because the augmented coefficient represents the cosine of the 
angular separation of a pair of vectors. The correction of the intercorrela­
tions for uniqueness also facilitates the isolation of clusters of tests. These 
applications will be described in subsequent chapters. 
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The correlation coefficient can be regarded as the scalar product of a pair 
of test vectors. The lengths of the vectors are the square roots of their com­
munalities. Hence 

so that 

r ;k = h;hk cos <!>;k , 

r;k 
R;" = cos </>;" = h;hk , 

in which R;k is the correlation coefficient, corrected for uniqueness. 
Table 26 shows the intercorrelations of Brigham's fifteen tests after cor­

rection for uniqueness for four factors. 

Table 26 

~\_z_ 5 3 4 1 8 7 9 6 ~I 14 117 111 118 --- -
3831 . 648 .490 . 520\.4171.655 10 1.000 .990 .988 .869 .886 .766 .478 .498 .480 

2 .9901.000 .993 .867 .856 .771 .448 .464 .401 .314 .572 .3721.41l335 .590 
5 .988 .993 .999 .866 .883 .764 .471 .499 .479 . 392 . 564 .408 .434 . 308i . 576 
3 .869 .867 .866 .999 .956 .983 .826 .825 .636 . 620 . 794 . 553 . 628 .. 612,. 827 
4 .886 .856 .883 .956 .999 .906 .808 .833 .795 .751 .809 .697 .732'.5941.816 
1 .766 .771 .764 .983 .906 1.000 .886 .873 .612 .628 .790 .515.606.6441.834 
8 .478 .448 .471 .826 .808 .886 1.000 .994 .802 .856 .816 .673.743.732.843 
7 .498 .464 .499 .825 .833 .873 .994 .999 .853 .899 .800 .694.751.694.821 
9 .480 .401 .479 .636 .795 .612 .802 .853 .999 .983 .710 .844 .821 .557 .683 
6 .383 .314 .392 .620 .751 .628 .856 .899 .983 .999 .679 .783 .775 .548 .662 

15 .648 .572 .564 .794 .809 .790 .816 .800 .710 .679 1.000 .887 .943 .951 .995 
14 .490 .372 .408 .553 .697 .515 .673 .694 .844 .783 .887 1.000 .988 .830 .841 
17 .520 .412 .434 .628 .732 .606 .743 .751 .821 .775 .943 .988 .999 .898 .910 
11 .417 .335 .308 .612 .594 .644 .732 .694 .557 .548 .951 .830 .898 .999 .947 
18 .655 .590 .576 .827 .816 .834 .843 .821 .683 .662 .995 .841 .910 .947 .999 



CHAPTER IV 

THE PRINCIPAL AXES 

A method of locating the principal axes* 
It has been shown that a set of traits may be regarded as n points in a 

common-factor space of r dimensions. It has also been shown that by rota­
tion of F there exists an infinite number of factorial matrices which repro­
duce the correlations in R. It is natural to inquire whether a rotational cri­
terion can be found by which a unique solution F may be obtained. One 
solution is to adopt the principal axes as the reference axes of F. The prin­
cipal axes are defined as follows: 

Definition: If the sum of the squares of the projections of the test vectors on a 
radial axis is stationary, the axis is a principal axis. 

It can be shown that a set of vectors in a space of r dimensions has r prin­
cipal axes and that these axes are orthogonal. 

The attempted solution to the factor problem by which the trait vectors 
are described in terms of their projections on the principal axes is erroneous 
in spite of the fact that it is of considerable analytical interest. It will be 
described here with numerical examples partly because of its analytical 
interest but mainly because it will be shown in chapter vii to be psycho­
logically meaningful when it is used in a modified form. 

At the outset it may be stated that the method of principal axes does not 
give psychologically meaningful results. The matrix F which represents the 
principal axes of a battery has two serious limitations, namely, (a) the ref­
erence traits that are represented by the columns ofF are a function of the 
number of traits of each kind that happen to be included in the battery, and 
(b) about half of the factor loadings beyond the first factor are necessarily 
negative. One of the fundamental requirements of a successful factorial 
method is that the factorial description of a trait must remain invariant when 
the trait is moved from one battery to another which involves the same common 
factors or abilities. When psychological tests are involved, a negative factor 

* The method of principal axes was first described in a paper which I presented at the 
Syracuse meeting of the American Association for the Advancement of Science in 1932. 
It was published in "The Theory of Multiple Factors," pp. 17-27. The method is given 
here in notation that is consistent with that of the previous chapters. Hotelling's special 
case of the method was described by him in "Analysis of a Complex of Statistical Vari­
ables into Principal Components," Journal of Educational Psychology, Vol. XXIV (Sep­
tember and October, 1933). 

120 
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loading implies an ability whose possession is a detriment to the test per­
formance. Such a situation can be comprehended for unusual situations, 
but it is not conceivable that half of the factor loadings in all special abilities 
should be negative. The reader may regard the method of principal axes 
as of analytical interest, but he should not expect to be able to give psycho­
logical meaning to the solution. A psychologically meaningful solution will 
be presented in chapter vii. 

Each of the reference traits may be regarded as a unit vector in the same 
space of r dimensions in which the traits are represented by vectors whose 
scalars are less than unity. Let one such reference vector be A1, and let its 
direction cosines be 'll.n, A21, 'll.a1, •.. , 'll.,.1 in the common-factor space. The 
unit reference vector A1 may be thought of as representing an imaginary 
pure trait. The correlation between a trait j and the reference vector A1 will 
then be 

(1) 

or 

(2) 
r 

r iAI = L a;mAml . 
m~l 

This correlation is the projection of the vector j on the unit reference 
vector A1. 

In order that the reference vector A1 through the origin shall coincide 
with a principal axis of the system, it is necessary and sufficient that the 
sum of the squares of the projections of the trait vectors on the reference 
vector A1 be stationary. We have then 

r r r 

(3) a,,_A.n L a;mAml + a,"2A21 L a;mAml + ... + a;,.Arl L a;mAml ' 
m~l m~l m~l 

or 
r r 

(4) rjAI = L La;maiMAmlAMr, · 
M=l m=l 

where the subscripts M and m refer to factors. Summing for n traits, 

(5) 
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For convenience, let 

(6) 

Then 

(7) 

(8) 

or 

(9) 

au 
aA.n 

n n n 

2 L a]1t-n + 2:2: ailai2A21 + · · · + 2 L airairArr , 
j=1 j=1 j=1 

Since A.11, A.2r, ..• , A..1 are the direction cosines of the reference vector 
A1 on the centroid axes, the solution is subject to the conditional equation, 

(10) v = A~1 + A.~1 + · · · + A~r - 1 = 0 . 

The constrained stationary values of u·which satisfy the conditional equa­
tion (10) can be found by Lagrange's method of undetermined multipliers.* 
We have then the following (r+l) simultaneous equations. 

au av 
aA.n + {3 aA.u = 0 ' 

(11) 

au av 
at-21 + 13 aA.21 = 0 ' 

(10) 

By means of these simultaneous equations the (r+l) unknowns >.11, >.21, 

••• Arl and fJ may be found. The partial derivatives of v are of the form 

(12) 
av 

aA,.l = 2A.nr. 

* William F. Osgood, Advanced Calculus (New York: Macmillan Co., 1928), p. 180. 
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Substituting (9) and (12) in (11), we have 

(13) 

The multipliers (3p can be found from the fact that the determinant of the 
coefficients in (13) must vanish in order that solutions shall exist other than 
the trivial solution An= A21 = • • • = Arl = 0. The expansion of the determi­
nant of the coefficients in (13) gives the characteristic equation of degree r, 
which may be written as follows: 

(14) 

The coefficients c may be found by the following rules. 
The numerical term Cr is the value of the rth order determinant of (13), 

ignoring (3. The coefficient Cr-1 is the sum of all the (r-1)-rowed principal 
minors in the same determinant. The coefficient Cr-2 is the sum of all the 
(r-2)-rowed principal minors. The coefficient of f3r is always unity. The 
coefficient c, in (14) is the sum of all the x-rowed principal minors. All of 
the roots of (14) are real and negative. They may be designated (31, (32, 

••• ' f3r. 

Each of the roots f3p is substituted, in turn, in (13). Each of the r values 
of fJp gives a set of direction cosines for a principal axis. When the root fJp is 
substituted in (13), the solution gives the direction cosines of Ap, which are 
A1p, A2p, ... , Arp· 

The r principal axes A are orthogonal. In fact, their direction cosines 
may be arranged to form the matrix of the transformation from the given 
orthogonal co-ordinates in F to those of the principal axes. The matrix of 
the transformation is as given in Tahle 1. 
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It is of interest to note that each value - {3p is the sum of the squares of 
the projections of the trait vectors on the principal axis Ap. By inspection 
of the numerical values of the roots {3p, the major, mean, and minor axes of 
the system may be designated. 

Table 1 

A numerical example- of the method of principal axes 

The method of principal axes consists in the rotation of the co-ordinate 
system ofF so that the principal axes constitute the orthogonal axes of ref­
erence. The principal axes may be defined as a set of orthogonal reference 
axes on each of which the sum of the squares of the projections of the trait 
vectors is stationary. 

Let Table 2 represent the factorial matrix F of a set of seven fictitious 

Table 2 

Tests I II III h• 

1 +.5 -.2 +.4 .45 
2 +.6 -.2 +.6 .76 
3 -.6 +.5 +.3 .70 
4 -.3 +.4 +.6 .61 
5 +.2 +.1 +.7 .54 
6 +.6 -.4 0 .52 
7 +.7 -.3 +.5 .83 

tests in three factors. Geometrically, this table shows the three orthogonaL 
co-ordinates of seven points. The communalities are listed in a column sepa­
rate from F. They are all less than unity to correspond to the fact that every 
mental test may be assumed to have a specific factor in any finite battery 
of tests. 

The sums required for the characteristic equation are as follows: 

n 

2:aJl = + 1.95, 
i=l 
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n 

2:ailai2 = - 1.07, 
i=l 

n 

2:ailais = + .69, 
j=l 

n 

2:a;2 = + . 75, 
i=l 

n 

2:aizais = + .11, 
i=l 

n 

L a]s = + 1. 71 . 
i=l 

125 

These sums are substituted in the determinant of the characteristic equa­
tion as follows: 

(15) Ll= 

(+1.95+,8) 

-1.07 

+ .69 

-1.07 

( +. 75+,8) 

+ .11 

+.69 

+.11 

( +L 71+,8) 

=0. 

The values of fJp must be such as to make the determinant of the coefficients 
of the three homogeneous equations vanish in order that non-trivial solu­
tions for Alp, A2p, Asp shall exist. 

Expanding the determinant of (15), we get an equation of the form 

(16) 

The numerical values of the coefficients of /3p are determined by the rule 
previously given. The numerical value of c3 is the value of the following 
determinant: 

+1.95 -1.07 + .69 

-1.07 + .75 + .11 

+ .69 + .11 +1.71 
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It is found to be zero. Hence the rank of the determinant is less than 3. 
This proves that Table 2 can be rotated so as to make at least one of its 
columns vanish. 

The value of c2 is the sum of the three 2-rowed principal minors in (15), 
and c1 is the sum of the three 1-rowed principal minors, which is merely the 
sum of the three diagonal terms. The coefficient of (33 is unity. We then 
have the following values for the coefficients: 

Cs = 0, C2 = +4.4464, er= +4.41. 

The expansion (16) can then be written as follows: 

(17) (33 + 4 0 4100(32 + 4 .4464(3 + 0 = 0 . 

The roots of equation (17) are all real. One of the roots is zero. Dividing 
by 11, we have the quadratic 

(18) (32 + 4.4100(3 + 404464 = 0. 

The two roots of this equation are -2.849690 and -1.560310. Let these 
roots be designated by subscripts in the order of their numerical magnitude, 
namely, 

(19) l 
(31 = -20849690' 

(32 = -1.560310' 

f3s = 0. 

Substituting /11 in the three simultaneous equations whose coefficients are 
shown in (13), we get three simultaneous equations, 

(20) l-. 899690)..11 - 1° 07:,\21 + . 69}..31 = 0 ' 

- 1. 07}..n - 2. 099690}.,21 + .llAs1 = 0 , 

+ . 69}..u + . llX21 - 10139690Xa1 = 0 . 

Solving for the ratios of }..n, }..21, }..31, and normalizing them so that 

(21) 

we have 

(22) 

3 

}.,11 = + 0 804972 ' 
h21 = - . 386636 ' 
h31 = + . 450036 ' 

L:>;.l = 1. 000000 . 
m=l 
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These are the direction cosines of a unit reference vector which lies in the 
major principal axis of the system of seven points. 

The second root, ~2, is then substituted in (15), and the same procedure 
gives the following values for the direction cosines of the unit reference vec­
tor A2, which lies in the mean principal axis of the system: 

(23) 

3 

A12 = . 257498 , 
A22 = + . 455692 , 
As2 = + . 852080 , 

L:)-!2 = +1.oooooo. 
m~l 

The third root, /Ja, is zero. The fact that the third root vanishes means 
that the sum of the squares of the projections of the seven test vectors on 
the minor principal axis is zero. Hence the projection of each of the seven 
tests on that axis is zero. Substituting ~3 = 0 in (13), we obtain, by the same 
procedure as before, the values for the direction cosines of the unit reference 
vector Aa, which lies in the minor principal axis of the system. These values 
are as follows: 

(24) 

3 

An = - . 534522 , 
A2a = .801784, 
Aaa = + . 267261 , 

L:A!a = +1.oooooo. 
m~l 

The direction cosines of the three principal axes of the system are ar­
ranged in Table 3 to form the orthogonal transformation of the original 

Table 3 

AI A. A3 

1 +.804972 -.257498 -.534522 
2 -.386636 +.455692 -.801784 
3 +.450036 +.852080 +.267261 

co-ordinates of the matrix in Table 2 to the co-ordinates that refer to the 
principal axes. This table corresponds to Table 1 for the general case. 

The fact that the new co-ordinates are orthogonal is verified by the fact 
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that the matrix in Table 3 is orthogonal by columns. The correlations be­
tween the three principal axes can be expressed as follows: 

(25) l r .6.1Az = Ant..12 + t..21A22 + As1As2 , 

r AIAa = }..11)1.13 + A21A23 + AslA33 ' 

r AzAa = A12A13 + A22A23 + AszAsa . 

Substituting the numerical values of Table 3 in (25), it is seen that the three 
intercorrelations are zero. Table 3 is the matrix of an orthogonal transfor­
mation. It must be orthogonal by rows and by columns; and its determinant 
must equal +1, since the matrix represents a rotation without reflection. 
These properties may be used as a check on the arithmetical work. 

It is now possible to write the rotated form of F with the principal axes 
as co-ordinate axes. The new co-ordinates are shown in Table 4. The third 
column vanishes because one of the roots of the characteristic equation is 
zero. The communalities are listed in a separate column. They remain in­
variant under rotation. 

Table 4 

Test TjAl ria• rjA, h• 

1 + .659828 + .120945 .00 .45 
2 + .830332 + .265611 .00 .76 
3 - .541290 + .637969 .00 .70 
4 - .126124 + .770774 .00 .61 
5 + .437356 + .590526 .00 .54 
6 + .637638 - .336776 .00 .52 
7 + .904489 + .109084 .00 .83 

" 2:)JA 2.849689 1. 560312 .00 4.41 
j=l 

The three factor loadings of the first test in Table 4 are obtained from the 
following equations: 

{ 

r1A, = auAu + a12X21 + a1sA31 = + . 659828 , 

(26) r1a. = anA12 + a12A22 + a1aX32 = + . 120945 , 

r1Aa = auA13 + a12A2a + a13Aaa = . 000000 . 

The intertest correlations of the seven tests may be obtained either from 
the three factor loadings of Table 2 or from the two factor loadings of 
Table 4- All of the intertest correlations are summarized in Table 5. 
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It is of interest to note that the sums of the squares of the factor loadings 
in the columns of Table 4 are identical with the roots of the characteristic 
equation with reversed sign. 

The present problem was set up so that one of the values of f3 would be 
zero. This was done by writing the loadings in Table 2 so that the seven 
points were in the same plane. The points all satisfy the equation of an ar­
bitrarily chosen plane, namely, 2x+3y-z = 0. In actual practice it is not 
likely that one of the values of f3 will be zero, but it may be very nearly 

Table 5 

1 2 3 4 5 6 7 

1 +.58 -.28 +.01 +.36 +.38 +.61 

2 +.58 -.28 +.10 +.52 +.44 +.78 

3 -.28 -.28 +.56 +.14 -.56 -.42 

4 +.01 +.10 +.56 +.40 -.34 -.03 

5 +.36 +.52 +.14 +.40 +.08 +.46 

6 +.38 +.44 -.56 -.34 +.08 +.54 

7 +.61 +.78 -.42 -.03 +.46 +.54 

zero. The fact that one or more of the roots of the characteristic equation 
are zero proves that the tests may be described in terms of less than r com­
mon factors. These common factors may be chosen to be statistically in­
dependent or dependent. 

Hotelling's special case 
The method of principal axes is applicable for any diagonal values that 

preserve the Gramian properties of the correlation table. If reliabilities are 
recorded in the diagonal cells, or any other values greater than the com­
munalities, the rank of the correlational matrix R will, in general, be equal 
to the number of tests. The centroid method will then give a factorial ma­
trix F with as many columns as there are rows. This means that as many 
common factors are postulated as there are traits. Such a factorial matrix 
can be rotated by the method of principal axes so that the orthogonal ref­
erence vectors lie in the principal axes of the system of n points. 

It has been shown in the previous chapter that in the special case where 
unity is recorded in the diagonals of the correlational matrix the centroid 
method gives a square factorial matrix F of n columns and n rows which re-
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produces exactly all of the experimentally obtained correlation coefficients 
in Ro. The co-ordinate axes of this matrix may also be rotated into the 
principal axes of the system. 

Hotelling has discussed this special case of the method of principal axes 
in which unity is recorded in the diagonals of Ro. He has called this special 
case the "method of principal components." The principal components are 
the projections of the trait vectors on the principal axes in the total factor 
space. He has described an ingenious iteration method by which the pro­
jections of the vectors on the principal axes in the total factor space may be 
found directly from the given coefficients in Ro. Unfortunately, this ingen­
ious solution is not useful because it is subject not only to the fundamental 
limitations of the principal axes but also to additional limitations. The addi­
tional difficulties with Hotelling's case may be described as follows: To re­
cord unity in the diagonal cells of Ro implies that the total variance of each 
trait is to be described by common factors. It has been shown that the 
intercorrelations of n traits can always be accounted for exactly by n com­
mon factors. This can be done with the diagonal method described in chap­
ter ii, by the centroid method of chapter iii with unity in the diagonals, or 
by the principal axes method with unity in the diagonals. Any solution in 
which the intercorrelations of n tests are accounted for exactly by n com­
mon factors must be an artifact as far as the psychological problem is con­
cerned, because it is definitely known that each test has some unique vari­
ance. Three sources of unique variance may be listed, namely, (a) the 
chance errors in the test scores, (b) the specific factor in each test, and (c) 
the sampling errors in the correlation coefficients. Hotelling's case assumes 
that the tests are free from chance errors in the scores, that specific factors 
are absent, and that sampling errors are absent. This may be seen by con­
sidering the fact that his procedure gives a factorial matrix of n common 
factors which accounts for the coefficients ·exactly without any specific or 
unique variance whatever. As far as the psychological problem is concerned, 
such a solution is not acceptable. 

In addition to these difficulties there must be considered the difficulties 
of the general principal axes solution which have been described in this 
chapter. These apply also to Retelling's case. It is, of course, desirable 
that the axes of reference in terms of which the tests are described shall 
have psychological or genetic meaning. Consider any single test, such as a 
test of numerical manipulation. If this test is included in a battery which 
contains only a few number tests but many verbal tests, it is clear that the 
major principal axis will pass closer to the verbal tests than to the number 
tests. Now consider the same test when it is placed in a battery which con­
tains only a few verbal tests but many number tests. The major principal 
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axis of this system will pass closer to the number tests. The factorial de­
scriptions of the particular number test will be different in the two sets of 
computations, depending on the tests which are chosen arbitrarily for com­
bination in a battery with the number test. It is not to be expected that 
such a factorial description should give psychologically meaningful axes 

Table 6 

CENTROID Co-ORDINATES 

h~v 
I II III IV 

10 .642 .443 -.150 -.107 .6424 
2 .579 .499 -.090 -.057 .5956 
5 .561 .449 -.041 -.126 .5339 
3 .712 .228 .092 .121 .5820 
4 .633 .134 .061 -.076 .4281 
1 .685 .159 .157 .224 .5693 
8 .529 - .144 .207 .134 .3614 
7 .559 - .146 .233 .077 .3940 
9 .546 - .222 .162 -.257 .4397 
6 .585 - .293 .274 -.208 .5464 

15 .475 - .112 -.132 .083 .2625 
14 .428 - .235 -.149 -.126 .2765 
17 .619 - .303 -.194 -.071 .5176 
11 .598 - .313 -.272 .259 .5966 
18 .436 - .084 -.099 .111 .2193 

~ 8.587 .060 .059 -.019 6.9653 
~k2 5.011317 1.183860 .428619 .341573 6.9654 

Table 7 

1 2 3 4 

1 5.011317+.8 .165747 .076365 .015854 
2 .165747 1.183860 +.B -.053695 -.040502 
3 .076365 - .053695 .4286HHtJ -.044782 
4 .015854 - .040502 -.044782 .341573+.8 

of reference. This fundamental limitation is applicable also to the 
centroid method if any attempt is made to interpret the centroid co­
ordinates directly without rotation. The purpose of the centroid method 
is merely to obtain a factorial matrix which accounts for the observed corre­
lations within experimental errors and with the smallest possible number of 
common factors. The number of common factors is shown by the number 
of columns of F as found by the centroid method. Retelling's iteration 
method might be used for the same purpose if it could be modified so as to 
use communalities instead of unity in the diagonals of Ro. As with the cen-
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troid co-ordinates, a further rotation would be necessary in order to obtain 
a stable and fundamentally significant factorial description of the tests. 
No method is acceptable in this problem which distorts the rank of the cor­
relational matrix in the common-factor subspace. These considerations 
make it necessary to discard the method of principal axes and also Hotel­
ling's special case of this method as solutions to the psychological factor 
problem. 

The principal axes of a battery of fifteen psychological tests 
In the previous chapter a battery of fifteen tests by Brigham was used as 

a numerical example of the centroid method of factoring the correlational 

Table 8 

At .A, .A, A< 

A1 .999 -.041 .015 -.012 
)1., .043 .996 -.047 .070 
As .016 -.072 -.909 .411 
>\4 .003 -.045 .414 .909 

Table 9 

I II III IV 

10 .058 .431 .081 -.136 
2 .598 .482 .043 -.061 
5 .579 .433 -.028 -.107 
3 .723 .186 -.034 .155 
4 .639 .107 -.084 -.042 
1 .694 .109 -.047 .271 
8 .526 -.186 -.118 .190 
7 .556 -.189 -.165 .149 
9 .538 -.244 -.235 -.189 
6 .576 -.326 -.313 -.104 

15 .468 -.125 .167 .008 
14 .415 -.235 .101 -.197 
17 .602 -.310 .170 -.173 
11 .580 -.328 .378 .095 
18 .431 -.099 .146 .049 

matrix. The same data will here be used as a numerical example of the 
principal axes. Table 6 contains the first four columns of Table (25-iii) and 
also the communalities for the first four centroid factors. The resulting coef­
ficients of (13) are shown in Table 7. The expanded form (14) is as follows: 

(27) {34 + 6.965369$3 + 10.810494{32 + 5.407203!3 + .840052 = 0. 
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The four roots of this equation are 

t31 = -5.0197117 

t32 = -1 .182688 

t3s = . 444971 

/34 = .317999. 

133 

Substituting each of these four roots in (13) gives, after normalizing. the 
direction cosines of the four principal axes. These are listed in the four 
columns of Table 8. This table represents an orthogonal transformation L 
by which F is rotated into the principal axes. The factorial matrix FL is 
shown in Table 9. This matrix represents the same test configuration as the 
given Table 6. The only difference is that in Table 9 the fifteen test vectors 
are described in terms of their projections on the principal axes, while in 
Table 6 they are described in terms of their projections on the arbitrary 
orthogonal axes of the centroid method. 



CHAPTER V 

THE SPECIAL CASE OF RANK ONE 

The intercolumnar criterion 
The case of rank 1 is of special interest because it is the case to which 

Spearman and his students have given so much study. This is also the case 
which has been the subject of controversy during the past thirty years. 
Practically all of the scientific publications on the factor problem have been 
restricted to Spearman's special case of rank 1. It is only within the last 
few years that the more general case of the factor problem has been studied 
in which the rank exceeds 1 and in which any number of factors are treated 
analytically. Now that the factor problem has been generalized a step be­
yond the case of Spearman, it is of some interest to interpret a few of the 
old issues in a new light. The single-factor methods of Spearman may be 
interpreted in terms of the matrix formulation of the factor problem. 

One of the earliest methods of Spearman was to ascertain the correlation 
between pairs of columns of Ro. Ideally, this correlation should be unity if 
the given correlations can be accounted for by a single common factor. It is 
a well-known property of determinants that if the rank is 1, then the col­
umns are proportional and hence the intercolumnar correlations are unity. 
This property is stated in the following theorems. 

Theorem 1. If the correlational matrix is of rank 1, then all pairs of col-
umns, or rows, are proportional. 

The converse of this theorem is also true, for if all pairs of columns are pro­
portional, then all minors of second order or higher vanish, and hence the 
rank must be less than 2. The trivial case of rank 0 is here of no significance. 
The case in which the rank is 0 is, of course, identified by the fact that all 
the intercorrelations are 0. That is a case of no scientific interest. We have, 
therefore, the following converse theorem: 

Theorem 2. If ail pairs of columns of the correlational matrix are propor­
tional, then the rank of the matrix is 1 or 0. 

If a pair of columns are proportional, then the correlation between the 
columns is, of course, +1, so that we have the following theorem: 

Theorem 3. If the correlational matrix is of rank 1 then the correlation 
between any pair of columns is + 1 or -1. 

The converse of Theorem 3 is not necessarily true. A specific case which 
disproves the converse is as follows: Let the coefficients in a pair of columns 
be such that when one i:<t plotted against the other, a linear plot is obtained 

134 



THE SPECIAL CASE OF RANK ONE 135 

which does not pass through the origin. The correlation would be + 1, but 
the coefficients in the two columns would not be proportional. 

Spearman's former use of the intercolumnar criterion depended on the 
converse of Theorem 3, in that the high correlation between columns was 
the basis for the inference that a single factor was sufficient to describe the 
intercorrelations, i.e., that the rank of Ro was 1 within sampling errors. 
While the intercolumnar criterion is demonstrably fallible, it should be use­
ful for rank 1, because it would be a rare situation in which a set of mental 
tests would satisfy the criterion when the rank was higher than 1. 

Another type of difficulty appeared with the intercolumnar criterion. If 
all the coefficients in Ro are of the same order of magnitude and if these are 
overlaid with sampling errors, then the dispersion of a column may be com­
parable with the sampling errors, and the correlation between columns may 
be low because of the restricted range of the entries in the correlation table. 
The proportionality would still be maintained within sampling errors, but 
the points in the correlation table would be so restricted in range that the 
correlation coefficient would not reveal the proportionality. The intercolum­
nar proportionality criterion is therefore superior to the intercolumnar corre­
lation criterion. 

The limiting case of this effect is of some interest. If all of the coefficients 
in a correlation table are equal, then the proportionality criterion is satisfied 
but the correlation coefficient is indeterminate. The proportionality cri­
terion would give the correct inference, namely, that the correlation matrix 
is of rank 1. We have then 

(1) 

But 

(2) 

and hence 

(3) 

(4) 

1 
r;k = a,1ak1 , 

rkz = ak1an , 

riz = a,1a11 . 

rik = riz = rkl , 

It follows from (1) and (4) that 

(5) 
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This limiting case is represented in the following theorem: 
Theorem 4. If all of the coefficients rik in a correlational matrix are equal, 

then the matrix is of rank 1 and each test has a single factor co-ordinate 

of Vrik· 

If sampling errors are superimposed on this limiting case, the correlation 
between columns shows only the correlation between random errors. This 
correlation should be 0 or near 0. The intercolumnar proportionality cri­
terion is still valid, and it would be only slightly affected by the sampling 
errors in a finite test battery. 

Spearman's use of the correlational, rather than the proportionality, 
form of the intercolumnar criterion was determined, probably, by the fact 
that the standard error of a correlation coefficient can be determined, 
whereas the proportionality form of the criterion would require the de­
velopment of an appropriate standard error formula. There does not seem 
to be any fundamental difficulty in doing so. 

Graphical method for rank 1 

The object of the factor problem is to find the factorial matrix which for 
rank 1 is a single column containing the one factor loading or co-ordinate 
for each test. The previous theorems suggest a simple graphical method of 
examining R0• If the columns are proportional, then the plot of any column 
against any other column is linear through the origin. Let k and l designate 
any two columns, and let j designate any row of R0• Then if rik is plotted 
against riz, the linear plot should be of the form 

(6) 

where c is the slope constant. Substituting (1) in (6), 

(7) 

or 

(8) 

Since c is the slope of the plot, we have the following theorem: 
Theorem 5. If the rank of the correlational matrix is1, and if any column k 

is plotted against any other column l, then the plot is linear through the 
origin with a slope which is the ratio of the single-factor loading of test 
k to that of 1. . 

Even if the tests are overlaid with sampling errors, this ratio is quite stable, 
and it may be determined by any suitable method of curve fitting. The 
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simplest method is probably the method of averages in which a line is drawn 
through the origin and through the centroid of the plot. If the coefficients 
deviate appreciably from O, the slope of this line is not markedly affected by 
sampling errors. Hence this simple method should be useful in examining a 
table for rank 1. While this method is useful for examining a correlational 
matrix, it is not recommended for obtaining the single-factor loadings. A 
simpler and more direct method of solving the single-common-factor prob­
lem is described later in this chapter. 

If the plot is not linear, or if the points scatter badly, the correlation 
table is of rank higher than 1, and Spearman's single-factor methods do not 
apply. If single-factor methods are to be used, the next step would be, no 
doubt, to try to fin-d a subgroup which would give a linear plot through the 
origin. The intercorrelations of such a subgroup of tests could be accounted 
for by a single factor. 

The tetrad difference 
Spearman's present method is to evaluate what are called "tetrad differ­

ences." The tetrad difference is of the form 

(9) 

where k and l refer to two rows, while m and n refer to two columns of R0• 

The four subscripts refer to as many tests, and it is implied that four sepa­
rate tests are involved in the tetrad-difference equation. Hence the tetrad 
difference is not written so as to include any diagonal terms of Ro. This is 
consistent with the fact that the communalities are unknown. Spearman 
has shown that if only one factor is involved, then all the tetrad differences 
in Ro vanish. 

The tetrad differences have a very simple matrix interpretation. They 
are simply the expansions of second-order minors in the correlation table. 
If the rank of Ro is 1, then all second-order minors vanish. The converse is 
also true, for if the second-order minors vanish, then the rank must be 1, 
except for the trivial case when all entries are 0. The matrix interpretation 
of Spearman's tetrad-difference procedure is that rank 1 (i.e., a single com­
mon factor) is established by evaluating separately the second-order minors 
in the correlational matrix. One might speculate as to whether multiple­
factor analysis would have developed earlier if this interpretation had been 
stated before. If the second-order minors must vanish in order to establish 
a single common factor, then must the third-order minors vanish in order 
to establish two common factors, and so on? To have put the matter in 
this way would have led to the matrix formulation of the problem. 

To establish that a matrix is of any particular rank r, it is of course 
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necessary to prove that r is the highest order of the non-vanishing minors. 
Taken literally, this requires that all minors of order higher than r must be 
shown to be 0; but for computational purposes this is probably the most 
awkward way possible, especially for the single-common-factor case. 

The tetrad-difference method of examining a correlation table cannot be 
recommended even for the restricted single-common-factor case to which 
it is theoretically applicable. The reason is that more effective methods are 
available for ascertaining whether one common factor is sufficient to ac­
count for the intercorrelations. If more than one factor is required, then the 
tetrad-difference criterion is not applicable. Some of the properties of the 
tetrad differences will be described here because of the fact that this way 
of ascertaining whether a correlation table is of rank 1 is in general use. 
There is considerable interest in the tetrads among students of factor theory. 

Because of the great amount of labor that is involved in the--computation 
of the tetrads for a large correlation table, it is convenient to know how 
many tetrads must be evaluated for n tests in order to cover the whole 
table. Since a tetrad difference is the value of a second-order minor which 
does not contain diagonal terms, there are as many tetrads as there are 
second-order minors which do not involve the diagonals. Each of these 
minors is defined by two rows and two columns. The number of pairs of 
rows that can be taken is the number of combinations of n things taken two 
at a time, or 

(10) en_ n(n-l) 
2 - 2 . 

The number of possible pairs that can be taken from the remaining columns, 
since diagonal elements are excluded, is then 

(11) Cn-2 _ (n-2)(n-3) 
2 - 2 . 

Hence the total number of second-order minors in the correlation table, ex­
cluding diagonals, is 

(12) Cncn-2 - n(n-1)(n-2)(n-3) 
2 2 - 4 . 

But since the correlational table is symmetric, it follows that every one of 
these minors is duplicated by a symmetric minor of the same value. Hence 
the total number of different tetrads is 

(13) 1 cncn-2 _ n(n-1)(n-2)(n-3) 
~ 2 2 - 8 
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Since every set of four variables gives three tetrads, it is possible to obtain 
the same result by considering the number of combinations of n things taken 
four at a time. Then the number of tetrads is 

(14) 3cn = n(n-1)(n-2)(n-3) 
4 8 . 

Example: If the number of tests is 20, then the correlation table contains 
14,535 tetrads. 

When the computation of all these tetrads has been made, the result is 
usually that the tetrads do not vanish. The inference must then be made 
that one common factor is insufficient to account for the intercorrelations 
of the tests. The question as to which of the tetrads will vanish and which 
of them will not vanish, and the question whether one common factor is 
sufficient, can be answered more easily by the other methods of this chapter. 

If it is found that the tetrads do vanish within the sampling errors, then 
the next problem is to ascertain how much of the variance of each test is 
attributable to the single common factor. This can be done in terms of the 
correlation coefficients, as follows: 

Consider the single-factor expression for the intercorrelations of any three 
tests j, k, and Z. Then 
(15a) rik = a;1ak1 , 

(15b) r ;z = a;1az1 , 

(15c) 

In order to find the loading a11 of test j with the single common factor, di­
vide (15b) by (15c). Then 

(16) 

so that 

(17) 

Substituting (17) in (15a), 

(18) 

from which we have Spearman's formula* for the correlation of test j with 
the single common factor, namely, 

(19) 

*C. Spearman, The Abilities of Man (New York: Macmillan Co., 1927), Appendix, 
p. xvi, equation (19). 
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The value of (19) is subject to fluctuation with the sampling errors of the 
three coefficients in terms of which it is expressed. It is desirable to mini­
mize this effect by taking an average value for a,1, based on different pairs of 
tests k and l with which test j is combined. With n tests, the number of 
ways in which (19) can be written for test j is the number of pairs of tests 
that may be taken from the remaining (n-1) tests, excluding test j. Hence 
the number of ways in which (19) may be written is 

Hn-l)(n-2). 

Since there are n tests, the total number of formulae (19) for ascertaining 
the single-factor loading of all the tests is !n(n-1)(n-2). 

Example: In order to ascertain the correlation of each of 20 tests with 
the single common factor by all the determinations in Ro, formula (19) 
would be evaluated 3,420 times. 

Spearman's procedure takes into consideration that the tetrad difference 
pin (9) does not quite vanish because of sampling errors in the four corre­
lation coefficients. If a single common factor is fundamentally present and 
if the four coefficients have known standard errors, an expression for the 
standard error of p can be derived. This has been done by Wishart and by 
Holzinger. * The experimentally observed deviations of p from zero should 
not exceed those which might be expected from the standard errors of p. 

This is the central idea in Spearman's single-common-factor method. The 
tetrads in a correlation table are first evaluated. A frequency distribution 
of these tetrad differences is then made and its standard deviation deter­
mined. If this dispersion is of an order of magnitude comparable with that 
which would be expected from the known standard errors of the tetrad 
differences, then Spearman draws 'the legitimate conclusion that a single 
common factor is sufficient to account for the observed interconelations. 
Applications of formulas of the type (19) give the loading of each test with 
the single common factor whose sufficiency has been established by the 
fact that the tetrads vanish within sampling errors. 

It must be borne in mind that the vanishing of the tetrads, i.e., rank 1, 
does not prove the existence of a single common factor in the sense of a 
mental ability or in a genetic sense. This can be seen by considering the 
case where the r factor loadings are in the same proportion in all of the 
tests. All of the test vectors are then collinear in a common-factor space of 

*John Wishart, "Sampling Errors in the Theory of Two Factors," British Journal 
of Psychology, XIX (1928), 180-87. 

Karl J. Holzinger, Statistical Resume of the Spearman Two-Factor Theory (Chicago: 
University of Chicago Press, 1930), pp. 6-16. 
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r dimensions, although their scalars may be different because of differences 
in the specific variances and in the error variances of the tests. This con­
tingency is illustrated by the following fictitious factorial matrix of five 
tests and two factors. 

If the matrix F of Table 1 is multiplied by its transpose F', it will be seen 
that the columns in Rare proportional and that it is of rank I. The tetrads 
vanish, and the intercorrelations of the tests can be described as well by 
one factor, as shown in the single-column matrix of Table 2. This example 
violates the postulate on page 57 in chapter i. 

Table 1 Table 2 

II 

1 .60 .30 1 .6708 
2 .40 .20 2 .4472 
3 .80 .40 3 .8944 
4 .20 .10 4 .2236 
5 .30 .15 5 .3354 

The reason why this result is obtained is that Table 1 is of rank I. It cor­
responds to the conceivable psychological situation in which each test of a 
battery calls for two primary mental abilities in the same ratio although 
they differ in speci:ficity and reliability. In practice, it is possible to select 
from a large table of tests several groups whose intercorrelations are high 
when corrected for uniqueness. Each one of these groups of tests can be 
described in terms of one factor, but that factor is not necessarily psycho­
logically significant. The tests may be composites, as illustrated in Tables 1 
and 2. One way of avoiding this ambiguity is to work with several abilities 
or factors simultaneously, as is done in the multiple-factor methods, and to 
insure that a large number of zeros occur in each column of the table. This 
is one of the fundamental ideas developed in the subsequent chapters. 

In orde:r to reduce the labor of computing probable errors of the tetrads, 
Spearman and his students have developed several abbreviated procedures. 
These are all limited, however, to the single-common-factor case. 

Graphical analysis of tetrads 
Although the tetrad method of examining a correlation table is not rec­

ommended, there is still so much interest in tetrads among students of fac­
torial analysis that a simple graphical method of selecting the vanishing and 
the non-vanishing tetrads will be described. By Theorem 5, a plot of any 
column k against any other column lis linear if the rank of Ro is 1, i.e., if the 
intertest correlations can be described by a single common factor. If the 
test battery as a whole cannot be described by a single common factor, the 



142 THE VECTORS OF MIND 

plot will not be linear but will scatter, as shown in Figure 1. This figure 
shows the plot of column 9 against column 1 from Table II of a recent fac­
torial investigation by William Brown and William Stephenson. * Column 9 
represents a test of pattern perception, and column 1 represents a test of 
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inventive synonyms. Although it is evident in Figure 1 that a single factor 
is not sufficient to account for the intercorrelations and that, therefore, all 
of the tetrads do not vanish, it is still possible for smaller groups of tests to 
be of such a character that their intercorrelations can be described by a 
single common factor. Their tetrads should then vanish. The smallest group 
for which a tetrad can be written is four tests. Two tests are represented by 
the two columns that are plotted. Any pair of points on the diagram de­
termines a tetrad. li they lie in a radial line through the origin, the corre-

* "A Test of the Theory of Two Factors," British Journal of Psychology (General Sec­
tion), XXIII (1933), 352-70. 
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sponding tetrad vanishes. If they do not lie in a radial line through the 
origin, the corresponding tetrad does not vanish. 

Let two points on the diagram represent tests m and n. If the two points 
are radial, then 

(20) 

so that 

(21) 

If the points m and n are not radial, the proportionality of (20) does not ob­
tain and the tetrad (21) does not vanish. 

A few numerical examples will be shown from Figure 1. A radial line 
can be drawn through the points 12 and 19. Hence the tetrad determined 
by these two points vanishes. The tetrad is as follows: 

r12.1r19.9- r9.12T19.1 = (.345)(.549) - (.401)(.489) = - .007. 

A radial line cannot be drawn through the points 4 and 5, and hence the cor­
responding tetrad does not vanish. The tetrad is as follows: 

r41r59- T49Tu = (.656)(.655) - (.516)(.373) = + .237. 

It may be of some inter~st to examine the tests, which are as follows: 
1) Synonyms, 
4) Disarranged sentences, 
5) Fitting shapes, 
9) Pattern perception. 

This group of four tests probably has a common visual-perception factor in 
tests 5 and 9 which is not identical with the verbal factors in 1 and 4. 

The previous group is as follows: 
1) Synonyms, 
9) Pattern perception, 

12) Mutilated pictures, 
19) Arithmetical equations. 

Here there is either one common factor or several common factors whose 
factor loadings are in the same proportions in the four tests. It is probably 
significant that the battery contains only one arithmetical test. Any num­
ber factor in this test will remain specific in the battery as a whole, and 
hence it can have no effect on the vanishing of the tetrads. 

The graphical method which has been described here can be used to indi-
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cate, without numerical calculation, which of the tetrads will vanish almost 
exactly and which of them v<.ill have large residuals. It is possible that this 
graphical method could be extended so as to represent the probable errors 
of the tetrads; but since the tetrad method is not recommended even for the 
single-common-factor case, such a development would not be useful. 

A single-factor method without tetrads 

If a correlation table is of rank 1 the single-common-factor loading of 
each test may be determined by a summation procedure. This method is 
simpler than the tetrad method for a single common factor, and it gives 
more information about the variables than the tetrad differences give. 

If the correlation rik can be described by a single common factor, we have 

(1) 

The sum of column kin the correlation table is 

(22) 

Since the diagonal terms are unknown, the summation in the left member 
of (22) is unknown, and hence not suitable for computing purposes. Let 
(r),. be the sum of column k, omitting the unknown diagonal entry. Then 

(23) 

and hence 

(24) 

n 

(r),. = :~::>ik - a~1, 
i~l 

n 

(r)k = ak1 Lail - a~1. 
i~l 

Summing for all given coefficients in Ro and omitting the unknown diag­
onals, we have 

(25) 

or 

(26) 

where (r) t denotes the sum of all the coefficients in R0 except the diagonal 
ones. 
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Each of the two terms in the right member of (26) may be expressed in 
terms of summations of known coefficients, as follows: 

(1) 

and hence 

(27) 

Summing for column k, 

(28) 

and from (23), it follows that 

(29) 
n 

1 2] """' - [(r)k + akl = ~ail, 
akl i=l 

or 

(30) 

Hence the first term of the right member of (26) is 

(31) 

The last term of (26) may be expressed in terms of summations of coeffi­
cients, as follows: 

(1) 

so that 

(32) 

and hence 

(33) 
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Summing for column k, 

(34) 

Summing for column k, except for the entry in row k, 

(35) 

Let the sum of the squares of the known coefficients in column k be de­
noted by (r2)k, so that 

(36) 

n 

(r2)~o = 2};k - rtk • 
j=l 

Then (35) can be written in the form 

(r2)~;; + 2 ~ 2 
- 2- ak1 = ~akl. 
akl k=l 

(37) 

Substituting (31) and (37) in (26), 

(38) ( ) (r)f 2 (r2)k 2 
r t = -a2- + 2(r)k + akl - -2- - ak1, 

kl akl 

or 

(39) 

from which it follows that 

(40) 2 (rH - (r2)k 
a"1 = (r)t - 2(r)k ' 

where 

(r)k = the sum of the coefficients in column k omitting 
unknown diagonal entry, 

(rH = the square of (r)k, 
(r2)k = the sum of the squares of the known coefficients 

in column k, 
(r)t = the sum of all known coefficients in the correla­

tion table. 
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Formula (40) gives the single-common-factor loading of each test in a 
correlation table of rank 1. This formula has been given, in different nota­
tion, by Spearman. * In order to ascertain how well the single common fac­
tor accounts for the intercorrelations, a table of residuals should be com­
puted. These residuals are defined as follows: 

(41) 

where Pik is the discrepancy between the given coefficient and that which is 
determined by the single-common-factor loadings of tests j and k. In order 
to ascertain which tests deviate most from the single-common-factor hy­
pothesis for the whole battery, the mean absolute discrepancy for each test 
might be determined. It would be denoted 

(42) 

for column k. Tl1is absolute mean discrepancy is a direct measure of the 
agreement between the given coefficients and the hypothesis of a single 
common factor. Hence it is superior to the tetrad differences, which con­
stitute an indirect measure of the agreement. 

A frequency distribution of the residuals may be made, and its dispersion 
may be compared with the standard error of the mean coefficient. A more 
formal treatment of the data would be to determine 

(43) 

for each coefficient where Eik is the ratio of the residual to the standard error 
of the given coefficient. A frequency distribution of these ratios should have 
a standard deviation not appreciably greater than unity in order to estab­
lish a single common factor as sufficient to account for the given correlation 
coefficients. 

Numerical example of single-factor method 

An application of formula (40) has been made to a problem which has 
been used by several students of factor theory. Table 3 contains the inter-

*C. Spearman, The Abilities of Man (New York: Macmillan Co., 1927), Appendix, 
p. xvi, equation (21). 
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Table 3 

1 2 3 4 5 6 7 8 

1 .58 .58 .51 .48 .43 .43 .46 

2 .58 .47 .50 .53 .40 .44 .45 

3 .58 .47 .51 .48 .41 .45 .38 

4 .51 .50 .51 .34 .50 .35 .40 

5 .48 .53 .48 .34 .33 .41 .39 

6 .43 .40 .41 .50 .33 .41 .33 

7 .43 .44 .45 .35 .41 .41 .31 

8 .46 .45 .38 .40 .39 .33 .31 

(r)k 3.47 3.37 3.28 3.11 2.96 2.81 2.80 2.72 

(r)X, 12.0409 11.3569 10.7584 9.6721 8.7616 7.8961 7.8400 7.3984 

(r2)k 1.7447 1.6443 1.5628 1.4183 1.2864 1.1489 1.1358 1.0756 

ai1 .585677 .546265 .512004 .451027 .401892 .356995 .354345 .331384 

ak1 .765295 .739097 .715545 .671585 .633950 .597491 .595269 .575660 

Table 4-

First-Factor Residuals for Table 3 

1 2 3 4 5 6 7 8 

1 +.014 +.032 -.004 -.005 -.027 -.026 +.019 

2 +.014 -.059 +.004 +.061 -.042 .000 +.025 

3 +.032 -.059 +.029 +.026 -.018 +.024 -.032 

4 -.004 +.004 +.029 -.086 +.099 -.050 +.013 

5 -.005 +.061 +.026 -.086 -.049 +.033 +.025 

6 -.027 -.042 -.018 +.099 -.049 +.054 -.014 

7 -.026 .000 +.024 -.050 +.033 +.054 -.033 

8 +.019 +.025 -.032 +.013 +.025 -.014 -.033 

pk .018 .029 .031 .041 .041 .043 .031 .023 
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correlations of eight tests which are reproduced from Holzinger. * At the 
bottom of the table are recorded the three entries which are required by 
formula (40). The single-common-factor loading for each test is the last 
"entry in each column. In Table 4 are shown the residuals of (41). It will be 
seen that they are small. At the bottom of each column of Table 4 is record­
ed the absolute mean discrepancy of (42). This example illustrates a single­
factor method which does not require the computation of any tetrad dif­
ferences. Each of the entries in Table 4 might be divided by the standard 
error of the corresponding correlation coefficient, and a frequency distribu­
tion of these ratios might be prepared. Its standard deviation should not 
be much greater than unity. 

* Karl J. Holzinger, Statistical Resume of the Spearman Two-Factor Theory (Chicago: 
University of Chicago Press, 1930), Table 6, p. 32. 



Simple structure 

CHAPTER VI 

PRIMARY TRAITS 

It has been shown that when the inequality (5-ii) is satisfied, there is a 
unique configuration of trait vectors that corresponds to the given correla­
tional matrix. The correspondence between the configuration and the cor­
relational matrix is independent of rotation of the orthogonal reference axes. 
The cell entries of F are altered within the range ±hi under rotation of the 
reference axes. Since the rotation of the reference axes is arbitrary, it is 
clear that the numerical values in F can have no direct interpretation except 
in terms of some criterion which relates the configuration uniquely to the 
reference axes. If such a criterion can be found which satisfies the demands 
of the scientific problem, the reference axes become unique in relation to the 
configuration instead of remaining arbitrary under rotation. 

The multiple-factor problem can be stated in two parts, namely: 
1) What is the minimum number of factors that will account for the 

observed intercorrelations? 
2) What is the minimum number of factors for each trait that will ac­

count for the intercorrelations? 
The solution to the :first of these two problems has been described in the 

previous chapters. The solution to the second problem will supply a unique 
factorial matrix. 

The second problem is, in effect, to find the matrix representation of the 
simplest order among the traits that will account for the intercorrelations 
within the general restriction that the trait measures shall be linear func­
tions of the several factors. If the traits involve r factors, the most complex 
order admissible in factor theory is that in which every one of the n traits 
involves every one of the r factors. The simplest possible order is that in 
which each trait can be described in terms of the smallest possible number 
of factors. The simplest order has been found when each row of the factorial 
matrix has at least one zero and when the number of zeros has been maxi­
mized. 

It will be convenient to designate by special names some of the concepts 
that are involved in the problem of finding a unique factorial matrix of 
simplest possible order. The configuration of n trait vectors has r dimen­
sions. The trait vectors are described in the matrix F by r orthogonal ref­
erence vectors. 

150 
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Definition: The r orthogonal reference vectors that are implied in the fac­
torial matrix F will be referred to as the orthogonal reference vectors. 

Definition: When the factorial matrix F has been computed by the centroid 
method, its orthogonal reference vectors will be called the centroid ref­
erence vectors. 

Definition: The unique configuration of trait vectors defined by the correla­
tional matrix will be called the correlational configuration or the trait 
configuration. 

Hence the factorial matrix F describes the trait configuration in terms of 
the orthogonal reference vectors. 

Definition: The combined configuration of the n trait vectors and any set of r 
reference vectors will be called a structure. 

Hence a structure is itself a configuration. 
If the numerical entries in the factorial matrb:: shall have scientific in­

terpretation, the reference vectors must have meaning beyond that of an 
arbitrary reference frame for the trait configuration. Each 
reference vector must be interpreted as a scientific cate­
gory, so that the numerical entries of the factorial matrix 
have scientific meaning with reference to explanatory or 1 

descriptive categories. It is in this sense that the com­
bined configuration of the tra.it vectors and the reference 2 

vectors constitutes a structure. 
Definition: A structure in which each trait vector is con-

3 

tained in one or more of the r orthogonal co-ordinate 4 

hyperplanes will be called an orthogonal simple 
structure. s 

It follows from this definition that if a factorial matrix 
represents an orthogonal simple structure, each row of the 6 

matrix must have at least one zero. If r=3, each trait 
vector lies in at least one of the three orthogonal eo-or- 7 

dinate planes. 
8 

The nature of the second principal factor problem will 
be illustrated in three dimensions. Let Table 1 represent 9 

a factorial matrix of rank 3. The crosses in the cells rep­
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resent finite values of a;m, while the other cells have zero entries. Some of 
the traits can be described in terms of only one factor, while the others have 
two factors each. 

The corresponding configuration is shown in Figure 1, in which the three 
columns of the table are represented by the three reference vectors. The 
nine trait vectors are indicated by number. The trait configuration may be 
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described numerically by reference to any arbitrarily chosen set of co-ordi­
nate axes. In general, an arbitrary set of axes is represented by a finite posi­
tive or negative value of aim in each cell of F. Orthogonal simple structure 
is shown if a set of axes can be found so that a large number of zeros appear 
in F, with at least one zero in each row. Since each one of the traits can 
be described in terms of fewer than three factors, simple structure can be 
found for the nine vectors of this example. 

I 

3 

5 

IT 

FIGURE 1 

If an nXr factorial matrix is set up with arbitrary entries in all cells, 
there is, in general, no transformation by which each of the n variables can 
be described in terms of fewer than r factors. It is assumed that n is large 
in comparison with r. Therefore the appearance of simple structure in a 
factorial matrix derived from observation commands attention. It is not a 
chance matter. When found in experimental data, it reveals order within 
the n variables in that r< n categories are required for describing them col­
lectively and fewer than r categories are required for each one of them sepa­
rately. When simple structure has been found by an orthogonal transforma­
tion L upon F, the reference vectors of FL represent fundamental categories 
which must be incorporated into the ideal constructs of the science. 

Definition: If an underlying physical order of the n traits is such that each 
of the traits can be described in terms of a smaller number of factors than 
are required for describing the traits collectively, then the underlying 
physical order will be called a simple order. 
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It is here assumed that for the purposes of any particular scientific study a 
trait is completely described by that. part of its total variance which is 
represented by the observed intercorrelations. Factors additional to those 
which are represented by the rank of the correlational matrix may be in­
volved in the specific variance of each trait, but these are irrelevant in a 
factorial scientific study of the traits in which the correlational matrix is 
used as a datum. 

Definition: If a simple order exists for a set of n traits and if the r factors are 
statistically independent in the experimental population, then the cor­
responding physical order will be called an orthogonal simple order. 

Hence the configuration which represents an orthogonal simple order among 
the n traits is an orthogonal simple structure. An order among the traits 
involves, of course, not only the traits themselves but also the categories in 
terms of which they are described. These categories are themselves traits 
which may or may not be experimentally isolable. 

It is useful to summarize the several fundamental concepts that are in­
volved in this analysis. The concept order refers to the relation between the 
traits and the categories in terms of which the traits are to be described 
and comprehended. The correlational matrix describes merely the relations 
among the traits, independently of the descriptive categories. The factorial 
matrix describes the traits or variables in terms of an arbitrary set of de­
scriptive categories. The trait configuration is a geometrical representation 
of the correlational matrix, and hence it is also independent of the descrip­
tive categories. The structure is a configuration which represents not only 
the traits but also the arbitrary descriptive categories. The scientific prob­
lem is essentially a search for a set of descriptive categories in terms of 
which our conception of the traits or variables shall be the simplest possible. 
If an overdetermined and unique simplicity in our conception can be 
achieved, then the traits or variables will be said to reveal a simple order. 
The search for these categories has its direct analytical counterpart in the 
search for a set of reference vectors which shall reveal a simple structure. A 
simple structure is a configurational representation of a simple order. If the 
simplifying descriptive categories happen to be statistically independent in 
the experimental population, then the trait configuration can be so rotated 
in its arbitrary orthogonal frame that each trait vector is contained in one 
or more of the r orthogonal co-ordinate hyperplanes. The result is an or­
thogonal simple structure, and the reference vectors represent a set of sta­
tistically independent traits that serve the simplest possible comprehension 
of the given traits or variables. 
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Oblique reference vectors 
It is desirable to define the primary traits so as to describe the trait cor­

relations in terms of the simplest possible order. Since the primary traits 
may not be orthogonal in the experimental population, the structure of the 
factorial matrix can be simplified by introducing oblique reference vectors. 
In the r dimensions of the common-factor space, each of r oblique reference 
vectors defines a co-ordinate hyperplane of (r-1) dimensions. 

Definition: The sub space of (r -1) dimensions which is orthogonal to the 
reference vector Ap will be called the co-ordinate hyperplane Lp. 

The oblique reference vectors will be referred to merely as reference vectors. 
Orthogonality will be explicitly designated. 

The concept of orthogonal simple structure can be generalized to oblique 
reference axes. 

Definition: If a set of r hyperplanes of dimensionality (r-1) exists such 
that each trait vector is in one or more of the hyperplanes, then the com­
bined configuration of the trait vectors and the reference vectors will be 
called a simple structure or an oblique simple structure. 

The factorial matrix which describes a simple structure of n traits in terms 
of r oblique reference vectors will have at least one zero in each row. Since 
its reference vectors are oblique, it cannot be obtained from F by an orthog­
onal transformation. A factorial matrix with oblique reference vectors will 
be denoted V. 

The r reference vectors which are implied by the columns ofF are orthog­
onal. Rotation of the system by the transformation L produces the matrix 
FL, which describes the same configuration. The r columns of FL also repre­
sent orthogonal reference vectors. Instead of subjecting F to an orthogonal 
transformation L in the attempt to find simple structure in FL, the new 
reference vectors will here be regarded as oblique. Then the factorial 
matrix F is subjected to some transformation G, not necessarily orthogonal, 
in the attempt to find simple structure in 

(1) FG ==V. 

The only restriction upon the transformation G is that it shall be normal­
ized by columns, i.e., that the sum of the squares of the elements in each 
column shall equal unity. 

Each column of G represents the direction cosines of a reference vector. 
Since F is of rank r, it follows that G will be a square matrix of order r. Let 
Ap be the reference vector represented by column pin G, and let its direc-
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tion cosines be A.1p, A.2p, . . . , Arp· The corresponding column in V contains 
the cell entries vip, where 

T 

(2) Vip = L aimAmp • 
m=l 

Each entry Vip is the scalar product of the test vector j and the reference 
vector A.p. Simple structure of V is shown if a transformation G can be 
found such that at least one of the entries Vip vanishes in each row j. Each 
hyperplane LP is determined by (r-1) points and the origin. Hence there 
must be at least r trait vectors in each hyperplane in order that it shall be 
overdetermined. 

It will be useful to designate by a special name the number of reference 
vectors that are involved in the linear description of each trait. 

Definition: The number of reference vectors that are involved in the linear 
description of a trait will be called the complexity of the trait. 

It follows from this definition that in a simple structure every trait is of 
complexity less than r. 

Uniqueness of simple structure 
When reference axes have been found which produce a simple structure, 

it is of considerable scientific interest to know whether the simple structure 
is unique. Consider a set of six trait vectors in three dimensions in which 
no three of the vectors are coplanar. There are fifteen different simple 
structures for this configuration. If there are seven trait vectors in three 
dimensions, no three of which are coplanar, then a simple structure is im­
possible because there exists no set of reference vectors, either orthogonal or 
oblique, by which a simple structure can be made. 

The necessary and sufficient conditions for uniqueness of a simple struc­
ture need to be investigated. This is an important problem, because only in 
terms of its solution will it be possible to ascertain to what extent a particu­
lar simple structure is overdetermined by the experimental data on which 
it is based. In the absence of a complete solution to this problem three cri­
teria will here be listed which are almost certain to constitute sufficient and 
more than necessary conditions for the uniqueness of a simple structure. 
The scientific interpretation of the cell entries in the oblique factorial 
matrix V should not be attempted except after reasonable assurance that 
the simple structure of V is unique. It is part of the faith of science that if 
several alternative simple structt1;res can be found for the matrix V and if 
each of them can be given plausible descriptive categories, only one of the 
alternatives can eventually remain acceptable. 
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The three criteria by which the r reference vectors can be overdeter-
mined are as follows: 

1) Each row of V should have at least one zero, 
2) Each column of V should have at least r zeros, 
3) For every pair of columns of V there should be at least r traits whose 

entries viP vanish in one column but not in the other. 
The first criterion demands that each trait should be describable in 

terms of fewer categories than are required by the whole set of n traits. It 
is conceivable that, in some experimental work, one or more of the traits 
will be so complex as to require description in terms of all of the factors that 
enter into the traits collectively. For the purpose of isolating the funda­
mental categories, these traits are not useful, and they should therefore be 
ignored. The criterion demands that the list of traits be long enough so 
that after elimination of several traits of complexity r, enough traits of cmn­
plexity less than r remain to determine uniquely both the trait configura­
tion and the simple structure. This principle may be illustrated with psy­
chological tests. If one of the abilities to be isolated should be number 
sense, then this primary ability should not be required in all of the tests of 
a battery. The same restriction applies to each of the abilities that are to 
be isolated. 

The second criterion seems to be essential for the following reason. Each 
column p of V is determined by a hyperplane LP. A hyperplane through the 
origin is determined by (r-1) trait vectors. These trait vectors are con­
tained in Lp, and therefore they have vanishing entries viP in column p. 
Therefore there must be at least (r-1) traits with vanishing entries in each 
column of V in order that the hyperplanes shall be determined. Since the 
hyperplanes should be overdetermined by the data, it follows that the num­
ber of vanishing entries in each column of V should equal or exceed r. 

The third criterion is suggested by the fact that the r hyperplanes must 
be distinct. If two columns of V contain the same vanishing entries and if 
these exceed (r-2) in number, then the two corresponding hyperplanes are 
identical The third criterion was written so as to insure both overdeter­
mination and distinctness of the hyperplanes that define the columns of V. 

Primary trait vectors 
If a set of r hyperplanes has been found such that each trait vector is 

contained in one or more of the hyperplanes, then the n traits can be com­
prehended as a simple order in which each trait is of complexity less than r. 
This implies that each row of the factorial matrix V has at least one zero. 
These hyperplanes will be specially designated as follows: 
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Definition: The r hyperplanes whose nonnals produce a simple structure 
with a trait configuration will be called the co-ordinate hyperplanes 
for the trait configuration. 

Any other set of co-ordinate hyperplanes will be called arbitrary co-ordinate 
hyperplanes. The simple structure is defined by the trait configuration and 
the normals Ap to the co-ordinate hyperplanes Lp. 

The corresponding co-ordinate axes are defined as follows: 
Definition: The intersection of any (r-1) co-ordinate hyperplanes defines 

a co-ordinate axis of the structure. 
The total number of sets of (r-1) hyperplanes is r, and consequently their 
intersections define r co-ordinate axes. These are of special scientific inter­
est because they define the descriptive categories of the simple order. 

Definition: The unit vector defined by a co-ordinate axis will be called a 
primary trait vector or a primary vector. 

Definition: The trait which corresponds to a primary vector will be called a 
primary trait or a primary factor. 

The object of a factorial analysis is to discover the primary traits and to 
describe them in terms of the traits that are experimentally observed. 

A simple structure is represented diagrammatically in Figure 2 for three 
dimensions. The hyperplanes of dimensionality (r-1) are planes in this 
special case. They are shown by the arcs LP. The normals Ap are also 
shown. These are the reference vectors. Each primary vector T P is the in­
tersection of the (r-1) hyperplanes Lq, where q~p. In three dimensions 
there are three planes LP which contain the origin. Their intersections de­
termine the primary vectors T P· 

The intersection of all the co-ordinate hyperplanes, excepting Lp, defines 
a primary trait vector which will be denoted T P· Hence T P defines the linear 
subspace which is common to all the hyperplanes, excepting LP. The trait 
vector T Pis not contained in the hyperplane Lp, but it is contained in all the 
other hyperplanes. It follows that the primary trait TP is absent in all of the 
traits which have vanishing entries Vfp in column p of V. The primary trait 
TP is present in all traits that have non-vanishing entries V;p in column p · 
of V. 

Since the primary trait vector T P is not contained in the hyperplane Lp, 
it might be inferred that it is identical with the normal to the hyperplane 
Lp. Such is not necessarily the case. If the primary traits are statistically 
independent in the experimental population, then the vectors T Pare orthog­
onal, and so are also the co-ordinate hyperplanes Lp and their normals Ap. 
In this case the reference vectors Ap are identical with the primary vectors 
TP. However, if the primary traits TP are not statistically independent in 
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the experimental population, then the l:).yperplanes LP are oblique, and their 
normals Ap are oblique. The two sets of vectors Ap and TP are then, in gen­
eral, distinct. 

Hyperp/one 

Rererenc 

~ 
' 

FIGURE 2 

The geometrical interpretation of primary traits may be illustrated in 
three dimensions. Let the entries aim in each row ofF be augmented by the 
multiplier l/h1. The geometric representation of the augmented co-ordi­
nates is that each trait vector is extended to unit length. The augmented 
co-ordinates are therefore the direction cosines of the trait vectors. The 
termini of the trait vectors can be represented as points on the surface of a 
hypersphere. If r=3, the trait configuration can be studied graphically on 
the surface of a ball. 
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Let Figure 3 represent the trait configuration, and let the points repre­
sent the termini of the trait vectors on the surface of the sphere. Simple 
structure is shown by the fact that each point lies in one of the three arcs of 
great circles. All of the traits on the arc 1-2 can be described by two pri­
mary factors, since all of the corresponding trait vectors are coplanar. The 
whole set of traits can be described by three factors. Hence the same pri­
mary factor is absent in all of the traits along 1-2. The subspace 1-2 can 
be described by the direction cosines of the normal to the plane 1-2. Let 
this normal be denoted As. The subscript of As refers to the primary trait 
Ts that is absent in the subspace Ls. The vector As is the normal which 
defines the subspace Ls. 

FIGURE 3 

By analogy, the vector A1 is the normal to the plane 2-3 and A2 is the 
normal to the plane 1-3. If all trait vectors in the plane 1-2 represent two 
primary factors and if all trait vectors in the plane 1-3 represent two pri­
mary factors, it is clear that the vector which is determined by the inter­
section of these two planes represents the primary factor which the. two 
planes have in common, namely, the primary factor No. 1. In the same 
manner the other primary factors, 2 and 3, are determined by intersections 
of planes. 

The direction cosines of the reference vectors Ap constitute the columns 
of the matrix of transformation G by which simple structure is demonstrated 
in the traits of Figure 3. 

The reasoning about Figure 3 may be generalized as follows. The matrix 
of the transformation G is shown in (3) in which the r entries of column p 
show the direction cosines of the hyperplane Lp. The primary trait vector 
TP is defined by the intersection of (r-1) hyperplanes, omitting LP. Each 
column of (3) shows the r coefficients of the homogeneous linear equation 
which defines a hyperplane. If (r-1) of these equations are solved simul-
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taneously, the ratios of the unknowns are the ratios of the direction cosines 
of the intersection. Normalizing these ratios, we have the direction cosines 
of the primary trait vector TP: 

Au A12 A13 Alr 

A21 A22 A2a A2r 

(3) A.a1 As2 Ass Asr =G. 

Amp 

Arl Ar2 Ar3 Arr 

The relation between the oblique reference vectors and the primary trait 
vectors can be generalized as follows. Let Jimp be the first minor of Amp in (3). 
Then it can be shown that the direction cosines of the primary trait vector 
TP are proportional to the entries in column pin the matrix H in (4). Let 
the matrix T be produced by normalizing the columns of H. The columns 
of T are the direction cosines of the primary trait vectors T p: 

+~tu +~-t12 +~-tl3 +ILlr 

-IL21 -IL22 -IL23 -IL2r 

(4) +~tal +J.Ls2 +J.Lss +~tar =H. 

( -l)m-lJ,Lmp 

( -1)r-lJ.Lrl ( -1)"-1!Lr2 ( -l)r-l!Lr3 ( -l)r-l!Lrr 

The cosine of the angular separation of each pair of primary trait vectors 
is the correlation between the corresponding primary traits in the experi­
mental population. It will probably be found that these correlations are 
positive. If the elements viP are taken positive or zero, then the angular 
separations of pairs of hyperplanes Lp exceed 1r/2. Hence it is to be expect­
ed that the scalar products, or correlations, of pairs of oblique vectors Ap 
will be negative. This relation can be illustrated in the plane as follows. 

Let I and II in Figure 4 represent the orthogonal centroid axes of F. Let 
the small circles along the line 1 represent traits which all contain the same 
primary trait. In a similar way let the small circles along the line 2 repre­
sent traits that contain a second primary trait. Let the two primary traits 
be positively correlated in the experimental population. This is shown by 
the fact that the angular separation between 1 and 2 is less than a right 
angle. 
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The radial line 1 is a subspace of one dimension. It is defined by its 
normal A2. The subscript of A2 shows the trait which is absent in the sub­
space 1. The correlations between A2 and the traits in 1 are all zero. The 
correlations between A2 and the traits in 2 are all positive. In a similar man­
ner A1 is the normal to the subspace 2. All correlations between A1 and the 
traits in 2 are zero. The correlations between A1 and the traits in 1 are posi-

II 

0 
0 

0 

FIGURE 4 

2. 
0 

0 ool 
0 0 

I 

tive. While the angular separation between 1 and 2 is less than 1r/2, it is 
seen that the angular separation between A1 and A2 exceeds 1r/2. Hence its 
cosine is negative. 

The convincingness of the primary traits that are isolated by the three 
criteria for overdetermined simple structure necessarily depends on the in­
ventiveness of the scientist in formulating a plausible concept or descriptive 
category for each column of V. When that has been done, the further veri­
fication of these concepts demands that additional experiments be made 
with traits or variables in which the categories are represented in extreme 
form. For example, if facility in auditory imagery were postulated as a pri­
mary factor in dealing with certain verbal tests, the verification of this fac-
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tor would require additional experimentation in which the same verbal tests 
are used in combination with non-verbal tests of auditory facility. If the 
latter tests retain even more conspicuous values in the auditory column 
than the auditory verbal tests, then the auditory factor is further experi­
mentally affirmed. 

The equation of an oblique simple structure 
If a set of r hyperplanes exists such that each of the trait vectors is in at 

least one of the hyperplanes, then the configuration is called a simple struc­
ture. The general case is that in which the hyperplanes are oblique. The 
special case in which the r hyperplanes are orthogonal is called an orthog­
onal simple structure. A simple structure is a set of r oblique hyperplanes, 
all of which contain the origin. This set of r hyperplanes may be regarded 
as a degenerate cone whose apex is at the origin and whose surface consists 
of the r hyperplanes. The equation of the hyperplane Lp is 

(5) 

The equation of a simple structure in r dimensions may be written by 
setting the product of r polynomials, like (5), for p= 1, 2, 3, ... , r, equal 
to zero. Then we have 

(6) 

This equation may be written in the more condensed form 

(7) 

Fitting (7) to a given trait configuration in which a simple structure is 
assumed, we have, for each test j, 

(8) 

or 

(9) 

Vj1Vi2 ••• Vjr = 0 , 

r 

II Vjp = 0. 
P=l 
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If the point j is in at least one of the r hyperplanes of (7), at least one of the 
r factors viP vanishes, and hence equation (9) is satisfied. Equation (7), or 
its equivalent (9), is therefore satisfied by all points in the r co-ordinate 
hyperplanes of a simple structure. 

In order to determine the best-fitting degenerate cone for a given set of n 
points in a space of r dimensions, equation (7) may be written in the form 
of an observation equation, namely, 

(10) 

where Pi is the discrepancy for the point j. The best-fitting simple structure 
may be defined as that in which 

is minimized. Hence the criterion for a best-fitting simple structure is the 
minimizing of 

(11) 

The function</> will be referred to as the criterion for the isolation of a simple 
structure. 

Five methods of isolating primary traits 

When a factorial matrix F has been obtained from the correlational 
matrix Ro by any method, the second principal problem is to find the trans­
formation G by which overdetermined simple structure may be discovered 
in the n traits or variables. Five methods will be described, namely: 

1) Graphical method when r< 4, 
2) Method of oblique axes, 
3) Method of averages, 
4) Method of maximizing zero entries in each column of V, 
5) Analytical method. 
When the rank ofF is less than 4, the problem is quite simple, because the 

solution may be written by graphical methods. These will be described in 
later sections of this chapter. 

When a psychological hypothesis in the form of a postulated primary 
trait is to be tested, the second and third methods are applicable. The 
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method of oblique axes is described in chapter vii. It is a variant of the 
method of principal axes which avoids the pitfalls of the principal axes. The 
method of averages is also described in chapter vii. It is an approximation 
to the method of oblique axes, and it does not require the determination of 
the roots of a characteristic equation. Either of these methods may be used 
for testing directly whether a postulated trait is primary. The fourth meth­
od isolates one hyperplane at a time in which the number of nearly vanish­
ing entries is maximized. 

The fifth method is entirely analytical in that it extracts the primary 
traits, if they exist, without presupposing any hypothesis regarding their 
nature. By means of the analytical method the primary traits may be found 
even if their nature is entirely unknown. The analytical method is described 
in chapter vii. 

Graphical methods for less than four dimensions 
If the common-factor space has one dimension, the factor problem is 

solved directly by the methods of chapter v. If the rank is 2, the co-ordi­
nates aim of F may be plotted on cross-section paper so that the configura­
tion of F becomes visible in a plane. Simple structure is then revealed if all 
of the trait vectors are found to lie along two radial lines. The direction 
cosines of the normals to these lines constitute the columns of the trans­
formation G, which can then be written by inspection. These direction 
cosines can also be thought of as defining two linear subspaces in the plane. 

If the rank ofF is 3, the graphical procedure implies a solid model. Two 
methods of handling this case will be described: 

1) The trait vectors may be represented by old-fashioned hatpins that 
are stuck into a central spherical cork. The length of each hatpinj should be 
equal to hf. The angular separation <Pik for each pair of hatpins, j and k, 
should be such that rik=hi hk cos <Pik· Simple structure is demonstrated if 
each hatpin lies in one of three planes all of which contain the origin. The 
direction cosines of the normals to these planes constitute the columns of 
the transformation G. 

2) The method of sticking hatpins in a cork has not been tried. A sim­
pler method is to use the augmented co-ordinates Aim of the trait vectors. 
These are also the direction cosines of unit trait vectors. They can be repre­
sented as points on the surface of a ball. 

In plotting the trait configuration on a sphere, it will be found conven­
ient to use the following method: Locate three orthogonal points on the 
surface and mark them I, II, III, to represent the three reference vectors for 
the direction cosines of the traits. Mark off on a narrow strip of paper the 
distance 'IT'D/4, where D is the diameter of the sphere. This is also the sur-
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face distance between any two of the orthogonal reference points. Divide 
this distance into ninety parts in any convenient units to represent 90°. On 
the same strip of paper mark off the cosines of angles with any convenient 
unit such as .00, .05, .10, etc. In doing this, look up cos-1 .05, cos-1 .10, and 
mark .05, .10 on the strip at the appropriate angles. The strip is then ready 
for use. In locating a point on the sphere, use the arithmetical check which 
is provided by the fact that the position of each point is determined by the 
angular separations from two reference points. The angular separation from 
the third reference point constitutes an arithmetical check. 

Simple structure is demonstrated if each point lies in one of the sides of a 
spherical triangle. Each of the three sides determines a plane through the 
origin. The direction cosines of the normal to each plane constitute a col­
umn in the transformation G. The vertices of the triangle define the pri­
mary traits. The correlations between the primary traits in the experi­
mental population are the cosines of the intervening sides of the spherical 
triangle. If the figure is a right spherical triangle, the primary traits are un­
correlated in the experimental population. If the figure is an oblique spheri­
cal triangle, the primary traits are correlated in the experimental popula­
tion. 

The problem of negative abilities 
All of the methods of factoring a correlational matrix that have been de­

scribed give a factorial matrix with negative cell entries in the second and 
subsequent columns. The numerical values in each row of the factorial 
matrix F describe one of the traits in terms of arbitrary orthogonal refer­
ence axes. Since the axes are arbitrary, the psychological interpretation of 
the matrix F, as obtained by the centroid method or by any other equiva­
lent method, is certain to lead to erroneous results unless the matrix is 
rotated so as to satisfy some additional criterion of the relation between the · 
trait configuration and the reference axes. 

If the variables in the correlational matrix represent personality traits 
other than abilities, then either positive or negative values of vi,. are ad­
missible to psychological interpretation. For example, "tactfulness" and 
"tactlessness" are two traits which can be so defined that their co-ordinates 
are identical except for reversal of sign. Two disease symptoms might be in 
a similar inverse relation. The likes and dislikes of people might be related 
in the same manner. The trait "stability" probably has a negative projec­
tion on the reference vector of "emotionality." 

If the traits in the correlational matrix represent abilities, it is not likely 
that the values of Vfm in V will be negative. By one interpretation, a nega­
tive value of v1m would mean that performance in a psychological test j is 
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actually facilitated by the lack of some sort of ability m. Ideal constructs 
can be devised so as to allow some plausible interpretation for what might 
be called "negative abilities," but this does not seem to be necessary. This 
reasoning leads to the 

Hypothesis: When unique simple structure is found for a battery of psy­
chological tests, then the non-vanishing entries in the factorial matrix 
are positive. 

It will be convenient to name the bounded space within which any 
radial vector has only positive direction cosines. This space will be de­
fined as follows: 

Definition: The bounded space in which any radial vector has only positive 
direction cosines will be called the positive region. 

Definition: If all the trait vectors that do not lie in a hyperplane are on the 
same side of it, the hyperplane will be called a positive hyperplane 
with reference to the trait configuration. 

Definition: If a set of r positive hyperplanes exists such that each trait 
vector is contained in one or more of them, then the combined configura­
tion of the trait vectors and the reference vectors will be called a positive 
simple structure. 

The geometrical interpretation of the restriction upon the numerical val­
ue of aim in Fin the case of mental ability tests is that all of the test vectors 
lie in the positive region of the common-factor space. When this condition 
is satisfied, all of the intertest correlations are positive or zero. It is a uni­
versally accepted fact that intertest correlations are positive. 

The converse is not necessarily valid. The well-known fact that all inter­
test correlations are positive implies that all of the test vectors lie inside a 
cone with center at the origin and with a generating angle of 11'/4. Such a 
cone cannot be inscribed in the positive region except when the number of 
dimensions is as low as two. 

The restriction that all of the test vectors shall be in the positive region 
of the common-factor space is not sufficient to determine F uniquely. In 
general, there exists an infinite number of orthogonal transformations by 
which all of the entries in F become positive or zero if the configuration ofF 
can be inscribed in the positive region. Special cases may be set up in which 
one, and only one, orthogonal transformation will make the entries a;m in F 
positive or zero. Such a case in three dimensions is that in which three test 
vectors are mutually orthogonal. These cases are not likely to be found in 
practice. Hence a unique matrix F is not to be expected with the single cri­
terion that a;m ~ 0 in F. 
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Graphical analysis of fifteen psychological tests 
The graphical methods will be illustrated on the fifteen psychological 

tests of Brigham which were used for numerical examples in the third and 
fourth chapters. The fourth column in Table (25-iii) contains entries whose 
maximum contribution to any correlation coefficient is about .067. This is 
not large enough to justify serious consideration, and hence the test vectors 
can be represented in three dimensions with fair approximation. In Table 2 
are recorded the first three centroid factors and the communalities for the 
first three factors. The last three columns show the corresponding aug­
mented co-ordinates. 

Table 2 

CENTROID Co-oRDLloo1 ATES DIRECTION CosiNEs 

TESTS h' 
I I! III I II III 
------------

10. Opposites .642 .443 -.150 .6309 .808 .558 -.189 
2. Opposites .579 .499 -.090 .5923 .752 .648 -.117 
5. Opposites .561 .449 -.041 .5180 .779 .624 -.057 
3. Analogies .712 .228 .092 .5674 .945 .303 .122 
4. Artificial language .633 .134 .061 .4224 .974 .206 .094 
1. Definitions .685 .159 .157 .5192 .951 .221 .218 
8. Geometrical completion .529 -.144 .207 .3434 .903 -.246 .353 
7. Arithmetical problems .559 -.146 .233 .3881 .897 -.234 .374 
9. Arithmetical proportions .546 -.222 .162 .3736 .893 -.363 .265 
6. Number series .585 -.293 .274 .5032 .825 -.413 .386 

15. Card-turning .475 -.112 -.132 .2556 .939 -.222 -.261 
14. Block construction .428 -.235 -.149 .2606 .838 -.460 -.292 
17. Dice-counting .619 -.303 -.194 .5126 .865 -.423 -.271 
11. Painted cubes .598 -.313 -.272 .5296 .822 -.430 -.374 
18. Form-learning .436 -.084 -.099 .2070 .958 -.185 -.218 

The fifteen test vectors can be represented as points on a sphere. When 
this is done, the configuration of the test vectors can be inspected independ­
ently of the arbitrary centroid reference planes. In Figure 5 the configura­
tion is shown by plotting the augmented factor loadings Ill against II. The 
first factor is then perpendicular to the plane of the diagram. 

Inspection of the sphere shows that three reference planes may readily 
be located so that each of the test vectors lies in at least one of the three 
planes or very near to one of them. The plane AB is determined by the 
centroids of the tests 2, 5, and 8, 7. The plane AC is determined by the cen­
troids of the tests 6, 9, and 11, 14. The plane BC is determined by the cen­
troids of the tests 10, 2, and 11, 14. 

The direction cosines of the three planes are shown in Tahle 3. This table 
is the matrix G of the transformation of F into V. Each column shows the 
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direction cosines of an oblique reference vector Ap, and these are also the di­
rection cosines of one of the three subspaces of dimensionality (r-1). In 
the present example these subspaces are the planes AB, AC, and BC. 

FIGURE 5 

Table 3 

AA AB Ac 

I .304 .441 .244 
II -.154 .893 -.415 

Ill .940 -.088 -.876 

Table 4 shows the matrix V for this particular problem. It can be seen 
that those test vectors which lie close to one of the three reference planes Lp 
in Figure 5 are also those which are represented with nearly vanishing en­
tries in the corresponding column p of Table 4. 
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The three primary abilities are defined by the intersections of reference 
planes. These are shown at the points A, B, and C. The direction cosines 
of the primary ability vectors T P may be obtained either by the intersec­
tion of pairs of planes LP or, more formally, by the matrix (4). The matrix 
T for the present example is shown in Table 5. 

The matrix of Table 4 shows simple structure, but it is not a unique con­
figuration with the reference planes. The reason is that there are no test 

Table 4 

rj.6.c Tjt,.B 'jA.< 

I II rrr 

10 .104 .692 -.014 
2 .013 .709 .015 
5 -.014 .652 .063 
3 -.001 .510 .268 
4 .045 .393 .229 
1 -.036 .430 .331 
8 .008 .086 .378 
7 -.007 .096 .411 
9 .083 .028 .352 
6 .024 -.028 .481 

15 .278 .121 .038 
14 .332 -.008 .026 
17 .447 .019 .052 
11 .514 .008 -.026 
18 .228 .126 .052 

Table 5 

TA TB Ta 

I .834 .722 .829 
II -.372 .681 -.443 

Ill .408 -.122 -.341 

vectors along the arc AC or along the arc BC. The five test vectors near C 
may be regarded as identical except for experimental errors. It is for this 
reason that the primary traits A, B, and C cannot be inferred with certain­
ty. Simple structure would be obtained as well by drawing a reference plane 
through the centroid of (1, 3, 4) and (15, 18) instead of the plane BC. The 
simple structure would involve this plane and the planes AC and AB. The 
psychological interpretation would be difficult because the tests at B would 
have negative factor loadings for the trait A. Hence the structure shown in 
Figure 5 is the more probable one, though it cannot be demonstrated with 
certainty. The simple structure of Figure 5 can be shown to be unique 
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only by a more extensive test battery which includes tests along AC and 
along BC. 

With the reservations just written, it is of some interest to note the pri­
mary abilities A, B, and C, and to consider tentatively their psychological 
nature. Since B consists of opposites tests, one might postulate a verbal 
factor. The tests at A are numerical, so that a number factor might also be 
postulated. Inspection of tests 1, 3, 4, shows them to lie in the plane AB. 
This seems reasonable since they are verbal in character; but they also con­
tain some of the precision and restrictiveness of numerical work. This rela­
tion raises the psychological question whether the number factor is essen­
tially concerned with number as such or with some kind of facility for logi­
cal or other restrictive thinking of which numerical work is only a good ex­
ample. This is a question of fact which can be established by experimental 
inquiry with larger test batteries. The factor C is evidently concerned with 
visual imagery and perhaps with kinesthesis. The battery does not contain 
enough tests to establish their separation if they are separate abilities. 



CHAPTER VII 

ISOLATION OF PRIMARY FACTORS 

Method of oblique axes 

This method was devised for testing the hypothesis that a specified trait 
is primary. For example, if the hypothesis is entertained that a space factor 
is primary in the fifteen tests of Brigham, the method of oblique axes makes 
it possible to test this hypothesis directly. The method is general and in no 
sense limited to psychological tests which are used for illustrative purposes. 

Let the trait which is postulated as primary be denoted Tp. If the hy­
pothesis is clearly formulated, it should be possible to describe T p in terms 
of other traits in which it is involved and in terms of still other traits in 
which the supposed primary component T Pis absent. If a battery of n traits 
has been found to involve r factors and if the postulated trait T P is primary 
in this battery, then there should be only (r-1) factors in the residual bat­
tery which is obtained by merely eliminating those traits in which TP can 
be involved. This idea can be illustrated with a postulated space factor as 
an example. If the fifteen tests of the battery contain several tests that in­
volve space thinking and if the whole battery is well described by three 
factors, then the residual battery which is obtained by eliminating the space 
tests should be describable in terms of only two factors. 

Each trait in the residual battery is described in terms of r factors in the 
factorial matrix F. It does not matter for the present problem that the ref­
erence axes of F are arbitrary. 

After eliminating the traits that may conceivably involve the postulated 
primary trait T p, let there remain n 0 traits in which T P is almost certainly 
absent. When these rows ofF have been eliminated, there remains a fac­
torial matrix F 0 of n 0 rows and r columns. The rank of the reduced factorial 
matrix F 0 must be (r-1) if TP is primary in F. 

The trait configuration of the no traits involves, therefore, (r-1) dimen­
sions; but each one of them is described in terms of r co-ordinates in F (). If 
the r principal axes are determined for the matrix F o by the methods of 
chapter iv, one of the roots fJ must vanish, because the extension of the trait 
configuration is vanishing in the rth dimension. This situation was antici­
pated in the first numerical example of chapter iv, where the system was in­
tentionally devised so that one of the roots fJ did vanish. If n1 roots fJ vanish 
in the characteristic equation, then the trait configuration is of dimension­
ality (r-n1), and this is also the number of primary traits in the battery. 

171 
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The verification of TP as a primary trait is accomplished by the following 
procedures: 

1) Eliminate from the factorial matrix F those traits which may con­
ceivably involve the postulated primary trait TP. This gives the reduced 
factorial matrix F 0 of no rows and r columns. 

2) Make sure that F 0 satisfies the inequality (5-ii), so that the trait 
configuration is unique. 

3) Determine the r roots {3 of the characteristic equation for Fa. 
4) If only one root {3 vanishes, then one, and only one, primary factor 

was removed from F by its reduction to F o. The trait T P is therefore 
primary. 

5) If n1 roots {3 vanish, then n1 primary factors were removed from F in 
its reduction to F0, and the hypothesis is obscured. In supposedly removing 
one primary factor, several primary factors were removed. The traits must 
be re-examined in order to ascertain whether additional, but yet unformu­
lated, primary factors were inadvertently removed from F together with 
Tp, or whether the trait TP is itself a trait of multiple complexity n1. 

6) If none of the roots {3 vanish, then the hypothesis is disproved, because 
the residual factorial matrix F 0 is of the same rank as the original matrix F. 
No primary factor has been removed from F. The problem then calls for 
another guess about the nature of the primary factors. 

If this process is repeated for r successive postulated traits and if these 
are verified in the same manner, then the result will be a set of r primary 
trait vectors in terms of which the oblique factorial matrix V may be 
written. The present method is called a "method of oblique axes" because 
the co-ordinate axes of V are not necessarily orthogonal. The angular sepa­
rations of the primary trait vectors of V are functions of the intercorrela­
tions of the primary traits in the experimental population. These intercor­
relations are affected by the fortuitous conditions that vary more or less 
uncontrollably from one sample population to another. It is one of the fun­
damental problems of factorial analysis to transcend these fortuitous condi­
tions that characterize random samples. As long as the discovery of the 
fundamental categories of a science is markedly affected by the fortuitous 
elements of random sampling, the categories are not likely to be significant. 

Numerical example of method of oblique axes 

The method will be illustrated on the battery of fifteen tests that were 
used in chapter iii as a numerical example. Table (25-iii) shows the factor 
loadings for the fifteen tests. Since the first three factors account for the 
intercorrelations within small residuals, only the first three columns of the 
factorial matrix will be used. This will facilitate a comparison of the results 
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of the present example with the graphical methods previously used for the 
same problem. Inspection of the tests suggests that a visual or space factor 
is present in some of them. The tests which are most conspicuously spatial 
in character are 11, 14, 15, 17, 18. After eliminating these five tests, there 

Table 1 

Tests I I! III 

10 Opposites .642 .443 -.150 
2 Opposites .579 .499 -.090 
5 Opposites .561 .449 -.041 
3 Analogies .712 .228 .092 
4 Artificial language .633 .134 .061 
1 Definitions .685 .159 .157 
8 Geometrical completion .529 -.144 .207 
7 Arithmetic problems .559 -.146 .233 
9 Arithmetical proportions .546 -.222 .162 
6 Number series .585 -.293 .274 

remain ten tests for the residual factorial matrix Fa. This is reproduced for 
the first three centroid factors in Table 1. Although each of these ten tests 
is here described by three co-ordinates, the rank of the matrix should be 
only 2. Hence one of the roots {3 should vanish. 

Table 2 

1 2 3 

1 3. 671647 +.s .730882 .528743 
2 .730882 .919257+,8 -.255728 
3 .528743 -.255728 .267573+,8 

In Table 2 the cross products are summarized. This table shows the co­
efficients of the simultaneous equations (13-iv). The three roots {3 of the 
characteristic equation are as follows: 

f3r = -3.910283 , {32 = - . 930210 ' f3s = -.017984. 

It is seen that one of these roots is almost zero. Since this root is the sum 
of the squares of the projections of the test vectors on the minor principal 
a..xis, it is seen that the mean squared projection for the ten tests is .0018. 

The direction cosines of the vector which is determined by substituting 
{33 in (13-iv) are. as follows: 

h13 = +. 211980 , A2s = - . 422010 , As3 = - . 881460 . 
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In Table 3 are listed the projections of the fifteen test vectors on the vector 
Aa; and it is of special interest to note that the ten tests of the residual bat­
tery have nearly vanishing projections on As, whereas the five tests which 
were postulated to contain a space factor have marked positive projections 
on A 3• This result proves that a primary factor was removed from the test 
battery when the five space tests were eliminated. 

Table 8 

Tests TjAa 

10 Opposites .081 
2 Opposites -.009 
5 Opposites -.034 
3 Analogies -.026 
4 Artificial language .024 
1 Definitions -.060 
8 Geometrical completion -.009 
7 Arithmetic problems -.035 
9 Arithmetical proportions .067 
6 Number series .006 

15 Card turning .264 
14 Block construction .321 
17 Dice counting .430 
11 Painted cubes .498 
18 Form learning .215 

Constellations 

In formulating hypotheses concerning the nature of the primary traits, 
it is sometimes a considerable aid to know of constellations that may exist 
in the trait configuration. By a "constellation" is meant a grouping of trait 
vectors. It happens not infrequently that the trait configuration consists 
essentially in groups of trait vectors. The angular separations between the 
trait vectors within a constellation are relatively small, while the separa­
tions between constellations are marked. 

When the dimensionality of the factorial matrix is less than four, the 
constellations may be inspected readily by graphical methods. When the 
dimensionality exceeds three, the graphical methods are not available, and 
it is then useful to have a routine by which the constellations may be iso­
lated in the trait configuration. Since the constellations are to be used as an 
aid to intuition regarding the nature of the primary traits, it is not advisable 
to define a constellation rigorously as regards maximum angular separations 
or as regards the maximum generating angle of the cone which shall include 
a constellation. Such restrictions may be arbitrarily imposed by the in­
vestigator for each study in terms of the dimensionality of F and the mean 
order of magnitude of the communalities that are involved. 
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If an attempt is made to isolate constellations from a large battery of 
traits, say fifty or more, without some systematic procedure, it is usually 
found that the groupings become entangled in annoying complexity. If the 
constellations do not exist, the procedure must make this fact evident; but, 
on the other hand, constellations can be draw11 for the purposes of studying 
the battery even though the traits arrange themselves more in the nature 
of chains than constellations. In three dimensions this situation is illus­
trated by a battery of traits whose configuration reveals a spherical triangle 
in which the sides of the triangle are pretty well defined by the trait vectors. 
If all of them lie in sides of a spherical triangle, then the isolation of constel­
lations would be difficult, because there may be no sharp break between one 
constellation and the next. In three dimensions the graphical methods 
would, of course, be used because of their simplicity and directness; but in 
higher dimensions the groupings may be obtained by inspectional methods 
from the intercorrelations corrected for uniqueness. 

One useful procedure is to ascertain first the average correlation in each 
column of the correlational matrix Ru where the given coefficients have been 
corrected for uniqueness. (An alternative is to count in each column the 
number of coefficients whose absolute values exceed, say, .80 or .90.) Select 
the trait T, with highest mean coefficient. List all the traits whose correla­
tions with T., exceed .80 and complete the correlation table for the traits so 
selected. Eliminate from the table the trait which has the largest number 
of intercorrelations less than .80. Repeat the eliminating process until all 
the traits that remain in the table have intercorrelations that exceed .80. 
These traits constitute a constellation. Select the trait whose mean co­
efficient is next highest and which is not listed in the group just formed, and 
proceed with it in the same manner as with T., until the majority of the 
traits have been assigned. These groupings are flexible, and they may be 
arranged to overlap. The arrangement of the traits in constellations should 
be regarded merely as a device for studying them and for formulating hy­
potheses concerning the underlying primary factors. 

The method of averages 
This method is a modification of the method of oblique axes. Though not 

theoretically so satisfactory, it is useful, since it gives results which are 
closely similar to those of the method of oblique axes; and it is shorter in 
computational work, in that it does not require the determination of the 
roots of the characteristic equation. 

When the traits which may contain the postulated primary factor have 
been eliminated from F, there remain no traits in the reduced factorial ma­
trix F 0• These are arranged in ascending or descending order of magnitude, 
according to the co-ordinates in one of the columns of F o which shows a con-
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siderable range in numerical values. The second column is usually one of 
the best if F has been computed by the centroid method. The no traits of F 0 

are then divided into (r-1) groups. The co-ordinates of the centroid of 
each group are then determined. These define (r-1) points in the common­
factor space. It is desired to find the hyperplane L which contains the n 0 

traits in F 0• In the method of averages the hyperplane Lis taken to be that 
hyperplane which contains the vectors whose termini are the centroids of 
the (r-1) groups of traits. The projection of each of the no traits on the 
normal to the hyperplane L is then determined. These should all vanish. 
If A is a principal axis of the system, or if A is near one of the principal axes, 
then the sum of the squares of the projections of the no trait vectors on A will 
be nearly equal to that root {3 of the characteristic equation which is zero 
or nearly vanishing. On the other hand, the projections of the (n-n0) 

eliminated traits should have appreciable projections on A in order to estab­
lish that a primary factor was removed in reducing F to Fo. 

Numerical example of the method of averages 
The same set of fifteen psychological tests will be used as an example. 

The ten tests in F 0 may be divided according to the signs of the second col­
umn of Fo into (r-1)=2 groups as follows: A=(10, 2, 5, 3, 4, 1) and B= 
(8, 7, 9, 6). The centroids of these two groups of points are as follows: 

I II III 

A .6353 .3187 .0048 
B .5548 -.2012 .2190 

Let the co-ordinates of the centroid of group A be A1, A2, As and let the 
corresponding coordinates for group B be B1, B2, Bs. Then if the two vec­
tors A and B are to be contained in the plane L, it is necessary that both 
A and B have vanishing projections on the normal A to the plane L. Hence 

A!l'-1 + A2:\2 + As:\s = 0 , 

B1:\1 + B2:\2 + Bs:\a = 0 . 

Expressing all of the :\'sin terms of one of them, and normalizing, we have 
the values listed in Table 4. It is interesting to note that these values are 
nearly the same as those which were found by the method of oblique axes. 
These are shown in the first column of Table 4. In Table 5 are shown the 
projections of the fifteen test vectors on A as defined in the second column 
of Table 4. Note that the projections of the ten tests of Fo almost vanish, 
while the projections of the five space tests which were removed from F are 
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appreciable in magnitude. These results could, of course, be predicted by 
inspection of the sphere on which the fifteen normalized test vectors were 
plotted. 

Table 4 

Method of Method of 
Oblique Axes Averages 

AI +.212 +.207 
:\2 -.422 -.400 
Aa -.881 -.893 

Table 5 

Tests Tjf.3 

10 Opposites .090 
2 Opposites .001 
5 Opposites -.027 
3 Analogies -.026 
4 Artificial language .023 
1 Definitions -.062 
8 Geometrical completion -.018 
7 Arithmetic problems -.034 
9 Arithmetical proportions .057 
6 N urn ber series -.006 

15 Card turning .261 
14 Block construction .316 
17 Dice counting .423 
11 Painted cubes .492 
18 Form learning .212 

The special case of rank 2 
When the matrix F has been obtained, the communalities are known, so 

that the matrix F,. can be written in which the cell entries show the direc­
tion cosines of the augmented or unit trait vectors. The cross products 
F ,.F~ = R,., in which Ru contains the intercorrelations corrected for unique­
ness. 

Let some of the traits be of complexity 2, so that their intercorrelations 
may be described linearly in terms of two factors. Let a new matrix <I> be 
formed whose entries cf!tk are determined by the relation 

(1) 

where 
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Select any two columns of <P, say land m. Then, if the other trait vectors 
lie in the plane of the two trait vectors l and m, we have 

(2) c/>;z = c/>;m + cf>ml • 

If the column l of <P is plotted against the column m, the plot should be 
linear with a slope of unity. The l-intercept is the angular separation cf>mz 
between the trait vectors m and Z. In this graphical procedure it becomes 
immediately evident which of the traits in Ro are coplanar, or nearly eo­
planar, with the pair of traits land m. All the traits j which are represented 
in the graph on a line through the l-intercept of cf>zm = cos-1 Rzm with a slope 
of unity can be described linearly in terms of two factors. It is of interest 
to note that a constant can be added to each column of the matrix so that 
all columns become proportional. The rank is then reduced to 1. 

Projections of unit trait vectors into a hyperellipsoid 
Let a;k represent each element in a matrix Q of order nXs of rank r, and 

let the matrix be normalized by rows so that 

(3) 

Then each of the s cell entries a;k in each row j can be expressed linearly in 
terms of r independent cell entries where r;;;?; s. There is no loss of generality 
in rearranging the rows and corresponding columns so that the r inde­
pendent columns become the first r columns of the matrix. Then we have 

(4) 

This linear description of a;,. can be condensed into the form 

r 

(5) a;k = LAmkaim . 
m=l 

Squaring, we have 

(6) aJk = Aha~1 + A~ka~2 + · · · + A~ka]r + 2A1,.A2ka;1a;2 
+ • · • + 2Acr-l),.Arkai(r-l)a;,. • 

This equation can be condensed as follows: 

,. ,. 
(7) a] .. = L LAm,.Ap.ta;maiP. 

P=l m=l 
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By (3) and (7) we have 

(8) 

Equation (8) can be regarded as an equation in the r unknowns a1m where 
m= 1, 2, ... , r. Equation (8) represents a hyperellipsoid in the space of r 
dimensions which is defined by the r columns of the given nXs matrix. The 
hyperellipsoid of (8) contains the n points represented by then rows of Q. 
Hence we have the following: 

Theorem: If a matrix Q of order n X s is of rank r and if it has been normal­
ized by rows, then any set of r independent columns of Q define the r 
Cartesian co-ordinates of each of n points which lie in the surface of a 
hyperellipsoid in a space of r dimensions with center at origin. 

Specializing this theorem to rank 2, we have 
Theorem: If a matrix Q of order n X s is of rank 2 and if it has been nor­

malized by rows, then any pair of independent columns determines the 
Cartesian co-ordinates of each of n points on an ellipse with center at 
origin. 

One example of this theorem will be shown for rank 2. Table (1 0-iii) shows 
the intercorrelations of eight fictitious variables whose correlation matrix is 

Table 8 

1 2 3 4 5 6 7 8 ~· ------------------------
1 .458079 .400819 .114520 .171780 .515338 .458079 .286299 .171780 1.000000 
2 .336733 .390851 .228497 .294641 .402877 .432942 .378824 .318694 1.000000 
3 .138219 .328270 .345547 .414657 .207328 .345547 .449212 .466489 1.000000 
4 .166306 .339542 .332612 .401907 .235600 .360330 .443483 .450412 1.000000 
5 .431563 .401594 .143854 .203794 .491503 .455539 .311685 .209788 1.000000 
6 .349565 .393261 .218478 .284022 .415108 .436956 .371413 .305869 1.000000 
7 .230121 .362440 .299157 .368193 .299157 .391205 .425723 .408464 1.000000 
8 .151015 .333492 .339784 .408999 .220230 .352369 .446753 .459338 1.000000 

of rank 2. When the table is normalized by rows, the cell entries take the 
values shown in Table 6. The first two columns are plotted in Figure 1, and 
it is seen that the points determine an ellipse with center at origin. 

A method of maximizing the number of zero factor loadings (the single 
hyperplane method) 
When the factorial matrix F has been obtained, it is desirable to be able 

to extract the primary abilities by methods that are not dependent on any 
hypotheses concerning their nature. The primary abilities have been de-
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fined as those factors which reduce to a minimum the number of factors per 
test that will account for the intercorrelations. Since the primary abilities 
are likely to be positively correlated in all readily available experimental 

1f 

5 I 

FIGURE 1 

groups of subjects, the methods of isolating the abilities must be free from 
the restrictions of orthogonality. The simplest underlying structure is indi­
cated by a transformation G of F by which the number of vanishing entries 
in V is maximized. A large number of zero entries in each column p of V 
constitutes assurance of an underlying order among the variables whereby 
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each one of them can be described by a number of scientific categories that 
is smaller than the rank of the correlational matrix. In general, such a trans­
formation does not exist for a factorial matrix that is produced with arbi­
trary cell entries. Geometrically, this problem can be described as an at­
tempt to discover a set of r hyperplanes so defined that each of the n test 
vectors lies in one or more of the hyperplanes. Since each hyperplane is of 
(r-1) dimensions, it is clear that one primary ability is absent from all test 
vectors in each hyperplane. If every test vector is so contained, it follows 
that there will be at least one vanishing entry in each row j of V. 

In the extraction of primary abilities, each of the r hyperplanes will be 
sought in succession. This is feasible, since there are no conditions govern­
ing the relations between the hyperplanes or between the primary trait 
vectors except that they be distinct. The method to be described consists 
in finding a hyperplane that will contain as many as possible of the test 
vectors. The fact that a test is contained in a hyperplane can also be re­
garded as a zero correlation between the test and the normal to the hyper­
plane. This normal can be thought of as an imaginary test. It is desired, 
then, to find a vector Ap in the common-factor space with which the maxi­
mum number of tests have zero correlation or for which the number of zero 
correlations is larger than for any neighboring vector. 

Since the correlation coefficient is a continuous function of the angular 
separation of the test vector and the reference vector Ap, it is desirable to 
maximize, not the absolute number of tests whose correlations with Ap 
vanish exactly, but rather some function of this correlation that has a large 
value when the correlation is near zero and which has insignificant values 
when the correlation becomes appreciable. This should be a function of the 
square of the correlation in order that the function be symmetric. 

There is a very large number of functions of rla which can be used for 
the present purpose, but many of them must be eliminated for statistical or 
computational reasons. Let w represent the function of rJa, and let 

(9) 
n 

u == LWjp 

i=l 

be the function which is to be maximized in order to insure a large number 
of vanishing entries in a column p of V. 

One of the simplest functions that satisfy the demands of this problem is 

(10) ' - 1 . 
Wjp - ::2 ' 

TjA 

but this function has the statistical limitation that when the correlation 
vanishes, w becomes infinite, so that it cannot be handled computationally. 
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This defect can be remedied by modifying the function to 

(11) 
1 

W;p s 2 ' 
r;A + c 

where c is some small arbitrary constant such as +.01. The maximum value 
of w is then 100 when the correlation vanishes, and it is nearly unity when 
the correlation is unity. 

It seems certain that better functions and simpler computational meth­
ods will be found than those which are to be described here. The excuse for 
presenting a method which is not yet the simplest is that it does locate each 
column of V in which the number of zero entries is maximized. While this 
method is useful, it cannot be applied automatically because hyperplanes 
may exist in a particular system which contain groups of traits but which 
do not define the most appropriate scientific categories. 

If it is postulated that all of the entries in V shall be positive or zero and 
that negative factor loadings are to be excluded, then the precaution must 
be taken to carry the factorial matrix F to a sufficient number of factors. 
If this is not done, negative factor loadings will appear in V even though 
the tests can be described in the positive region of a common-factor space 
in higher dimensions than those which are assumed in F. This is largely a 
question of judgment as to when the residuals are small enough to be ig­
nored. There should be no harm in carrying the factorial matrix to a num­
ber of columns larger than needed. 

Since r;A=V;p, we have 

(12) 
1 

W;p = --r--+ . 
VJP C 

It is desired to find the vector Ap for which u is maximized. The vector Ap 
is defined in terms of its direction cosines, which may be denoted A.1p, 

A2p, ..• , Arp· Then 

(13) 

The unknown parameters are the direction cosines of Ap, while the values 
of a;m are given in the matrix F. The normal equations would be of the form 

(14) 
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with the conditional equation 
r 

' (15) Zp = LA.;.p - 1 0' 
m=l 

where (3P is a Lagrange multiplier.* These r normal equations are evidently 
non-linear and awkward to solve. 

Since the direct solution of the r simultaneous equations (14) is not feasi­
ble, the solution will be reached by starting with a trial vector. This v~ctor 
will be adjusted until the normal equations are satisfied. Let Ap be an arbi­
trary trial vector. Then the n values of Vip in (13) may be determined for 
the trial vector. It is desired to maximize u. One of the parameters may be 
expressed in terms of the remaining ones by the conditional equation (15), 
so that the solution may be found in terms of (r-1) independent parame­
ters. Since the numbering of the orthogonal reference vectors is arbitrary, 
let A.1p be expressed in terms of the remaining (r-1) direction cosines of Ap. 
By (15) we have 

r 

(16) Zp = A.fp + 2: A.;.p - 1 = 0 , 
m=2 

so that 

(17) [ 
r ] 1/2 

A.lp = 1 - 6 A.;.p 

The first partial derivative of Vip with respect to the independent parameter 
Amp is then 

(18) 

where 

Also, 

(19) 
av;p 

-2v;p aA.,.p 
(??,i> + c)2 

*An alternative method of successive approximation is to treat (14) as r linear equa­
tions in {Jp for r trial values of Amp with residuals pmp. For each approximation Amp a new 
trial value fJp is determined so as to minimize the r residuals pmp. These vanish for those 
values of Amp which maximize the function u. 
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From (18) and (19) we have 

(20) 
OWip -2V;p( -a;lgmp+aim) 
iJA.mp = (v2;p + c)2 

Let 

(21) 

Then 

(22) 

Since u is the function that is to be maximized, its partial derivatives with 
respect to the (r-1) independent parameters must be found. These deriva­
tives are in the form 

n n 

(23) au a "'""" "'"""awip 
~ = a""Am ~w;p = ~a'A.m . 

mp P i=l i=l p 

Summing (22) for all tests j, we have, by (23), 

(24) 

The numerical values of the (r-1) derivatives of (24) may be determined 
for the trial vector Ap. Let these derivatives be denoted 

au 
Pmp = iJ'A.mp• (25) 

Since the derivatives (24) show the rates at which the function u is increas­
ing at the point Ap with respect to the (r-1) independent direction cosines 
of Ap, it is clear that the small corrections to 'Amp should be proportional to 
Pmp· Let the corrections be denoted 

(26) 

where k is a small arbitrary constant. Then 

(27) 

where J.l.mp are proportional to the (r-1) independent direction cosines of 
the new trial vector MP· It is advisable to choose k so that none of the cor­
rections Emp exceed .10 or .05. 
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When the (r-1) values of J.Lmp have been computed by (27), the remain­
ing value J.l.lp is determined by the equation 

(28) 
1 r 

Clp = - ~ LhmpC:mp, 
lpm=2 

which is obtained by taking differentials of (16), noting that d>.mp= C:mp· 

Normalizing the r values J.Lmp gives the direction cosines of the new trial 
vector MP. 

This procedure is repeated until the (r-1) derivatives Pmp all vanish. 
The vector Ap for which all the derivatives Pmp vanish gives a stationary 
point in the surface 

(29) 

It is advisable to choose for A1p that direction cosine which has the highest 
absolute value. 

The r direction cosines of the vector Ap for which the function u is sta­
tionary constitute one of the columns in the transformation G. The order 
of the columns of G is arbitrary. 

It will be found that the corresponding column of the matrix V shows a 
large number of vanishing entries if the variables of R have simple struc­
ture. In the case of psychological tests, this is in accordance with the hy­
pothesis that each test in a diversified test battery does not require all of 
the primary abilities which are required by the battery as a whole. If the 
number of columns ofF is smaller than the number of primary abilities in 
the n tests and if the primary abilities are involved only positively in the 
tests, then the insufficient number of columns of F will cause negative 
entries in V. 

In evaluating the partial derivatives of (24) and in determining the value 
of u which is to be maximized, it is convenient to have facilitating tables for 
wand for y. Table 7 shows the value of w for each given value of v. Table 8 
shows the value of y for each given value of v. The argument v is listed in 
these tables to two decimals.* 

Analytical method of isolating simple structure. 
The equation of a simple structure has been shown to be of the form 

(7-vi) or of the more condensed form (9-vi). The simple structure is defined 
by the r 2 parameters Amp of (7-vi). The best fitting simple structure for a 
particular factorial matrix F may be defined, by the usual statistical con-

* Special data sheets have been prepared for determining the hyperplanes in which 
the function u is maximized. These are available at University of Chicago Bookstore. 



c=.01 

V 0 1 
--

.00 100 99 

.10 50 45 

.20 20 18 

.30 10 9 

.40 6 6 

.50 4 4 

.60 3 3 

.70 2 2 

.80 2 2 

.90 1 1 

c=.lO 

V 0 1 
----

.00 10.00 9.99 

.10 9.09 8.92 

.20 7.14 6.94 

.30 5.26 5.10 

.40 3.85 3.73 

.50 2.86 2.78 

.60 2.17 2.12 

.70 1.69 1.66 

.80 1.35 1.32 

.90 1.10 1.08 

c=.Ol 

V 0 1 
--

.00 0 196 

.10 500 450 

.20 160 144 

.30 60 55 

.40 28 26 

.50 15 14 

.60 9 8 

.70 6 5 

.80 4 4 

.90 3 3 

c=.10 

V 0 1 
--

.00 0.00 2.00 

.10 16.53 17.51 

.20 20.41 20.23 

.30 16.62 16.12 

.40 11.83 11.41 

.50 8.16 7.87 

.60 5.67 5.47 

.70 4.02 3.89 

.80 2.92 2.83 

.90 2.17 2.11 

2 
--

96 
41 
17 
9 
5 
4 
3 
2 
1 
1 

2 
--

9.96 
8.74 
6.74 
4.94 
3.62 
2.70 
2.06 
1.62 
1.29 
1.06 

2 --
370 
403 
129 
51 
24 
13 
8 
5 
4 
3 

2 
--

3.97 
18.34 
19.98 
15.62 
11.00 
7.58 
5.28 
3.77 
2.75 
2.05 

Table 7 

Values ofw 

3 4 
----

92 86 
37 34 
16 15 
8 8 
5 5 
3 3 
2 2 
2 2 
1 1 
1 1 

3 4 
----

9.91 9.84 
8.55 8.36 
6.54 6.35 
4.79 4.64 
3.51 3.41 
2.63 2.55 
2.01 1.96 
1.58 1.54 
1.27 1.24 
1.04 1.02 

Table 8 

Values ofy 

3 4 
----

505 595 
359 320 
116 105 
47 43 
23 21 
13 12 
8 7 
5 5 
3 3 
2 2 

3 4 
----

5.89 7.75 
19.03 19.57 
19.68 19.33 
15.12 14.63 
10.60 10.21 
7.31 7.04 
5.10 4.93 
3.64 3.53 
2.67 2.59 
2.00 1.94 

5 6 7 8 9 
----------

80 74 67 61 55 
31 28 26 24 22 
14 13 12 11 11 
8 7 7 6 6 
5 5 4 4 4 
3 3 3 3 3 
2 2 2 2 2 
2 2 2 2 2 
1 1 1 1 1 
1 1 1 1 1 

5 6 7 8 9 
----------

9.76 9.65 9.53 9.40 9.25 
8.16 7.96 7.76 7.55 7.35 
6.15 5.97 5.78 5.61 5.43 
4.49 4.36 4.22 4.09 3.97 
3.31 3.21 3.12 3.03 2.94 
2.48 2.42 2.35 2.29 2.23 
1.91 1.87 1.82 1.78 1.74 
1.51 1.48 1.44 1.41 1.38 
1.22 1.19 1.17 1.14 1.12 
1.00 0.98 0.96 0.94 0.93 

5 6 7 8 9 
----------

640 649 631 595 549 
284 252 225 200 179 
95 86 79 72 66 
40 37 34 32 30 
20 19 18 17 16 
11 11 10 10 9 
7 7 6 6 6 
5 4 4 4 4 
3 3 3 3 3 
2 2 2 2 2 

5 6 7 8 9 
----------

9.52 11.18 12.72 14.13 15.40 
19.99 20.28 20.46 20.54 20.51 
18.93 18.51 18.06 17.60 17.11 
14.14 13.66 13.19 12.72 12.27 
9.84 9.48 9.13 8.79 8.47 
6.79 6.55 6.31 6.09 5.88 
4.76 4.60 4.45 4.30 4.16 
3.42 3.31 3.21 3.11 3.01 
2.51 2.44 2.37 2.30 2.24 
1.89 1.84 1.79 1.74 1.70 
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ventions, as that set of r co-ordinate hyperplanes LP with r2 parameters for 
which the function 4> in (11-vi) is minimized. For each trait j, let 

r 

(30) w;= IT V~p' 
p=l 

so that 
n 

(31) </>= L:w;. 
i=l 

The elements of the oblique factorial matrix V are 

r 

(32) V iP = L: a;mAmp · 
m=l 

The r parameters Amp for each co-ordinate hyperplane Lp are subject to the 
conditional equation 

r 

(33) Zp = L: x;.P - 1 = 0 . 
m=l 

The form of the normal equations is as follows: 

(34) 

where (3p is a Lagrange multiplier for each hyperplane LP. The :first term of 
(34) may be written in terms of Amp, namely, 

n n 

(35) aq:, a """ """ aw; aA, = o'Am ~ w; =~a 'Am • 
p p i=l i=l p 

Substituting (32) in (30), the partial derivatives of (30) are 

(36) 

where q takes all successive integral values from 1 to r, except p. For con­
venience, let 

(37) 8jp = V;p II vJq • 
q 
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Also, 

(38) 

Substituting (37) and (38) in (36), 

(39) 

By (35) and (39), 
n 

(40) 0~rp = 2 2: a;mSjp • 
mp i=l 

By (33), the derivatives of the second term of (34) can also be written in 
terms of Xmp, namely, 

(41) OZp 2 
a>.mp = Xmp. 

Substituting (40) and (41) in (34), 

(42) 
n 

2 L aimSip + 2{3pAmp = 0 . 
i=l 

Dividing by 2 and transposing, (42) becomes 

(43) 
n 

2: aimSip = - {3pAmp . 
i=l 

If the r2 parameters XmP have been correctly chosen, the. r numerical 
values of the left member of (43) for each of the co-ordinate hyperplanes are 
proportional to the r values of Amp· If arbitrary trial values are chosen for 
the r 2 parameters Xmp, then the normalized left members of (43) define a new 
unit vector MP with r direction cosines f.Lmp· The unit vector MP has an 
angular separation from AP of (JP· If it were desired to maximize the func­
tion r/J, then the r unit vectors MP could probably be used as the new trial 
reference vectors Ap. But it is desired to minimize the function ,P. Hence 
each of the r reference vectors Ap may be adjusted in the plane of the angle 
APOMP by enlarging the angle Op. Let the new trial reference vectors be Np 
with direction cosines Vmp· These may be used instead of Ap in order to re­
duce the numerical value of the function rjJ. Then 

(44) 
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By successive approximation, the function c:P may be reduced in numerical 
value toward its minimum value c:Po at which the r 2 parameters Amp define a 
simple structure. If the simple structure is perfect in the. sense that each 
trait vector is contained in one or more of the co-ordinate hyperplanes, then 
each of the n values Wi in (30) vanishes, and hence c:P also vanishes. In this 
case the new vectors N P become indeterminate, since the left members of 
(43) vanish. 

A method of successive approximation for isolating simple structure 
Equation (43) states the condition that is to be satisfied when the correct 

numerical values of the r 2 parameters Amp have been found. A direct solu­
tion is not feasible for r2 parameters With as many non-linear normal equa­
tions. For computing purposes, a method of successive approximation will 
be described by which the minimum value of the function c:P may be ap­
proached with any required degree of accuracy. 

The principle of the method is as follows: An arbitrary set of r reference 
vectors Ap is chosen for the first trial. It is convenient to choose the r or­
thogonal centroid axes for the first trial. Substituting their direction cosines 
in (43) gives the r 2 initial numerical values of the left members of (43). 
There will be r such values for each of the r hyperplanes Lp. The r trial vec­
tors Ap are to be adjusted so as to reduce the function c:P toward its minimum 
value. 

Let the direction cosines of the r trial vectors Ap be denoted Amp, and let 
the corrections be denoted dAmp• The direction cosines of the resultant vec­
tors N P are proportional to 

(45) 

When the vectors N P are normalized, they are reduced to unit vectors MP 
with direction cosines 

(46) 

The vectors MP are the new trial vectors. 
It is desired to choose small corrections so that 

(47) 

By successive approximation the function c:P is to be minimized, subject to 
the conditional equation (33). The new trial vectors MP have direction 
cosines 

(48) 
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The inequality (47) will be satisfied if 

(49) 

subject to the conditional equation 

(50) 

By (31) 

(51) 

For convenience, let 

(52) 

dzp = 0. 

n 

dif> = Ldw;. 
i=l 

where q takes all integral values from 1 to r, except p. Then 

(53) 

But 

(54) 

Hence 

(55) 

and by (51) 

(56) 

r r 

dw; = 2 L L V;pt;pa;mdAmp . 
p=l m=l 

T T 

dwi = 2 L L S;pa;mdAmp , 
p=l m=l 

The conditional equation (50) can be expressed in terms of Amp by (33). 

Then 
T 

(57) dzp = LA.mP(}).,.P = 0. 
m=l 

Let Arp ;6- 0. Then 

(58) 
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Substituting (58) in (55), 

(59) 

and hence 

(60) !d~ = t ~ [ ~ a;m8ip - ~= t airSip] dAmP . 

Here the differential d~ is expressed as a sum of r2 terms, namely, r terms 
for each of the r hyperplanes. Each of these terms is of the form 

The r terms in which m=r vanish identically. The two conditions (49) and 
(50) are satisfied if each d'Amp is so chosen that each of the non-vanishing 
terms of (60) is made negative. This can be accomplished if each of the 
corrections dAmp (excepting dA.rp) is taken with sign opposite to 

When the corrections for (r-1) direction cosines of each of the r hyper­
planes have been chosen (excepting dArp), the remaining rth correction for 
each hyperplane is determined by (58). In the method of successive ap­
proximation which is to be described, each correction dA.,.p will be taken 
proportional to the corresponding term in (56) with reversed sign. 

The direction cosines of the new r trial vectors MP may be determined in 
the following manner. Let 

(61) 

where m~r. The value of Crp is determined by the relation 

(62) 

The corrections dAmp will be taken proportional to C,po 
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Let the r direction cosines of each of r vectors N P be proportional to 

(63) 

where k is so chosen that the maximum value of any one of the r2 terms kpcmp 
is equal to some assigned value such as .10 or .05. The new trial vectors 
MP have the direction cosines 

(64) /J.mp = mvmp' 

where the constant m is so chosen that MP is a unit vector. Hence 

T 

(65) 2:~p- 1 = o. 
m=l 

Then by (64), 

(66) 

or 

(67) 

Instead of estimating the magnitudes of the corrections for the direction 
cosines of the vectors Ap by choosing a maximum value for kpCmp, it may be 
desirable to estimate the magnitude of the angular displacement between 
the given trial vectors AP and the next trial vectors MP· Let this angular 
displacement be fJp. The angles fJp may be determined as follows: The cosine 
of the angle fJp between the unit vectors Ap and MP is 

T 

(68) cos fJp = 2:/J.mphmp • 
m=l 

By (48) 

Hence 
T 

(69) cos 8p = m L Amp(Amp + dh.mp) 
m=l 

or 
T T 

(70) cos 8p = m Lx.;P +m LAmpdA.np. 
m=l m=l 
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Since Ap are unit vectors, 
T 

(71) LA~p = 1, 
m=l 

and hence 
r 

(72) cos Op =m+ m LAmpdAmp. 
m=l 

But 
T 

(57) dzp = L AmpdAmp = 0 . 
m=l 

Hence 

(73) cos Op = m, 

or, by (67), 

cos Op 
1 

(74) ~-

By (45) 

r r r ' 

(75) L:v;.p = L:A~p + 2 LAmpdAmp + L (dAmp)2 • 

m=l m=l m=l m=l 

By (57) and (71) 
r r 

(76) L:v;.p = 1 + L: (dAmp)2 , 
m=l m=l 

or 

(77) cos Bp 
1 

and hence 

(78) 
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which can be written in the form 
T 

(79) tan2 Op = 2: (d}..mp) 2 • 

m=l 

By (45) and (63) it follows that 

r r 

(80) 2: (d}..mp) 2 = k~ 2: c;.p , 
m=l m=l 

so that 

(81) 

If a small angular displacement eP is specified, the corresponding value 
of kp is determined by (81). 

It is probably best to choose Arp as that direction cosine Amp for each hy­
perplane Lp for which Cmp is the largest. The values of Cmp vanish for those 
trial values of Amp which minimize the function c/>(Amp). Their absolute values 
serve to indicate the rapidity with which the minimum value of c!>(Amp) is 
being approached. 

Numerical example of method of successive approximation 
The method of successive approximation for determining a simple struc­

ture will be illustrated by a numerical example of four points in a plane. 
The four points are shown in Figure 2. They were arranged in two groups 
of two points in each group. The two reference vectors AP of the best­
fitting simple structure will then necessarily be orthogonal to radial lines 
that pass through or near the two groups. Each trial consists of computa­
tions that are illustrated by Tables 9 and 10 for the first trial. All of the 
trials are summarized in Table 11. 

In Table 9 the four points are numbered in column j. The two co-Ol·di­
nates ai1 and ai2 for each of the four points are shown in the next two col­
umns. The values of V;p are shown in the next two columns. Since the first 
trial vectors Ap are taken as unit vectors along the two orthogonal reference 
axes, the initial values of a;m and v;p are identical. The values of a;m and V;p 

are different in all subsequent trials. The resulting values of w; are shown 
in the next column. The sum of this column is the initial value of the func­
tion cf>(Amp) which is to be minimized. The next two columns for S;p facilitate 
computation of the values of Cmp· The last column is a check column. 
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Section Amp of Table 10 shows the numerical values of the left members 
of (43). They are obtained directly from Table 9. Section Cmp was computed 

JI 

I 

FIGURE 2 

Table 9 

r 
i a;l a;2 0jl 0j2 Wj 8i1 "i2 La;m 

m=l 

1 .8 .3 .8 .3 .0576 .0720 .1920 1.1 
2 .8 .4 .8 .4 .1024 .1280 .2560 1.2 
3 .3 .7 .3 .7 .0441 .1470 .0630 1.0 
4 .2 .8 .2 .8 .0256 .1280 .0320 1.0 

I 2.1 2.2 2.1 2.2 .2297 . ~ ...... .... .. .. 4.3 

by (61) and (62). The next section (dA,.p) was computed with such a multi­
plier k that the maximum correction was equal to an assigned value which 
was reduced for each trial. In the first trial this maximum value of the cor­
rection was .25, and it was denoted e. The next two sootions are self-explana.-
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tory. The numerical values of the direction cosines of the two new trial 
vectors MP are recorded in Table 11. 

Trial 

1 
2 
3 
4 
5 
6 
7 

n 

l:a;mSfp=Amp 
i=I 

Cmp 

d">-.mp = kpCmp 

Table 10 

.22970000 

.27810000 

.50780000 

.00000000 

.27810000 

.00000000 

.18119625 

.38370000 

.22970000 

.61340000 

.38370000 

.00000000 

.25000000 

.00000000 kp = +. 65155069 

1.00000000 - .25000000 
(Xmp+dXmp) =Pmp 

- .18119625 1.00000000 

f.l.mp=mPmp 
.98397744 

.17829302 

Table 11 

<I> " :>-11 

.22970000 .25000000 1.00000000 

.03658568 .14439991 .98397744 

.00534688 .03000000 .96391815 

.00450116 .01000000 .95544072 

.00442401 .00100000 .95450906 

.00442241 .00070000 .95419615 

.00442213 • ~ ••• ~ • 4 ••• .95397641 

. 24253562 m1 = . 983977 44 

.97014250 m2= .97014250 

:>-21 :>-12 >.fi 

.00000000 .00000000 1.00000000 
-.17829302 -.24253562 .97014250 
-.26619880 -.38271927 .92386469 
-.29518304 -.41250184 .91095677 
-.29818189 -.40247759 .91542984 
-.29918173 -.40314454 .91513632 
-.29988165 -.40320642 .91510906 

The new trial reference vectors reduce the function c/>. In the second trial 
k is taken as unity, since the maximum value of Cmp is of the right order of 
magnitude. The maximum correction is then .144400. Table 11 shows the 
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maximum correction e for the direction cosines of the trial reference vectors, 
the resulting reference vectors, and the corresponding reduced value of the 
function cp. If the maximum correction e is taken too large, the fact will be 
known by the rise of the function. 

This example has been carried to a higher degree of accuracy than will 
be expedient in most scientific problems. When the direction cosines of the 
last trial vectors are substituted in (43), it is found that they are propor­
tional to the left members of (43) with a maximum discrepancy which is 
less than .002. This proves that the minimum value of cp is reached. It is 
represented by the reference vectors Ap in Figure 2. 

Comparison of methods 

All of the methods described in this chapter have been tried on actual 
psychological test data. It seems conclusive that the best method for most 
psychological problems is the method represented by equation (12) with 
Tables 7 and 8 to facilitate the numerical work. Analytically, the method of 
(43) is the most interesting; but it is applicable with success only to a perfect 
simple structure which cannot be expected in any experimentally obtained 
data. 

The analytical method of (43) can probably be modified so as to give as 
satisfactory results as that of (12) by a proper choice of the function w1 

in (30). In that equation the second power of Vfp is used. It now seems cer­
tain that a requirement of the function w(v) is that the absolute value of its 
first derivative, dw / dv, must vary inversely with v except for small values of 
v in the range ± .10, where the function should be more stable. This require­
ment is satisfied by equation (12). The requirement would also be satisfied 
by the analytical method of adjusting all of the co-ordinate hyperplanes 
simultaneously if it were modified so that 

T 

(82) W . -n·~ln 1 - ll]p ' 
p=l 

where n is an integer so chosen that the exponent is a small fraction. If it 
is desired to avoid having the derivatives become infinite when Vfp is zero, 
that can be accomplished by adding an arbitrary constant c, so that the 
function then becomes 

r 

(83) Wi =IT (vip + c)21n . 
p=l 

The theoretical interest of the analytical method in which all of the 
hyperplanes are adjusted simultaneously should not be adequate reason for 
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accepting a solution which fails to maximize the number of vanishing entries 
in V. It seems reasonably certain that the method of equation (12) by which 
each hyperplane is separately adjusted does maximize the number of vanish­
ing entries in V. 

A consideration of primary importance in the determination of simple 
structure is the fact that its essential feature is a configuration. A require­
ment is that each trait vector shall lie close to one or more of the co-ordinate 
hyperplanes, but factorial analysis does not necessarily involve any assump­
tion as to which hyperplane shall contain particular trait vectors. The sta­
tistical methods become applicable only when enough of the simple-struc­
ture configuration has been gleaned so that assumptions can be made re­
garding the groups of projections that are to be minimized. 

One of the numerous methods that have been tried is to locate each hy­
perplane so as to minimize the sum of the absolute values of the projections 
!viPI· With slight modification this simple method is now being used suc­
cessfully. 



CHAPTER VIII 

THE POSITIVE MANIFOLD 

Restrictions on the factorial matrix 
The scientific problems to which the factor methods are applied may re­

quire different restrictions on the elements of the factorial matrix. Several 
of these restrictions have already been discussed, and additional ones will be 
described in this chapter. Some of these restrictions may be considered 
under four cases, as follows: 

1) The simplest case is that in which the factorial matrix F can be used 
as determined by the centroid method, or by any other equivalent method, 
without restrictions beyond those that are inherent in F. It is probably 
seldom that a scientific problem can be adequately solved without some re­
strictions on the elements of F. 

2) One form of constraint that is of very general scientific interest as 
regards the factorial matrix is that of simple structure. It seems probable 
that this constraint will be almost universally imposed in order that the 
scientific interpretation of the factorial matrix shall be convincing. 

3) If the scientific problem is such that negative cell entries in F are 
excluded, then we pave the important case of a simple structure in which 
a;m~O. This is the assumption that underlies the application of factorial 
methods to the problem of isolating primary mental abilities; but the as­
sumption is not absolutely necessary, since ideal constructs can be devised 
for a science of psychology which do not require that the cell entries of F, 
or those of the oblique factorial matrix V, be positive or zero. 

4) A special case of the positive entries ofF is the further restriction that 
each factor ofF, or of V, be either completely present or completely absent 
in each test. This is a case of possible interest in genetics, but it is not likely 
that it will be directly applicable to scientific data without admitting a 
specific variance for each variable. 

The first two cases have already been discussed. The last two cases will 
be described in this chapter. If all of the elements of V are positive or zero, 
then each column of V is defined by a positive hyperplane so located that all 
of the trait vectors which are not contained in it are on the same side of it. 
If it is assumed that all of the factors have positive or zero contributions to 
each variable, then all the trait vectors are in the positive region. The 
bounding planes of this region are then of special interest. 

199 
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Definition: The orthogonal hyperplanes which bound the positive region in 
r dimensions will be called the orthogonal positive manifold. 

Definition: A set of r distinct and oblique positive hyperplanes for a trait 
configuration in r dimensions will be called an oblique positive 
manifold. 

An oblique positive manifold is not necessarily confined to the positive 
region. 

Definition: lf the factorial matrix of the traits which are contained in a posi­
tive hyperplane is of rank (r-1), then the hyperplane is a bounding 
hyperplane or a positive co-ordinate hyperplane. 

In the oblique factorial matrix V the elements of each column are the 
distances of the traits from a co-ordinate hyperplane. The factorial matrix 
V, or a corresponding matrix F, for those traits that are contained in one of 
the oblique co-ordinate hyperplanes is of rank (r-1). A positive hyperplane 
can easily be located so that all of the trait vectors are either contained in 
it or on the same side of it, but it would not necessarily constitute a positive 
co-ordinate hyperplane. The trait vectors which are contained in it may be 
of rank less than (r-1). A positive hyperplane may be determined so that 
only one trait vector lies in it, and evidently it would not be a unique co­
ordinate hyperplane. However, if the rank of a factorial matrix for the 
trait vectors which are contained in such a hyperplane is (r-1), then the 
hyperplane is quite likely to be scientifically significant as a positive co­
ordinate hyperplane. If, in addition, the criteria of simple structure are 
satisfied, then the reference traits determined by the intersections of the r 
co-ordinate hyperplanes are almost certain to be scientifically significant 
categories of reference. 

If a correlational matrix is of rank r2 and if the factorial matrix has been 
computed to r1 factors where r1 < r2, and if the trait configuration can be in­
scribed in the positive manifold in r2 dimensions, then it may be expected 
that the trait configuration in r1 dimensions cannot be inscribed in the posi­
tive manifold of r1 dimensions. In such a situation it is a matter of judgment 
whether the number of columns of F has been extended far enough. It is in 
the nature of most scientific problems in which the factor methods are likely 
to be called upon that all of the common factors of minor significance cannot 
be extracted. Those common factors which contribute only slightly to the 
variance of several traits cannot be differentiated with certainty from the 
variable errors. With only slight representation in the traits they cannot be 
identified and named with any degree of confidence. Hence it seems useless 
to carry the columns ofF until the residuals are comparable with the known 
order of magnitude of the errors in the given correlation coefficients. Since 
the computations of successive factors must stop before the residuals reach 
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the order of magnitude of the variable errors in the correlations, it seems 
necessary to depend on judgment as to when the process should be discon­
tinued. The practical criterion might be adopted that the factors should be 
extracted until they cease to be meaningful; but interpretation is not feasi­
ble until the factors have been rotated, even if an orthogonal system of ref­
erence traits is acceptable. 

No complete analytical method is available for locating the positive 
manifold, but several methods of investigating it will be described. If a sim­
ple structure is found to exist in the trait configuration, then it may also 
happen that it can be inscribed in the positive manifold. If this situation is 
discovered, the simple structure in the positive manifold is especially con­
vincing and the oblique factorial matrix is then almost certain to be scientifi­
cally meaningful. It may happen that the problem is of such a nature that 
simple structure is not to be expected but that the inscribing of the trait 
configuration in a positive manifold would be meaningful. Then the positive 
manifold is the means of locating a unique set of reference axes, either 
orthogonal or oblique, which may be scientifically significant. 

The elimination of negative factor loadings 

The orthogonal transformation by which a factorial matrix F may be 
rotated into an orthogonal positive manifold FP contains 1/2 r(r-1) inde­
pendent parameters, where r is the number of columns of F. Each one of 
these independent parameters may be thought of as determining an angle 
of rotation c/J for a pair of columns of F. There are as many independent 
parameters in an orthogonal transformation in r dimensions as there are 
pairs of columns. If any two columns are plotted on cross-section paper, 
the point that deviates farthest from the centroid may be brought into one 
of the two orthogonal axes by means of a rotation. This procedure may be 
continued with successive pairs of columns until all the elements of FP are 
positive or zero if the trait configuration can be inscribed in the orthogonal 
positive manifold~ 

If the elements ofF P are theoretically positive or zero, it is to be expected 
that the variable errors will cause the theoretical zero elements to be higher 
or lower than zero. Small negative elements may therefore be expected in 
a factorial matrix which is theoretically positive. 

The problem of finding an oblique positive manifold that will circum­
scribe the trait configuration can sometimes be solved approximately by a 
procedure not unlike that in which clusters are isolated. This procedure is 
based on the principle that those trait vectors which lie in or near the inter­
sections of several of the bounding co-ordinate hyperplanes must have a 
maximum number of nearly vanishing correlations with the other traits. 
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The procedure is to select r such traits for which the number of low or nearly 
vanishing coefficients is maximized. Make a list of more than r traits with 
unusually large numbers of low coefficients. Arrange them in a square corre­
lational matrix. Eliminate traits, as for the isolation of clusters, except that 
in this case it is a set of r trait vectors with the lowest possible intercorrela­
tions that is sought. When this set of r trait vectors has been selected, a trial 
set of co-ordinate hyperplanes may be determined by taking r sets of (r-1) 
of these relatively uncorrelated extreme traits. These r co-ordinate hyper­
planes may be adjusted by the method of maximizing the number of vanish­
ing projections Viv with due regard, in this case, also to the negative pro­
jections which are to be eliminated or reduced to values near zero. This 
method has been tried with some success, but its applicability can never be 
guaranteed unless it can be safely postulated that the trait configuration 
can be inscribed in a positive manifold. 

It must be recalled that even if all of the original intercorrelations are 
positive or zero, it does not follow that the trait configuration can be in­
scribed in a positive orthogonal manifold. However, if the given correlation 
coefficients are all positive or zero, or if all the negative coefficients are near 
zero, then the existence of a positive manifold, as bounding planes for the 
configuration, is a plausible hypothesis. If the given correlational matrix 
contains negative coefficients that cannot be made positive by reflection, 
then the existence of a bounding positive manifold is definitely excluded. 

One type of solution to the problem of locating an existing bounding posi­
tive manifold which has not yet been adequately investigated is based on 
the principle that the partial correlation coefficient is represented geometri­
cally as the cosine of a dihedral angle. Consider a reference trait vector T 
and the two planes determined by the pair of vectors T and j and the pair 
of vectors T and k, where j and k are any two trait vectors. If the cosines 
of a large number of the dihedral anglesjTk are near unity or near zero, then 
the reference vector T is likely to be the intersection of a set of (r-1) posi­
tive co-ordinate hyperplanes of a simple structure. 

It is occasionally of some interest to determine one or more positive hy­
perplanes even though they may not be bounding hyperplanes. In Figure 1 
let A be any trial unit vector in the common-factor space, and let u be the 
trait vector that has the largest negative projection con A. Let x be a vector 
which is coplanar with A and with u. The direction cosines of A are known, 
and it is desrred to find the direction cosines of x which are orthogonal to u 
so that the projection of u on xis zero. The vector x will constitute the next 
trial vector. 



THE POSITIVE MANIFOLD 203 

Since x is coplanar with u and A, the direction cosines of x can be ex­
pressed as linear functions of the direction cosines of u and of A. Therefore 

(1) 

where a and b are the parameters to be determined, while Um and Am are the 
direction cosines of u and A. When the parameters a and b have been found, 

u 

FIGURE 1 

they can be used to determine the direction cosines of the vector x in the 
common-factor space of r dimensions which contains u and A. 
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The determination of the vector xis subject to the conditional equation 

(2) 
r 

LXmUm = 0 1 

m=l 

since x and u are statistically independent. Substituting (1) in (2), 

r 

(3) 2: Um(aum + b"Am) = 0 , 
m=l 

which, after expanding and combining terms, becomes 

r r 

(4) a Lu;. + b LUmAm = 0. 
m=l m=l 

But 

(5) 

where h2 is the communality of the trait u, and 

(6) 

where r ,,;,., is the correlation between the trait u and the trial vector A. 
The correlation r "'" can also be written as a scalar product. Hence 

(7) r,.._ = h cos <P = c. 

By (5), (6), and (7) equation (4) becomes 

(8) 

and hence 

(9) 

ah2 +be= 0, 

b= 
ah2 

c 

Since Xm are the direction cosines of the unit vector x, 

(10) 
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Substituting (1) in (10), 

r r r 

(11) a2 L u;. + b2 L}..;, + 2ab L UmAm = 1 . 
m=l m=l m=l 

Since A is a unit vector, we have by (5), (6), and (7), 

(12) aW + b2 + 2abc = 1 . 

Substituting (9) in (12), 

(13) 

and hence 

(14) 
c 

a= 

Substituting (14) in (9), 

(15) 

The parameters a and b are expressed in terms of the communality of u and 
the negative correlation r u>.· 

Applying these two parameters to the determination of the direction co-
sines x, of x, we have · 

(16) Xm = aUm + b}.., , 

by which the new trial vector x can be determined in the common-factor 
space of r dimensions. The projections of the traits in the battery on x are 
then found. If a significant negative projection exists, it is treated in the 
same manner as r u>- = c until the direction cosines of a positive hyperplane 
have been reached. This method is quite simple in application. 

Unitary factors 
A special case of the positive manifold is that in which each reference trait 

is either completely present or entirely absent in each member of the popu­
lation N. Such reference traits may be called unitary factors in the sense 
that the raw scores in the dichotomous distribution of such a trait are either 
+ 1 or 0 for each member of the population. The corresponding standard 
scores in a unitary trait have only two numerical values in the population. 
These two values depend on the number N. of individuals who possess the 
unitary trait and on the number M. in whom the trait is absent. 
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It is a legitimate hypothesis that the intellectual and emotional traits of 
people can be reduced eventually to genetic origin. It seems likely that at 
least some human traits will be expressed in terms of unitary component 
elements which may be Mendelian in character. If that is to be the eventual 
outcome, then mental traits will be conceived as the resultant of a group of 
genetic unitary factors; and, in this context, the complexity of a trait will 
be the number of unitary factors that demonstrably contribute to the vari­
ance of the composite trait. Let ni and nk be the number of unitary factors 
that contribute to the variance of the composite traits j and k, respectively. 
It is not to be expected that these unitary factors or genes have equal im­
portance in determining a composite trait. Hence some system of weighting 
each unitary factor seems essential in expressing the total variance of a 
trait j in terms of the ni unitary factors that define j. 

It also seems certain that here, as elsewhere in science, the primary causes 
do not combine in the manner of a weighted sum to produce the composite 
traits but that non-linear and discontinuous functions are involved. At the 
present time little is known about the unitary factors that combine to pro­
duce the observable human traits; little is known about the complexities, 
nil of these traits and the functions by which the unitary factors combine 
their effects to produce the composite traits. 

It would seem unduly pessimistic to withdraw from the problem with a 
conviction that it cannot be solved. The present factorial methods are 
based on the hope that in some scientific problems, but not necessarily in 
all of them, a linear combination of factors may serve the purposes of a first 
approximation and that features of the problem will be revealed by these 
simple methods that would otherwise remain unnoticed for a long time. 
The correlation coefficient is itself a symbol of defeat in that its computation 
is an admission of ignorance about the underlying rational equation. Who 
would ever compute the correlation coefficient between the length of a pen­
dulum and its period? It could be done by observing the period of each of 
one hundred pendulums of different lengths. But if the customary equa­
tions were unknown, the correlational method certainly would enable us to 
establish experimentally that there is an inverse relation between the length 
of a pendulum and its period and that there is no relation between the 
weight of the pendulum and its period within wide limits of weight. Such 
facts would be food for speculation concerning the non-linear functions that 
describe the phenomena more accurately. The factor methods are in a simi­
lar situation in that they will certainly be discarded eventually for each 

· class of phenomena when they have served the purpose of revealing some 
of the significant relations. 

In order to illustrate a type of factor analysis that may prove significant 
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in the future, the correlation between two composite traits will be considered 
as a function of the unitary elements, factors, or genes, which may be re­
garded as primary in this context. In order not to obscure the present pur­
pose, the analysis will be made with simplifying assumptions that may ac­
count for experimental observations only as a first approximation. 

Let the two composite traits be j and k, and let there be ni unitary ele­
ments in j and n~c elements in k. Let there be N. individuals in the popula­
tion N who possess a particular element e, and M. individuals in whom the 
element is absent. Let u. be the standard score of every individual who 
possesses the unit factor, and let v. be the standard score of each individual 
in whom the unit factor is absent. Then, by definition, 

(17) N.+ M.= N. 

Since u. and v. are standard scores, ::c;., 

(18) 

so that 

(19) 

For the same reason, • 

(20) 

N LXie = N.u. + M.v. = 0, 
i=l 

N Lxie = N.u~ +M.~= N. 
i=l 

Substituting (19) in (20), 

(21) 

and by (17), 

(22) 

Let 

Then 

(23) 

2 _ NM. 
u. - N.(M.+N.)' 

N. 
P• = N and 

u2 = q. 
• p • . 

M. 
q. = Jr· 



208 

By (23) and (19), 

(24) 

so that 

(25) 
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u~v; = + 1. 

It is evident from (19) that u. and v. are of opposite sign. Then Ue may 
be taken positive and Ve negative, since u. is the standard score of an individ­
ual possessing the unitary trait while v. is the standard score for its absence. 

The correlation between two composite traits j and k can be expressed 
as follows. Let d1; be the raw deviation score of individual i in test j, and 
let it be assumed that d1; is the sum of the standard scores of individual i in 
those unitary traits which are involved in j. 

Let Wife= u;. if the unitary element e is inj and if the element e is present 
in individual i. 

Let w;;. =Vie if the unitary element e is in j and if the element e is absent 
in individual i. 

Let w;1e = 0 if the unitary element e is not in j. 
Then 

The standard score s1; is related by a constant multiplier b to the deviation 
score dii· Hence 

(27) 

To determine the multiplier b, the squares of the standard scores s1; may 
be summed. Then 

(28) 

But the elements are assumed to be uncorrelated in the population. Hence 

(29) 
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If an element e is in j, then Wi;e=Xie, where Xie is the standard score of in­
dividual i in the unitary trait e. Its numerical value is either u;. or v;., de­
pending on whether the element e is, or is not, present in individual i. Then 

N N 

(30) L:w;ie = L:x~. =N. 
i=l i=l 

Substituting (30) in (29), 

(31) 

The summation of the constant N over the elements e covers n; elements. 
Hence 

(32) 

or 

(33) 

Substituting (33) in (27), 

(34) 

and, by analogy, 

(35) 

1 
b = _/-. 

v ni 

The correlation between the two composite traits j and k is 

(36) 

Substituting (34) and (35) in (36), 

Substituting (26) in (37), and ignoring vanishing cross products, 

(38) 
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The product WiieWike is equal to u7. if e is in bothj and k and if e is present 
in i. It is equal to v;e if e is in bothj and k and if e is absent in i. It vanishes 
if e is absent in j or in k or in both. The cross products vanish because the 
elements are assumed to be uncorrelated. Since U;e and v;. are both stand­
ard scores, 

(39) 

if e is in both j and k. Then 

(40) 

N 

L W;jeWike = N 
i=l 

The summation of the constant N is here over the elements that are com­
mon to j and k. Hence 

(41) 

where n;1c is the number of elements that are common to j and k. 
This well-known formula for the correlation coefficient expresses the cor­

relation in terms of the number of unitary elements ni that are involved in 
the composite traitj, the number of unitary elements n" ink, and the num­
ber of unitary elements niTc which are common to j and k. 

In case the two composite traits j and k are of equal complexity as regards 
the unitary factors, so that rLi=n"=n1, then the formula reduces to the 
still simpler form 

(42) 

in which the correlation coefficient is interpreted directly as the ratio of 
common elements in j and k. 

Equations ( 41) and (42) must be interpreted in the light of the simplifying 
assumptions that the unitary elements are equally weighted in their con­
tributions to the variance of the composite traits and that they are statis­
tically independent as regards their incidence in the population N. 

A type of factor analysis may be developed from this conception of the 
correlation coefficient in that the three numerical values n;, n1o, and nik are 
all necessarily integral. It follows that, for a finite battery of traits with 
limited complexities, the frequency distribution of correlation coefficients 
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must show discontinuities, and even multimodality. It is conceivable that , 
these multimodalities and discontinuities in the correlation coefficients may 
be used in an inverse process of reasoning whereby they become the experi­
mental evidence for making inferences about the complexities of the com· 
posite traits and about the number of unitary elements that the traits have 
in common. This type of analysis will undoubtedly proceed by investigat. 

'11jk 
'11j 'Ilk 

_1_!_2_ 0 

1 1 .000 1.000 
1 2 000 .707 
1 3 .000 .577 
1 4 .000 .500 
1 5 .000 .447 
1 6 .000 .408 
1 7 .000 .378 
1 8 .000 .354 
1 9 .000 .333 
1 10 .0001.316 
2 2 .000 .500 1.000 
2 3 .000 .408 .816 
2 4 .000 .354 .707 
2 5 .000 .316 .632 
2 6 .000 .289 .577 
2 7 .000 .267 .535 
2 8 .000 .250 .500 
2 9 .000 .236 .471 
2 10 .000 .224 .447 
3 3 .000 .333 .667 
3 4 .000 .289 .577 
3 5 .000 .258 .516 
3 6 .000 .236 .471 
3 7 .000 .218 .436 
3 8 .000 .204 .408 
3 9 .000 .192 .385 
3 10 .000 .183 .365 

3 

1.000 
.866 
.775 
.707 
.655 
.612 
.577 
.548 

Table 1 

n·k 
n· nk . J 

J o 1 2ja\41s(6j7 819110 ---.------------·--
4 4 .000 .250 .500

1 

.. 75011.000•

1

' 
4 5 .000 .224 .447 .6711 .894 
4 6 .000 .204 .408,.612 .816 
4 7 .000.189.3781.5671 .756 
4 8 .000 .177 .354,.530 .707 
4 9 .000 167.3331.5001 .667 
4 10 .000.158.3161.4741.632 
5 5 .000.200.400.600 .8001.000 
5 6 .000.183.365.~8 730 .913 
5 7 .000.169 .338•1,;;07 .676 .845 
5 8 .000.1581.316.4741.632 .791 
5 9 .000.149.298.447 .596 .745 
5 10 .000.141.283.424 .566 .707 
6 6 .000.167.3331.500 .667 .8331.000, 
6 7 .000.154 .309i.463 .617 .772 .926· 
6 8 .000 .144 .289,.433 .577 . 722 .8661 
6 9 .000.136.272.408 .544 .680 .816 
6 10 .000.129.258i.387 .516 .641) .775 
7 7 .000.143 .286i.429 .571 .714 .85711.0001 
7 8 .000 .134.2671.401 .535 .668 .8021 .9351 
7 9 .000.1~?-252.378 .504 .630 .756 .8821 
7 lQ .000 .1~; .239 .359~.~~~ .598~ .717 .837 M 
8 8 .000.125.250.375 -~ .625 .750 .8751.00~ 
8 9 000 .118.236 .354 .471 .589 . 707 .825' .943 
8 10 .000.112.224.335 .447 .559 .671 .783 .894 
9 9 .000.111.222.333 .444 .556 .667 .778 .8891.000 
9 10 .000.105.211 .316 .422 .527 .6321.738 .843 .949 

10 10 .000 100.200.300 .400 .50 .600 .700 .800 .9001.000 

' 

ing the frequency distribution of coefficients separately for each column of 
a correlational matrix. These coefficients may be considered in their original 
form or after correcting them for attenuation or for uniqueness. 

Table 1 has been prepared for the purpose of illustrating further the dis· 
creteness of the numerical values of the correlation coefficients that can be 
obtained under the assumptions of equation (41). The interpretation 
of the table can be illustrated by an example. Let two composite traits 
have complexities of 4 and 5, respectively, so that one of them is determined 
by four unitary elements and the other by five unitary elements. Then the 
only possible correlations between the two composite traits are .000, .224, 
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.447, .671, and .894, depending on whether they have 0, 1, 2, 3, or 4 unitary 
elements in common. 

But while these unitary elements may be acknowledged to be a worthy 
objective, it must not be assumed that the larger and cruder categories will 
then vanish in significance. It is still useful to speak of a man's arms and 
legs even though much is known about the hierarchy of their parts and ele­
ments. Even if hundreds of unitary and elemental factors should eventually 
be discovered to be primary determiners of intellectual endowment, it 
might still be useful to retain such categories as verbality or visual imagery 
if they demonstrably simplify our comprehension of mental endowment. 



CHAPTER IX 

ORTHOGONAL TRANSFORMATIONS 

Rotation in three dimensions 

In the previous chapters the theory of multiple-factor analysis has been 
discussed, including the two cases of orthogonality and obliqueness of the 
co-ordinate axes. While it is probable that most scientific problems will 
require the more general oblique co-ordinate axes, it is always of interest 
to inquire whether the fundamental categories which are represented by the 
co-ordinate axes may be regarded as statistically independent. In this case 
the co-ordinate axes are orthogonal and the principal problem is then re­
duced to that of finding the orthogonal transformation by which the trait 
configuration of F can be rotated into a simple structure. In investigations 
where the co-ordinate axes may be expected to be orthogonal, it is con­
venient to deal with the rotational transformations in terms of the smallest 
possible number of parameters. A rotational transformation in a space of 
r dimensions is represented by a square matrix of order r, so that there are 
r2 parameters to be determined; but these are not all independent. In this 
chapter several methods will be described by which a rotational transforma­
tion of order r may be handled in terms of independent parameters. This 
considerably reduces their number, and it avoids the inconvenience of han­
dling conditional equations. The principles will be described first for a rota­
tional transformation in three dimensions and in four dimensions; but the 
methods are entirely general, so that they may be applied in a space of any 
number of dimensions. 

Let the given co-ordinates of the points a be a1, a2, as, and let these points 
be subjected to a rotation. Let the new co-ordinates of the same points be 
A 1, A 2, A 3• The change from one set of co-ordinates to the other can be 
described by the orthogonal transformation 

(1) l A1 = a1xn + ~X:!1 + UsXs1 , 

A2 = a1x12 + U-:!X22 + asXs2 , 

A 3 = a1X13 + U-:!X:!a + UsXaa • 

Here A 1, A 2, As represent the new co-ordinates of a point a, while the given 
co-ordinates of the same point are a1, U-:1, as. The nine x values constitute 
the nine parameters which define the orthogonal transformation. 

213 
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The transformation may be represented in matrix form more briefly thus: 

(2) A= aX, 

where X is an orthogonal matrix. The determinant of the third-order ma­
trix must be + 1, since the present problem concerns only rotation without 
reflection. Hence 

(3) =+1. 

The nine parameters in this matrix are not independent. They must satisfy 
the following six conditional equations: 

(4) 

and 

(5) 

l ~l + ~2 + xia = 1 , 

~1+zi2+:a = 1, 

~t+:42+X3a = 1, 

l XnX21 + X12X22 + X1aX23 = 0 , 

XnXst + Xr2Xs2 + X1sXss = 0 , 

X2rXs1 + X22Xa2 + X2aXsa = 0 . 

With nine parameters and six conditional equations there are only three 
independent parameters which determine a rotation in three dimensions. 

In order to avoid the use of nine parameters with six conditional equa­
tions, the three Eulerian angles may be used as the three independent par­
ameters. These are as follows:* 

l a1 = Ar(cos q, cos if; - sin q, sin if; cos e) 

(6) - A2(cos q, sin if; + sin q, cos if; cos e) 

+ As sin q, sin () , 

l ~ = Ar(sin q, cos if; + cos q, sin if; cos e) 

m -k~rt>~ifi-~rt>~ifi~~ 

- As cos q, sin 8 , 

(8) aa = A1 sin if; sin 8 + A2 cos if; sin 8 + A 3 cos e . 
* Virgil Snyder and C. H. Sisam, Analytic Geometry Qj Space (New York: Henry Holt 

& Co., 1914), chap. iii. 
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In this transformation there are only three parameters, namely, the three 
angles c/>, if;, and 8; but the transformation is nonsymmetric. In actual com­
putation the three cosines might be regarded as independent parameters; 
but then the three sines are dependent parameters, so that a transforma­
tion by the Eulerian angles involves, in effect, six parameters with three 
conditional equations. 

If this method is to be generalized to hyperspace, it is of interest to know 
the relation between the rank of the correlational matrix and the number of 
Eulerian angles, or other independent parameters, that will be needed to 
determine a rotation in more than three dimensions. The number of inde­
pendent parameters for a rotation in r dimensions is ir(r-1). A rotation 
in one plane can be effected by disturbing only two columns in the factorial 
matrix. The number of possible pairs of columns is !r(r-1), and these ro­
tations would seem to be independent. In the special case where r=3 this 
gives three independent parameters such as the three Eulerian angles. 
In order to determine a rotation in four dimensions, we should have six in­
dependent parameters or Eulerian angles. 

If the matrix F has rank 3, then its rotation will involve three dimen­
sions. Since this can be effected by three independent parameters, it is 
desirable to have a transformation with not more than three parameters so 
as to avoid conditional equations. But there are other requirements that 
are more essential for convenience in computation. It is sometimes possible 
to effect a rotation of the factorial matrix on the basis of scientific hypothe­
ses that can be tested. The fine adjustment of the rotation is in effect an 
infinitesimal rotation, and it will be convenient to have an orthogonal trans­
formation in which the parameters become infinitesimal when the rotation 
is infinitesimal. In some situations it will also be convenient to start with 
trial values of the parameters and to solve for the corrections to these 
trial values. This can be done by means of linear simultaneous equations 
if second and higher powers of the corrections can be ignored. But that is 
feasible only if the parameters are themselves fractional-less than unity 
for any rotation. The most convenient form of orthogonal transformation 
seems to be one which satisfies the following requirements: 

1) It should be possible to generalize the orthogonal transformation to 
any number of dimensions, 

2) The parameters should become infinitesimal when the rotation is in­
finitesimal, 

3) The parameters should be fractional for all rotations, 
4) The number of parameters should be as small as possible so as to re­

duce to a minimum the number of conditional equations that are required 
for numerical work. 

An orthogonal transformation will be described that satisfies all of these 
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requirements except that conditional equations for finite rotations arc not 
eliminated. The entries of an nX3 factorial matrix may be thought of as 
the three co-ordinates of each of n points. Let the three columns represent 
the three axes. If such a matrix is rotated about the first axis, it is clear that 
the first co-ordinate of each point remains unchanged while the second and 
third co-ordinates are changed. This rotation can be represented by an angle 
a at the origin in the 2-3 plane. The transformation may be denoted X, 
and it is 

1 0 0 

(9) X = 0 cos a - sin a 

0 sin a. cos a. 

It will be convenient to adopt another notation for the trigonometric 
functions. Let 

Yt = cos a., 

Xt = sin a.. 

Then the orthogonal transformation becomes 

(10) 

1 0 0 

X= 0 +Y1 -x1 

0 +x1 +Y1 

This rotation is represented by the matrix equation 

(11) b = aX, 

by which the co-ordinates a are changed to the co-ordinates b. 
The first rotation a. is in the 2-3 plane, while the first co-ordinate remains 

unchanged. The second rotation may be taken in the 1-3 plane, leaving 
the second co-ordinate of b unchanged. We then have, by analogy, 

(12) y = 0 1 

0 

0 
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This rotation may be written in matrix notation as 

(13) c =bY, 

to represent the change in co-ordinates from b to c. 
The third rotation is then in the 1-2 plane, which leaves the third co­

ordinate in c unchanged. It is represented by the analogous transformation 

(14) 

Ya -Xs 0 

Z = Xs 

0 

Ya 

0 

0 

1 

This rotation is shown in matrix notation by the transformation 

(15) A= cZ. 

Summarizing the three rotations 11, 13, 15, we have 

(11) 

(13) 

(15) 

from which we have 

(16) 

b = aX, 

c =bY, 

A= cZ, 

{

A= cZ, 

= bYZ, 

=aXYZ. 

Let u be the matrix product of the three transformations. Then 

(17) u = XYZ, 

so that 

(18) A= au, 

where u is an orthogonal transformation which changes the co-ordinates of 
the n points from a to A. 
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Since the transformations X, Y, and Z are orthogonal, their product is an 
orthogonal transformation. The criterion of orthogonality of a matrix X 
is that* 

(19) x-1 =X', or XX'= I. 

Then a second orthogonal matrix 

y-1 = Y'' or YY' =I. 

The product 

D = XY. 

Then 

D' = Y'X', 
and 

DD' = XYY'X'. 

But 

YY' =I. 

Hence 

DD'= XX'. 

But 

XX'= I. 

Hence 

DD'= I. 

By the same reasoning the matrix u can be shown to be orthogonal. With 
real parameters in X, Y, and Z, it is clear that several successive rotations 
must give rotation as a product. 

The row-by-column multiplication of the matrices XYZ =u, in that 
order, gives the transformation 

(20) u= 

*H. W. Turn bull and A. C. Aitken, An Introduction to the Theory of Canonical M atrice8 
(London and Glasgow: Blackie & Son, 1932), p. 33. 
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This orthogonal transformation satisfies the requirements in that it can 
readily be generalized to any number of dimensions. Its parameters are all 
fractional, since they represent sines and cosines of the successive angles 
of rotation. For infinitesimal rotations the sines become infinitesimal, so 
that second powers in the x-parameters can be neglected. If we suppress 
the terms of second degree in the x's, we have 

y = 111- x2 : 1, 

so that the transformation takes the form 

(21) 

for infinitesimal rotations. This is a skew-symmetric matrix, and it is of 
some interest to note that an infinitesimal orthogonal transformation seems 
always to take this form quite irrespective of the many alternative ways in 
which the finite rotation may be described. This generalization concerning 
infinitesimal orthogonal transformations seems also to hold for higher di­
mensions. 

Finally, when the successive angles of rotation vanish, the respective 
sines vanish, the x-parameters vanish, and the transformation (20) reduces 
to the identity matrix. This is, of course, what one should expect. 

For some purposes the skew-symmetric form (21) may be useful with a 
rotational criterion. When the x-parameters of (21) have been determined, 
they may be substituted in the orthogonal transformation (20) with assur­
ance that the trait configuration will not be disturbed. The resulting fac­
torial matrix can be subjected again to a rotation by the same criterion, esti­
mating the parameters by (21) and rotating by (20). For some problems it 
may be best to retain all terms of second degree in the x-parameters of (20). 
In this case the third and higher powers may be ignored. 

In the transformation (20) they-parameters may be expressed in terms 
of the x-parameters. We have then 

y = (1-x2)i . 

Expanding and ignoring terms of third and higher degree, 

y.;.1-~ . 2. 
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Then 

Uu = Y2Ya ~ ( 1 - ?) ( 1 - ?) ~ 1 - ~ - ? , 

Proceeding in the same manner for the other cells of (20), it takes the form 

(22) u~ W= 

1-~-:1 
2 2 

- Xg 

1- ~- § 
2 2 - X1 

1-~-~ 
2 2 

This transformation is obtained by ignoring terms of third and higher de~ 
gree, while (21) is obtained by ignoring terms of second and higher degree. 
Forms like (21) and (22) may be used to estimate the numerical values of 
the parameters. The actual rotation can be effected by an orthogonal trans~ 
formation (20) with the parameters so determined. 

Alternative transformations 
The orthogonal transformation (20) is not unique. Other orthogonal 

transformations may be used, but the one that has been described may 
satisfy best the requirements that seem to be indicated for the factor prob~ 
lem. Among the various possible orthogonal transformations that have been 
investigated there may be mentioned the following, namely, 

(23) 
1 

(1+xi)' 

0 

0 

0 

1 

0 

1 

which can be generalized to hyperspace. The parameters are not necessarily 
fractional for finite rotations, and this would constitute a handicap in some 
forms of manipulation. 
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One type of orthogonal transformation of special interest has been men­
tioned by Professor E. B. Wilson.* An interesting characteristic of this 
transformation is that the parameters are all rational and independent. It 
can be generalized to hyperspace. For a rotation in three dimensions it 
takes the following form: 

1+p2-q2-r2 2pq- 2r 2pr + 2q 
c c c 

(24) 
2pq + 2r l-p2+q2-r2 2qr- 2p 

c c c 

2pr- 2q 2qr + 2p l-p2-q2+r2 
c c c 

where c=1+p2+q2+r2, and tan2 8/2=p2+q2+r2, while 8 is the angle of 
rotation about an axis l. The direction cosines of l are proportional to 
p, q, r. This would probably be the best form of orthogonal transformation 
for the factor problem except for the fact that the parameters are not nec­
essarily fractional for finite rotations. (Consider for example 0 =1r in (24).) 
Fractional parameters are convenient for some computing purposes in which 
second and higher powers of the parameters are to be ignored. Again, it may 
be desirable in some computations to start with trial values of the param­
eters and to solve for a small correction for each parameter. In order to be 
able to work with linear normal equations it is necessary to be able to ig­
nore second and higher powers of the corrections. These considerations 
would lead one to prefer a transformation in which the parameters are 
fractional by definition. However, transformation· (24) may be used with 
a suitable multiplier. This device could also be used on transformation 
(23), but such possibilities have not yet been investigated. 

Ignoring the terms of second degree in (24), the transformation reduces 
to the form 

1 -2r +2q 

(25) +2r 1 -2p ' 

-2q +2p 1 

which is again a skew-symmetric matrix. 

*"On the Invariance of General Intelligence," Proc. Nat . .Acad. Sci., XIX, August, 
1933, p. 771, n. 5. 
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Rotation in four dimensions 

The procedure of writing any orthogonal transformation which has been 
described can be generalized to any number of dimensions. It will be ex­
tended here to four dimensions. Each independent rotation may be regarded 
as a disturbance of a pair of columns in the factorial matrix. Each of these 
independent rotations is determined by one of the independent x-parame­
ters and its dependent y-parameter. The number of independent x-param­
eters required to determine a rotation in space of r dimensions is equal to 
the number of possible pairs of columns that may be taken in the nXr ma­
trix F. This is ~r(r-1), and consequently we should expect to have six in­
dependent parameters for a rotation in four dimensions. 

If the four columns of F are numbered, then the six parameters may be 
associated with pairs of columns in F. These may be taken in the following 
arbitrary order: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Let the corresponding inde­
pendent parameters be x1, x2, xa, X4, xs, xa, and the corresponding dependent 
parameters Yt, Y2, Ya, Y4, Ys, Ys- These are related to the independent param­
eters as follows: 

Yt = cos Cll = V 1 - X~ ' 

with analogous interpretation for each of the other five subscripts. Each 
pair of columns in F is represented by an orthogonal transformation. The 
matrix product of these six transformations is the matrix of the orthogonal 
transformation in four dimensions. The six independent rotations are as 
follows: 

Yr -Xr 0 0 

Xr Y1 0 0 
Br= 

0 0 1 0 

0 0 0 1 

Y2 0 -x2 0 

0 1 0 0 
B2= 

X2 0 Y2 0 

0 0 0 1 
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Ba= 

Bs= 

Bs= 

Ya 

0 

0 

X a 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

Ys 

0 

0 

1 

0 

0 

0 0 

t 

0 

0 

0 

Ya 

0 

0 

0 1 

0 0 

1 

0 

0 

0 

0 

Yr. 

0 

0 

Ys -Xs 

Xs Ys 
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Let the given co-ordinates be a, and let the final transformed co-ordinates 
be A. The points a are to be subjected to six independent and successive 
rotations which bring them to the co-ordinates A. Let the six independent 
rotations be represented as follows: 

(26) 
e = dBa, 

f = eB4, 

g = fBs, 

A = gBs. 
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Combining these six independent rotations, we get the single rotation 

(27) 

Let 

Then 

(28) A = av, 

in which v is an orthogonal matrix of order 4 with six independent param­
eters and six dependent parameters. 

After performing the matrix multiplication of (28) we have the following 
expressions for the cell entries of v: 

V42 = +YsXs, 

V14 = -x1X4X6 + Y1Y4X2Xs + Y4YsX1Xs + Y1YsX2X4Xs - Y1Y2YsYsXa , 

VH = +YlX4Xs + Y4XrX!Xs - Y1Y4YsXs + YsX1X2X4Xs - Y2YsYsX1Xa, 

V44 = YsY;Ys · 
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If the terms in second and higher degree in the independent x-parameters 
are ignored, the matrix v reduces to 

It will be seen that (29) is again a skew-symmetric matrix. It reduces to 
the identity matrix when the six rotational angles vanish. 

The method which has just been described can be generalized to hyper­
space. A rotation in five dimensions requires ten independent parameters. 
Six dimensions require fifteen independent parameters. If the number of 
primary factors is fairly large, it seems evident that the direct application 
of an orthogonal transformation to the factorial matrix F in the search for 
the primary factors is prohibitive in computational labor. The use of an 
orthogonal transformation on F presupposes the serious restriction that the 
primary factors are statistically independent in the experimental popula­
tion. Since this is a condition that cannot be assumed in most factor prob­
lems, the rotational transformations must be subject to the same limitation. 



CHAPTER X 

THE APPRAISAL OF ABILITIES 

The regression x on s 
The principal problem to which the previous chapters have been directed 

is tbat of isolating and identifying primary factors in a battery of traits. 
The psychological application of factor theory which is of most general cur­
rent interest is the isolation of primary abilities. The present chapter is 
directed to the problem of appraising the several primary traits in each in­
dividual. The methods to be described are applicable not only to the psy­
chological problem of describing the mental and physical traits of individu­
als, including native as well as acquired traits, but also to any situation in 
which it is desired to describe the individual members of a statistical group 
as regards the traits that may have been found to be primary. 

Each individual member of the statistical population is described in terms 
of r abilities. Let the standard score of individual i in the primary ability 
p be denoted Xpi· It is desired to estimate Xp; in terms of then tests which 
individual i has taken. The standard score of individual i on a test j has 
been denoted s;;. 

The regression Xpi on Sfi is as follows: 

(1) 
n 

Xp; = 2: Wp;S;; + Ppi , 

j=l 

where the subscript p refers to primary abilities, j refers to the tests, i re­
fers to the individuals, Wp; is the weight of the score s;; in test j in the ap­
praisal of the primary ability p, Ppi is the residual or discrepancy between 
the true value of Xp; and the best value which can be obtained as a linear 
function of the test scores s;;. Expressing this equation explicitly for the 
residual, 

(2) 
n 

Xpi - 2: Wp;S;; = Ppi • 

j=l 

It is desired to determine the values of Wp; which will minimize pp;. Squar­
ing (2), 

n n n 

(3) xi,. - 2Xpi 2: Wpj8ji + 2: L Wp{WpkSjiBki = P~i • 

i=l k=l i=l 

226 
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Summing for the population, and dividing by N, 

(4) 

where Up is the quantity to be minimized. 
But 

(5) 

since Xpi is a standard score. Substituting (5) in (4) and rearranging, 

(6) 
n 1 N n n !N 

1 - 2 L Wp; N L 8;;X;p + L L Wp;Wpk N L 8;;8ki = Up • 
i=l i=l k=l i=l i-1 

The summation 

(7) 

where riP is the correlation between the test J. and the primary ability p. It 
is the scalar product of the test vector j and the primary vector T P· It is 
here assumed that the primary abilities may be correlated in the experi­
mental population N. 

The summation 

(8) 

where R;~c is the correlation between tests j and k. The correlation R;~c in 
(8) is equal to r1·~c whenj~k, but it is unity whenj=k. 

Substituting (7) and (8) in (6), 

(9) 

The normal equations for determining W:p;, or w:p~c, are in the form 

(10) aup = 0. 
OW:p; 
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Taking partial derivatives in (9), 

(11) 

Setting the partial derivatives equal to zero, dividing the equation by 2, 
and transposing, 

(12) 
n 

LWpkRki = riP = rpi. 

k=l 

Equation (12) represents a matrix multiplication which may be written 
in matrix notation, 

(13) 

where Wpk: is a matrix of order rXn and Rki is a matrix of order nXn. The 
latter is of rank n because the diagonal elements are unity, and hence spe­
cific factors and error factors are involved. The matrix RPi is of order rXn. 
Since Rki is non-singular, the equation (13) may be written explicitly for Wpk· 

Then 

(14) 

Writing (14) in transposed form, and using Wpk=WpiJ 

(15) 

by which the numerical values of w3p=Wpf in (1) can be determined. 

The regression s on x 
This regression implies that the primary abilities of an individual are 

known and that it is desired to estimate what his performance will be on a 
test with known factorial weightings. This is the reverse of the previous re­
gression x on sin which it is assumed that an individual's scores are known 
and that his primary abilities are to be appraised. 

The case in which Sii is to be estimated by Xp; can be written in the form 

(16) 
r 

8fi = :2: WjpXpi + Pii , 
p=l 

where Wfp is the weight of the score Xp; in the estimate of the score Sj;, and 
Pii is the discrepancy between the actual score s;; and the estimated score 
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in testj. It should be noted that W;p in (16) is not the transpose of Wpi in (1), 
since these are coefficients in two different regressions. Writing (16) explicitly 
for p;;, 

(17) 

Squaring (17), 

T 

S;; - 2: W;pXp; = Pii • 
p=l 

r r r 

(18) sJ, - 2s;; L W;pXp; + L L wipW;qXp;Xq; = PI; . 
P=l q=l p=l 

Summing for the population and dividing by N, 

(19) 

where u; is the quantity to be minimized. 
But, by definition, 

(20) 

Substituting (20) in (19), and rearranging, 

(21) 

The summation 

(22) 

and the summation 

(23) 

where Rpq is the correlation between the primary abilities p and q. It can 
also be regarded as the cosine of the angular separation between the two 
primary unit vectors T11 and Tq. 
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Substituting (22) and (23) in (21), 

r r r 

(24) 1 - 2 2: W;prip + 2: 2: WjpWiqRpq ;:: Ui . 
p=l q=l p=l 

The normal equations are in the form 

(25) ()ui = O. 
awip 

Taking partial derivatives in (24), 

(26) 

Setting the partial derivatives equal to zero, dividing the equation by 2, 
and transposing, 

(27) 
r 

L WfqRqp = rip • 

q=l 

Writing equation (27) in matrix notation, 

(28) 

Since the primary abilities are linearly independent, it follows that the 
rank of Rqp is r. Hence Rqp is non-singular. Equation (28) may therefore 
be written explicitly for Wiq, 

(29) 

by which the weights Wiq=Wfp in the regression equation (16) may be com­
puted. 

It is of interest to note the form which equation (29) takes in the special 
case where the primary abilities are orthogonal. Then 

(30) Rq;i = I , the identity matrix, 

and 

where F;p is a factorial matrix with orthogonal primary reference vectors, 
so that 

(31) 
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Substituting (31) in the regression equation (16), we have 

(32) Sji = F ipXpi + Pii • 

In this equation Pi> is that part of the score s;i which is not produced by the 
primary common factors. Hence Pii is produced by specific and error fac­
tors. In the simplest case where all of the contributing factors are common, 
we have 

(33) 

which is the first equation of chapter i, as was to be expected. 
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OUTLINE OF CALCULATIONS FOR THE CENTROID 
METHOD WITH UNKNOWN DIAGONALS 

An nXr matrix F may be obtained from a given correlational matrix R 
with unknown diagonals by the following calculations. This is the method 
described in Example 6, chapter iii, except that the reflection of traits will 
not always be carried to the point where all column sums are positive when 
the diagonals are ignored. Only those traits will be reflected which minimize 
the number of negative signs in each column of R, as described in Example 
5, chapter iii. 

The method will be described in relation to the computations on a 9 X 9 
table of experimental correlations given by Professor Carl C. Brigham in 
his 1928 annual report to the College Entrance Examination Board. The 
data represent nine intelligence tests used by the College Entrance Board. 
The correlations are based on the records of 4,175 boys. 

The calculations are recorded on data sheets* devised for twenty varia­
bles or less. In working with more than twenty variables, the correlation 
table may be divided into 20 X 20 sections with a data sheet for each section. 
The notation :3o, B, D, E, and K, on the data sheet is the same as that used 
in the tables of chapter iii. 

Steps in calculation 
1. Record the table of intercorrelations as shown in Table 1. This may 

be any nXn correlational matrix R with elements r;k which satisfies the 
inequality (5-ii). In this exampleRois given, n=9, and the inequality is 
satisfied if the number of factors turns out to be 5 or less. 

2. Record the signs of these correlations as indicated in the upper part 
of the narrow cells provided for the signs. This corresponds to the "first 
position" of the signs described in example 5 of chapter iii. 

3. The diagonal cells of this table are blank, since the communalities are 
unknown. The cells for the entries ru, rz2, •.. , rgg are the diagonal cells. 

4. Since all of the entries of this table are positive, it is not necessary to 
reflect any of the tests. When any column of R has a majority of negative 
coefficients, traits are reflected at this stage of the procedure by the method 
described for Table 2. 

*These data sheets are available at the University of Chicago Bookstore, Chicago, 
lllinois. 

232 
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5. Decide upon the estimate of the communalities to be used. A small 
number of variables demands a more accurate estimation of the commu­
nalities. When n is large, Method 4 of chapter ii is recommended. This 
method will be used here. 

6. Pick the highest coefficient in each column, disregarding sign, and re­
cord it in the diagonal with positive sign placed in the upper half of the nar­
row sign cell. 

EXAMPLE: The highest correlation in column 1 is .625. It is recorded in the 
diagonal cell of that column as +.625. If the highest coefficient in this 
column had been - .625, it would still have been recorded in the diago­
nal as +.625. 

7. Add the entries in each column and record the sums in row D at the 
n 

bottom of the data sheet. These are the sums 2:>i~c=rdor each column k 

of equation (12-iii). 
i=l 

EXAMPLES: The sum of the nine entries in column 1 is 5.022. This is record-
9 

ed in row D, column 1. It is the sum 2>il =r1 . 
f=l 

The sum of the nine entries in column 2 is 4.213. This is recorded in 
9 

row D, column 2. It is the sum L r i2 = r2 • 

j=l 

8. Add the entrie,s in each row of Table 1 and record the sums in column 

" 
D at the extreme right of the data sheet. These are the sums Lri"=r; for 

k=l 
each row j. These sums should agree with their corresponding column sums 
recorded in row D at the bottom of the data sheet. 

9. Add all the column sums in row D. Record this value, 42.072, in 
11 " " 

row D, column D. This is the sum L Lrik= Lrk=rt, of equation 
k=l i=l k=l 

(8-iii) . 
n n n 

10. Add all the row sums of column D. This gives L Lrik= Lr;= 
i=l k=l j=l 

r 1 =42.072. Check to see that this sum agrees with the sum obtained in 
step 9. 

11. DetermineVr1• Inthisexample, V~ =V42.072=6.486293. Record 
this value in the space below re. 
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1 
12. Compute the reciprocal, _ /-. For these data, the value is 1/6.486293 

v rt 
=.154171. Record .154171 in the space below v/~. 

1 
13. Multiply each sum in row D by the value _ /- = .154171 obtained in 

v rt 
step 12 and record the results in row E at the bottom of the data sheet. 
Each value in row E takes the sign of its corresponding sum in row D. 
These are the first-factor loadings, a£r, with the signs of the variables as 
used to obtain the sums in D. 

EXAMPLEs: Test 1: ai1 = .154171( +5.022) 

Test 2: a~1 = .154171( +4.213) 

+.774. 

+.650. 

Test 9: a~1 = .154171( +5.009) = +.772. 

14. The product rt (J~) should give V~ recorded on the data sheet if 

the arithmetical work in determining the multiplier has been correct. In 
this example, 42.072 (.154171) = 6.486282, which checks with the recorded 
value of V~= 6.486293 to the fourth decimal place. 

15. If the loadings in row E represent a centroid system, then "E,E, the 
sum of all the entries in row E, should equal Vrt. Record "E,E in the space 
};E in the lower right corner of the data sheet. 

EXAMPLE: "E,E = 6.486 . 

v~= 6.486. 

16. Copy the values of row E in row K with the sign reversed for each 
test which has been reflected an odd number of times. Any test reflected 
an odd number of times will have the last recorded sign negative before its 
variable number. Since no tests were reflected in this table, the values in 
rows E and K are the same, all of the first-factor loadings are positive, and 
"E,K = };E = 6.486. 

17. Record the values of row Kin the first column of Table 7. Table 7 
will be the nXr matrix F when r factors have been extracted. 

18. Take a new data sheet and label it "First-Factor Residual Coeffi­
cients: r2· ik" as shown in Table 2. 

19. Insert the variable numbers with signs as given in Table 1, in the 
second row and second column provided for them in Table 2. Place the 
signs in the upper half of the narrow sign column. In this example, all of 
these signs are positive. 

In data where traits are reflected in the first table, the signs transferred 
to Table 2 are those of the traits on Table 1 after reflection. 
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20. Copy the first-factor loadings from row E of Table 1 in the first row 
and in the first column labeled E' in Table 2. This arrangement facilitates 
residual computations on a calculating machine. 

EXAMPLES: The first-factor loading in test 1 from row E of Table 1 is 
+.774. It is recorded in Table 2 in the space in front of variable 1 in col­
umn E' and in the space above variable 1 in row E'. 

Similarly, the first-factor loading in test 2 from row E of Table 1 is 
+.650. It is recorded in Table 2 in the space in front of variable 2 in 
column E' and in the space above variable 2 in row E'. 

21. Check this transfer by adding the loadings for the nine rows of col-
9 

umn E'. This gives "1:,E' = L a;1 = 6.486, which is the value of "1:,E on Table 
i=l 

1. Record this sum in the space marked "1:,E' at the left of the data sheet. 
Add the loadings for the nine columns of row E'. This gives "1:,E' = 

9 L alc1 = 6.486, which is the value of "1:,E on Table 1. Record this value of 
k=l 

"1:,E' in the space provided in the upper right corner of the data sheet. 
22. Compute the first-factor residuals by formulae of the type (14-iii), 

and record in the jth row and kth column of Table 2. 
23. For column 1 of Table 2, these residuals are 

where k = 1 and j takes values from 1 to 9. The value r it is the entry in the 
jth row and first column of Table 1; aj1 is the first-factor loading for test j 
recorded in row j of column E' in Table 2 and ai1 is the first-factor loading 
in test 1 recorded at the top of column 1 in row E' of Table 2. 

EXAMPLES: 

r2•11 = +.625- .774(.774) = (+.026). Recordaboveg_~ublelinein 
column 1. ' · 

r2-21 = +.482- .650(.774) = -.021. Recordinrow2, column 1. 

r2•31 = + .617 - . 731(. 774) = + .051 . Record in row 3, column 1. 

r2• 41 = +. 518 - . 665(. 774) = +. 003 . Record in row 4, column 1 . 

r2• s1 = + . 625 - . 804(. 774) = + . 003 . Recoro in row 5, column 1 . 
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r2-51 = + .422- .593(. 774) = -.037. Record in row 6, column 1. 

r2•11 = + .584 - . 738(. 774) = +. 013. Record in row 7, column 1. 

T2-a1 = +. 563 - . 759(. 774) 

Tz.gl = +. 586 - . 772(. 774) 

- . 024 . Record in row 8, column 1 . 

-. 012 . Record in row 9, column 1 . 

The sign of each residual is recorded in the upper half of its narrow sign cell. 
The diagonal for this column and for all succeeding columns is recorded in 
the space just above the double line on the data sheet. This leaves the diag­
onal cell vacant in each column. 

24. Add the entries in column 1, including the diagonal, and record in 
column 1 for the row marked "Actuall.:o" at the bottom of the data sheet. 
This sum should be zero or nearly zero. It is +.002. 

26. The expected value of this sum, designated "Check l.:o," on the data 
sheet may be calculated for each column k by the formula, 

where rk is the sum in row D, column k of Table 1, ah is the first-factor load­
ing at the top of column kin Table2, andl.:E' has the value already recorded 
·on Table 2. 

EXAMPLE: For column 1, this check is 

r1- af11.:E' = 5.022- . 774(6.486) = + .002. 

This agrees with the "Actuall.:o" value for column 1 indicated in step 24. 
The "Actuall.:o" and "Check 1.:o" values are not always exactly the same 

as in this case, but their difference very seldom exceeds .003 when three 
decimals are used in the calculations. 

26. Since the residual tables are all symmetric about the diagonal, the 
. calculated entries in column 1 may be copied in their corresponding cells 
in row 1, i.e., 

rz.zl = rz.12 = - . 021 . Record in row 1, column 2 . 

rz.al = rz-1a = + .051. Record in row 1, column 3 . 

rz.41 = r2.14 = +: 003 . Record in row 1, column 4 . 

hs1 = rz.1s = + .003 . Record in row I, column 5 . 

rz.sl = rz.1s = - . 037 . Record in row 1, column 6 . 
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r2.n = r2.17 = +. 013 . Record in row 1, column 7 . 

r2.s1 = r2.1s = - . 024 . Record in row 1, column 8 . 

r2.91 = r2-19 = - . 012 . Record in row 1, column 9 . 
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When this step is completed, all cells in row 1 and column 1 of Table 2 are 
filled except the diagonal. 

27. Add all the entries in row 1, including the diagonal, and record the 
sum in the column labeled "Actual '2a" at the right of the data sheet. This 
sum should agree with the sum in step 24. It is + .002. This check is valu­
able in working with a large number of variables; it is not necessary when 
n is twenty or less. 

28. Calculate the residuals in the diagonal and below it for each column k 
of Table 2 in the manner described in steps 22 and 23. · 

EXAMPLES: 

r2.22 = +.592- .650(.650) = (+.170). 

r2-a2 = + .397 - . 731(.650) = -.078. 

r2.42 = + .397 - .665(.650) = -.035. 

r2.ss = +.626- .731(.731) = (+.092). 

r2.43 = +.472 - . 665(. 731) = -. 014 . 

rz.os = + .626 - .804(. 731) = + .038. 

29. As soon as the residuals for column k are computed below the diag­
onal, fill in the entries in the row for that test above the diagonal by sym­
metry, as described in step 26. 

EXAMPLES: 

Row 2: r2oa2 = r2•23 = - . 078 . Record in row 2, column 3 . 

r2•42 = r2•24 = - . 035 . Record in row 2, column 4 . 
. . . . . . . . .. . . . ... 

r2•92 = r2 29 = -. 062 . Record in row 2, column 9-. 
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Row 3: r2. 43 = r 2•34 = -. 014 . Record in row 3, column 4 . 

r2.ss = r 2•35 = +. 038 . Record in row 3, column 5 . 

r2.93 = r2. 39 = - . 007 . Record in row 3, column 9 . 

30. Check the accuracy of the residual calculations for each column k by 
the methods described in steps 24 and 25; make this check for each row j by 
the method of step 27. 

EXAMPLES: 

Test 2: r2- af1~E' = 4.213 - .650(6.486) = - .003. 
Actual ~o = - . 002 . 

Test 3: rs - a;1~E' = 4. 744 - . 731(6.486) = + .003. 
Actual Z:o = + . 004 . 

n n 

n tests: rt- La}1 Lah = 42.072- 6.486(6.486) + .004. 
j=l k=l 

Actual ~0 = + . 006 . 

31. Table 2 should now have every entry filled except the diagonals, and 
all of the sums, ~o, should be recorded. 

32. Pick the highest coefficient in each column, disregarding sign, and 
record it in the diagonal with positive sign. This sign should be in the up­
per half of the narrow sign cell. 

33. Prepare a table similar to Table 3 with variable numbers 1 to n at the 
top of the columns. Add a check column and one labeled "k •. " This table 
will be used to minimize the number of negative signs in each column of 
Table 2 in order to determine the tests to be reflected. 

34. Count the number of negative signs in each column of Table 2 and 
record in row 1 and in the proper column of Table 3. These are the values, 
Ni, described in Example 5, chapter iii. 

EXAMPLEs: The number of negative signs in column 1 of Table 2 is four; 
hence 4 is the entry in the first row and first column of Table 3. 

Similarly, there are six negative signs in column 2 of Table 2; conse­
quently the entry in column 2 of the first row of Table 3 is 6. 

35. Check these values by counting the number of positive signs in each 
column excluding the diagonal. The sum of the positive and negative signs 
in each column must be (n-1). 

36. Add all the entries in the first row of Table 3 and record in the check 
column. This sum is 46. 
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37. Pick the test having the highest number of negative signs to be re­
flected first. Tests 2, 6, and 9 have a maximum of six negative signs. The 
choice of one of these is arbitrary; test 2 is chosen here. 

38. Record the variable number 2 in the column headed ki and put an 
"X" above column 2 in Table 3 to indicate that this test is to be reflected. 
An adjustment in the number of negative signs for each column will be made 
as if test 2 were reflected in Table 2; these results will be recorded in row 2 
of Table 3. 

39. For the trait being reflected, i.e., test 2 in this case, the entry in its 
column of row 2, Table 3, will be (n-1) minus the number of negative signs 
for its column in row 1 of Table 3. The value of (n-1) is the total number 
of entries in each column of Table 2, ignoring the diagonals. 

In this example, (n-1)=8, and the entry in column 2, row 2, of Table 3 
becomes 8-6=2. 

40. Proceed to that row of Table 2 for the test being reflected, i.e., row 2, 
and consider the sign of each entry there except the diagonal. 

a) If that entry for a given trait not previously reflected is positive, increase 
by one the number of negative signs for that column recorded in row 1 of 
Table 3, and record the new value in its proper column of row 2, Table 3. 

EXAMPLES: The entry for test 6 in row 2 of Table 2 is positive. Test 6 has 
not been previously reflected. The number of negative signs for test 6 re­
corded in row 1 of Table 3 is six. Consequently, 6 is increased one, giving 
7 as the entry in row 2, column 6, of Table 3. 

The entry for test 8 is also positive in row 2 of Table 2. Test 8 has not 
been previously reflected. In the same manner, its number of negative 
signs is increased one, giving 6 as the new value in row 2, column 8, of 
Table 3. 
b) If the entry for a given test not previously reflected is negative, decrease 

the number of negative signs for that column by one and record the new 
value in its proper column of row 2, Table 3. 

EXAMPLES: The entry for test 1 in row 2 of Table 2 is negative. Test 1 has 
not been previously reflected. The number of negative signs for test 1 
recorded in row 1 of Table 3 is four. Hence, 4 is decreased one, giving 3 
as the entry for test 1 in row 2 of Table 3. 

The entries for tests 3, 4, 5, 7, and 9 are all negative in row 2 of Table 2. 
Since none of these tests has been previously reflected, the number of 
negative signs for each of them will be reduced one. This gives the entries 
4, 4, 4, 3, and 5 for these respective tests in row 2 of Trible 3. 

All of the cells in row 2 of Table 3 should now be filled. 

41. Add all of the entries in row 2 of Trible 3. This sum is 38. 
42. If the sum of all the entries in row 1 of Table 3 (from step 36) minus 
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the sum of all the entries in row 2 of Table 3 (from step 41) is twice the dif­
ference between the number of negative signs for the reflected trait 2 in 
these two rows of Table 3, the arithmetical work in deriving row 2 of Table 3 
is checked. 

EXAMPLE: 46 - 38 = 2(6-2) . 

8 = 8. 

43. Pick the test having the highest number of negative signs in row 2 
of Table 3 as the next test to be reflected. This is test 6 with a maximum of 
seven negative signs. 

44. Record the variable number 6 in column ki of Table 3 and put an 
"X" above column 6 to indicate that this test is to be reflected. 

45. The entry in column 6, row 3, of Table 3 will be (n-1) minus the 
entry for test 6 in row 2 of Table 3, i.e., 8-7=1. 

46. Proceed to row 6 of Table 2 and consider the sign of each entry there 
except the diagonal in order to adjust the number of negative signs of row 2, 
Table 3, as if test 6 were reflected. These new values will become row 3 of 
Table 3. 

a) For the tests which have not been previously reflected the same rules of 
adjustment of number of negative signs apply as in steps 40a and 40b, 
except that the adjustment is made with reference to row 2 instead of row 1 
of Table 3. 

EXAMPLES: The entry for trait 4 is positive in row 6 of Table 2. Trait 4 has 
not been previously reflected. Trait 4 has four negative signs in row 2 of 
Table 3. Hence, it will have 4+ 1 = 5 negative signs recorded in row 3 of 
Table 3. 

The entries for tests 1, 3, 5, 7, 8, and 9 are negative in row 6 of Table 2. 
None {)f these tests has been previously reflected. Hence, the entries for 
these respective columns in row 2 of Table 3 are each reduced one. This 
gives 2, 3, 3, 2, 5, and 4 as the entries for columns 1, 3, 5, 7, 8, and 9, 
respectively, in row 3 of Table 3. 

b) When an entry in row 6, Table 2, is positive and the test has been pre­
viously reflected in this table, decrease by one the number of negative signs 
for that trait as recorded in row 2 of Table 3, and record the new value in its 
column of row 3, Table 3. 

EXAMPLE: The entry for test 2 is positive in row 6, Table 2. Test 2 was pre­
viously reflected. The number of negative signs for test 2 in row 2 of 
Table 3 is two. Hence, the entry for test 2 in row 3 of Table 3 becomes 
2-1=1. 

This gives the nine entries in row 3 of Table 3. 
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47. Add the entries in row 3 of Table 3. This sum is 26. 
48. If the sum of the entries in row 2 of Table 3 (in step 41) minus the 

sum of the entries in row 3 of Table 3 (in step 47) is twice the difference be­
tween the entries in these rows for the test being reflected, i.e., test 6 in this 
case, the arithmetical work in deriving row 3 of Table 3 is checked. 

EXAMPLE; 38 - 26 = 2(7 -1) . 

12 = 12. 

49. Pick the trait having the highest number of negative signs in row 3 
of Table 3 as the next one to be reflected. 

The maximum number of negative signs in row 3 of Table 3 is five for 
tests 4 and 8. Either one may be reflected; test 4 is arbitrarily chosen here. 

50. Write the variable number 4 in column ki of row 3, Table 3, and put 
an "X" above column 4 to indicate that test 4 is to be reflected. 

51. The entry for trait 4 in row 4 of Table 3 will be (n-1) minus the num­
ber of negative signs for trait 4 in row 3 of Table 3. 

EXAMPLE: 8-5=3. 

52. Proceed to row 4 of Table 2 and consider the sign of each entry there 
except the diagonal, in order to adjust the number of negative signs of row 3, 
Table 3, as if test 4 were reflected. These new values will become row 4 of 
Table 3. 

a) For the tests which have not been previously reflected, the same rules 
of adjustment of number of negative signs apply as in steps 40a and 40b, 
except that the adjustment is made with reference to row 3 instead of row 1 
of Table 3. 

EXAMPLES: The entries for the unreflected tests 1 and 7 in row 4 of Table 2 
are positive. Hence, their entries of row 3, Table 3, are each increased one 
and recorded in row 4 of Table 3. This gives the entry 3 for each of the 
columns 1 and 7 in row 4 of Table 3. 

The entries for the unreflected tests 3, 5, 8, and 9 are negative in row 4 of 
Table 2. Hence, their entries in row 3 of Table 3 are each reduced one, 
giving the entries 2, 2, 4, and 3, respectively, for these variables in row 4 
of Table 3. 

b) The entry for the previously reflected test 6 is positive in row 4 of 
Table 2. By the method of step 46b, its value in row 4 of Table 3 becomes one 
less than its value in row 3 of Table 3. 

EXAMPLE: 1-1 = 0 =entry for test 6 in row 4 of Table 3. 

c) When the entry for a previously reflected test is negative in row 4 of 
Table 2, increase by one the number of negative signs for that test as recorded 
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in row 3 of Table 3 and record the new value in its column of row 4, 
Table 3. 

EXAMPLE: The entry for the previously reflected test 2 is negative in row 4 of 
Table 2. The number of negative signs for test 2 in row 3 of Table 3 is one. 
This value is increased one to give 2 as the entry for test 2 in row 4 of 
Table 3. 

This gives the nine entries in row 4 of Table 3 . 

. 53. Add all the entries in row 4 of Table 3 and record in the check col.: 
umn. This sum is 22. 

54. If the sum of all the entries of row 3, Table 3 (from step 47), minus 
the sum of all the entries for row 4, Table 3 (from step 53), is twice the dif­
ference between the entries in these rows for the test being reflected, i.e., 
test 4, the arithmetical work in deriving row 4 is checked. 

EXAMPLE: 26 - 22 = 2(5-3). 

4 = 4. 

55. Zero entries sometimes appear in residual tables, such as Table 2. 
They are treated as of positive sign in making sign adjustments for the reflec­
tion of tests. 

56. It sometimes happens that a test already reflected in a table may 
appear a second time (or any even number of times) as the test having the 
maximum number of negative signs. In this case, it is reflected back to its 
'original position in the configuration by reversing each of the rules enu­
merated in steps 40a, 40b, 46b, and 52c. 

EXAMPLE: For purposes of illustration only, reflect test 2 a second time 
as if it had had a maximum number of negative signs in row 4 of Table 3. 
The number of negative signs for each test would then be those of Row 5 
in the following table: 

TESTS 

X X CHECK ki 
X X X 

1 2 3 4 5 6 7 8 9 
--------------------

Row4 .......... 3 2 2 3 2 0 3 4 3 22 2 
Row5 .......... 4 6 3 2 3 1 4 3 4 30 6 
Row6 .......... 5 5 4 3 4 7 5 4 5 42 2 
Row7 .......... 4 3 3 4 3 8 4 5 4 38 6 
Row8 .......... 3 2 2 3 2 0 3 4 3 22 . ..... 
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Table 3 

X X X 
1 2 3 4 5 6 7 8 9 Check k· .. ----------------------
4 6 5 5 5 6 4 5 6 46 2 
3 2 4 4 4 7 3 6 5 38 6 
2 1 3 5 3 1 2 5 4 26 4 
3 2 2 3 2 0 3 4 3 22 ..... 

Again, for purposes of illustration, reflect test 6 a second time as if it had 
had a maximum number of negative signs in row 5 above. The sign adjust­
ment recorded in row 6 is obtained in the same manner as for test 2 recorded 
in row 5, except to note that for the entry in row 6, column 2, of Table 2, the 
rule must be adjusted to take account of the fact that test 2 is now in its 
unreflected form, since it has been previously reflected twice. The sign of the 
entry in row 6, column 2, of Table 2 is positive; hence rule 40a is the one to 
be reversed. This gives the entry 5 in row 6, column 2, of the foregoing 
table. 

In case a test is reflected a third (or any odd number of times), the rules, 
40a, 40b, 46b, and 52c apply directly by considering each test previously re­
flected an even number of times as an unreflected test, and each test previously 
reflected an odd number of times as a test previously reflected once. 

EXAMPLE: Row 7 of the foregoing table gives the adjustment in number of 
negative signs of each column as though test 2 were reflected a third time. 
The rules apply directly except for the entry in column 6; test 6 has been 
previously reflected twice, so that it is considered as an unreflected test hav­
ing a positive sign in row 2, Table 2; rule 40a then applies directly, and 
the entry for test 6 in row 7 becomes 8. 

When test 6 is then reflected a third time, the rules apply directly, 
except for the entry for test 2, which has been previously reflected three 
times. Test 2 is then considered as a test previously reflected once, and 
rule 46b applies. The results are shown in row 8 of the foregoing sign 
table. 

The cases discussed in steps 55 and 56 do not occur in our present calcu­
lations. 

57. All entries in row 4 of Table 3 are now equal to or are less than 

n; 1 =4. Test 8 has four negative signs, which just balances the number of 

positive signs, ignoring the diagonal. All the other tests have a majority of 
positive signs. The tests listed in column k, of Table 3 are now ready to be 
reflected in Table 2. 
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Table 5 

X X X 1 2 3 4 5 6 7 8 9 Check k· .. ----------------------
5 4 5 6 5 3 3 4 5 40 4 
4 3 4 2 4 2 2 5 6 32 9 
3 2 3 1 5 1 1 6 2 24 8 2 1 2 0 4 2 2 2 1 16 ..... 

58. Reverse the signs of the tests indicated in column ki of Table 3 in 
their rows of Table 2. Record these signs in the lower half of the narrow 
sign cell for each entry involved. 

EXAMPLE: Reverse all the signs of entries in rows 2, 4, and 6 of Table 2. 
The entries in row 2 then have the signs+, -, +, +, +, -, +, -, +, 
in the lower half of the narrow sign cell. This corresponds to the "second 
position" of the signs described in Example 5, chapter iii. 

59. Indicate that the signs in rows 2, 4, and 6 have been changed by re­
versing the signs before the variable numbers 2, 4, and 6 in the second col­
umn of Table 2. Record these new signs in the lower half of the narrow 
sign cell. 

60. Reverse all of the signs in the columns for the tests being reflected 
and record these signs in the residual cells in front of each residual involved. 
Where two signs appear in the narrow sign cell for any entry, it is the sign 
in the "second position" that is reversed. 

EXAMPLE: Reverse the signs of all entries in columns 2, 4, and 6. The en­
tries in column 2 then become+, +, +, -, +, +, +, -, +. 

61. Indicate that the signs in columns 2, 4, and 6 have been changed by 
reversing the signs before the variable numbers 2, 4, and 6 in the second row 
of Table 2. Record the new sign in the lower half of the narrow sign cell. 
These signs, after reflection for these variables, are the ones which will be 
transferred to the next residual table, i.e., Table 4. 

62. Copy the last recorded sign for each entry in the columns represent­
ing the unreflected tests. Place these signs in the residual cells in_ front of 
each coefficient. 

EXAMPLE: These are columns 1, 3, 5, 7, 8, and 9 in these data. By this pro­
cedure the signs of the residuals of column 1 are+,+,+, -, +, +, +, 
-, -, as indicated in Table 2. 
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Table 7 

Testj I II III 

1 .774 .070 .094 
2 .650 -.367 -.218 
3 .731 .167 .184 
4 .665 -.118 .261 
5 .804 .306 -.011 
6 .593 -.485 -.071 
7 .738 .126 .167 
8 .759 .039 -.163 
9 .772 .291 -.255 

63. Determine the sum of each column of Table 2, ignoring the diagonals, 
and record in row B at the bottom of the data sheet. 

EXAMPLEs: Test 1 = + . 086 . 

Test 2 = +.516. 

Test 9 = +.430. 

This step is useful only if it is desired to reflect tests until a maximum 
positive sum is secured. Steps 63 and 64 may be combined in cases where it 
is satisfactory to minimize the number of negative signs in each column of 
R without demanding a maximum positive sum. 

64. Add the diagonal value for each column to the sum for that column 
in row B. These are the sums +.137, +.723, ... , +.572 in row D at the 
bottom of Table 2. 

65. Add all the entries in row D. This sum is 3.873. 
66. Add all of the entries in each row of Table 2, including the diagonal, 

and record in column D at the extreme right of the data sheet. The row 
and column sums D for the same test should agree. 

67. Add all the entries in column D. This sum is 3.873, which agrees 
with the sum in step 65. This is the value r~1 of equation (19-iii). 

68. The multiplier _ }1 is obtained in the same manner as described in 
v r2t 

steps 11 and 12 for Table 1. Its value is .508132. 
69. Multiply each sum in row D by .508132 and record in row E. These 

are the second-factor loadings, a!J' of equation (19-iii). The signs of these 
loadings are those of the reflected variables. 



250 THE VECTORS OF MIND 

EXAMPLES: afi' = .508132(+.137) = +.070. 

a~~' = .508132(+. 723) = +.367. 

aw = .508132(+.572) = + .291. 

70. Check: Add all the entries in row E and compare with V r~t· 
EXAMPLE: "2E = 1. 969 . 

v~t = 1.96s. 

71. Copy the values of row E in row K, with sign reversed for each test 
which has been reflected an odd number of times; i.e., for each test which 
has the last recorded sign negative before its variable number. 

EXAMPLE: Tests 2, 4, and 6 have the last recorded sign negative before 
their variable numbers, since each test has been reflected once. Conse­
quently, their loadings in row K take signs opposite to those in row E. 

72. The sum of the loadings in row K should be approximately zero if a 
centroid system has been obtained. This sum for Table 2 is +.029. 

73. Copy the values of row K as the second column of Table 7. These are 
the second-factor loadings of the unreflected tests. 

74. Take a new data sheet and label it "Second-Factor Residual Coeffi­
cients: ra.ik" as shown in Table 4. 

75. Proceed, as in steps 18 through 73, to determine the second-factor 
residual coefficients, ra.ik, and the third-factor loadings. These calculations 
are shown in Table 4. 

Tests 4, 8, and 9 were reflected in Table 4. The sign table is shown in 
Table 5. 

76. The third-factor residual coefficients, r4·ik, shown in Table 6, are suf­
ficiently small to ignore. Consequently a fourth factor was not determined. 

77. Table 7 shows the projections of the nine tests of this example on the 
.three centroid axes obtained. This is the nXr matrix F of the fundamental 
factor theorem FF'=R .. 



APPENDIX II 

A METHOD OF FINDING THE ROOTS OF A POLYNOMIAL 

Consider a polynomial of the type (14-iv), 

where r is a positive integer, co~O, and eo, c1, ... , c, are real coefficients. 
The r roots, {3, of this equation are desired. Determine the upp~r and lower 
limits* of the roots of this equation. Let a trial value of {3 within these 
limits be {3'. If {3' is a root of the polynomial j(.6), then by the Remainder 
Theorem, t f(f3') = 0. The numerical value of f(f3') may be determined on an 
electric calculating machine by computing f((3)/(f3-{3') by the process of 
synthetic division.t Consider the sign of the numerical value of f(f3') and 
select a second trial root, designated {3", which will give f(f3") opposite in 
sign to that of j({3'). When two such trial values of {3 are found, there is at 
least one root** between them. Determine a third trial value, {3'", by linear 
interpolation betweenj(.B') andf(f3"). If the valuef(f3"') =0, then {3"' is one 
of the r roots of the polynomial. If j({3'") ~ 0, interpolate for successive trial 
values until that value of {3 is found for which the remainder, j({3), is zero 
to as many decimals as required. 

Repeat this process for each of the r roots of the polynomial by taking 
trial values in other regions between the upper and lower limits of the roots. 
In the method of principal axes of chapter iv, a very useful first approxima-.,. 
tion for each root, f3m, of the characteristic equation is - :2: aJm for each 

j=l 

column m of F, when eo, Ct, ••. , er are all positive. 
Table 2 shows the application of the method of synthetic division in cal­

culating one of the roots of equation (27-iv), 

(34 + 6.965369(33 + 10.810494{32 + 5.407203{3 + .840052 = 0. 

The upper limit of the roots of this equation is any positive number; the 
lower limit is -7.965369. Since the equation for this example is from the 

* L. E. Dickson, First Course in the Theory of Equationa (New York: John Wiley & 
Sons, 1922), pp. 21-23. 

t Ibid., p. 12. t Ibid., pp. 13-15. ,... Ibid., p. 67. 
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n 

method of principal axes, the first trial value (:3' = -5.011317 = - L a]1 

i=l 
from Table (6--iv). Sincef(/3') is negative, (:3"= -5.020000 was chosen arbi­
trarily to secure a positive value of f(f3"). Linear interpolation between 
f((:3') and f(f3") gave the third trial value, (:3'" =-5.019710. Linear in­
terpolation between j({3'") and f(f3") gave the fourth trial value, {3"" = 
-5.019712, for which the value of the polynomial is +.000018. Hence, one 
root of this equation is -5.019712. 

The values of f({3) in each row of Table 2 were determined by the equa­
tions in their corresponding rows of Table 1. In actual application, it is 
possible to carry out the r calculations in each row on a calculating machine 
without recording any of the values except the rth one in the column 
headed f(/3). 

Table 1 

{3' 13' 13' {3 f(/3) 

Trial Trial {3 

eo Cl "' ea "' --
1 ..... c1 +co,B' = cf ~+cf,B' =c~ ca+cl.B' =c~ c4 +c~,B' = c~ ,B' 
2 ..... c1 +co,B" = cf' c2+cf',B" =c~' ea +cl' ,B" = cj' c, +c§' (3" =er (3" 
3 ..... c1 + eo(3'" = cf" c2+cf"{3'" =c~" c3+c~"f3"' =c~" c, +c;" ,B'" = c~" (3"' 
4 ..... Cr +cof3"" = cf'" c2 +ci"' fi"" =er" cs+c~"'f3"" =c~"' c4 +c~"' {3''" =c4"' (3"" 

Table 2 

f3' fJ' fJ' {3 f(/3) 

Trial -- Trial P 
1.0 +6.965369 +10.810494 +5.407203 .840052 

1 ...... 1.954052 1.018120 .305081 -.688806 -5.011317 
2 ...... 1.945369 1.044742 .162598 +.023810 -5.020000 
3 ...... 1.945659 1.043850 .167379 - .000142 -5.019710 
4 ...... 1.945657 1.043856 .167347 +.000018 -5.019712 



APPENDIX Ill 

A METHOD OF DETERMINING THE SQUARE ROOT ON 
THE CALCULATING MACHINE 

Newton's* iterative method of determining square roots may be used 
very advantageously on the calculating machine, using Barlow's Tables to 
determine the first trial value of the square root. 

Let N be the number whose square root is desired, and let x0 be the first 
trial value for the VN derived from Barlow's Tables. Determine N/xo on 
the calculating machine, and record it. 

Compute a new trial value, X1 = .5(xo+N /xo) by determining the cumula­
tive sum of the two products, (.5xo) and [.5(N /xo)]. Determine N jx1• If 
the two values Xt and N /x1 are the same to as many decimals as desired, 
then V N = x1 = N / x1. If these two values differ, this process may be re­
peated for as many trials as are necessary to find that trial value x which 
agrees with N /x to the required number of decimals. 

EXAMPLE 

N = 42.072. 

Xo V42.07 in Barlow's Tables= 6.4861391. 

N 
6 .48644 738 . 

Xo 

.5xo + .5(:) 6 .48629324 . 

N 6 .48629324 . 

*E. T. Whittaker and G. Robinson, The Calculus of0bservation8 (London: Blackie & 
Son, 1926), pp. 79-80. 
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