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(1.) Introductory,

There are few branches of the Theory of Evolution which appear to the mathematical 
statistician so much in need of exact treatment as those of Regression, Heredity, and 
Panmixia. Round the notion of panmixia much obscurity has accumulated, owing to 
the want of precise definition and quantitative measurement. The problems of 
regression and heredity have been dealt with by Mr. F r a n c is  G a l t o n  in his epoch- 
making work on e Natural Inheritance/ but, although he has shown exact methods of 
dealing, both experimentally and mathematically, with the problems of inheritance, it 
does not appear that mathematicians have hitherto developed his treatment, or that



biologists and medical men have yet fully appreciated tha t he has really shown how 
many of the problems which perplex them may receive a t any rate a partial answer. 
A considerable portion of the present memoir will be devoted to the expansion and 
fuller development of Mr. GA l t o n ’s  ideas, particularly their application to the problem 
of bi-parental inheritance. A t the same time I shall endeavour to point out how the 
results apply to some current biological and medical problems. In the first place, we 
must definitely free our minds, in the present state of our knowledge of the mechanism 
of inheritance and reproduction, of any hope of reaching a mathematical relation express- 
ing the degree of correlation between individual parent and individual offspring.* The 
causes in any individual case of inheritance are far too complex to admit of exact 
treatment ; and up to the present the classification of the circumstances under which 
greater or less degrees of correlation between special groups of parents and offspring 
may be expected has made but little progress. This is largely owing to a certain 
prevalence of almost metaphysical speculation as to the causes of heredity, which 
has usurped the place of th a t careful collection and elaborate experiment by which 
alone sufficient data might have been accumulated, with a view to ultimately narrow
ing and specialising the circumstances under which correlation was measured. We 
must proceed from inheritance in the mass to inheritance in narrower and narrwoer 
classes, rather than attempt to build up general rules on the observation of individual 
instances. Shortly, we must proceed by the method of statistics, rather than by the 
consideration of typical cases. I t may seem discouraging to the medical practitioner, 
with the problem before him of inheritance in a particular family, to be told that 
nothing but averages, means, and probabilities with regard to large classes can as 
yet be scientifically dealt with ; but the very nature of the distribution of variation, 
whether healthy or morbid, seems to indicate that we are dealing with that sphere of 
indefinitely numerous small causes, which in so many other instances has shown itself 
only amenable to the calculus of chance, and not to any analysis of the individual 
instance. On the other hand, the mathematical theory will be of assistance to the 
medical man by answering, inter alia, in its discussion of regression the problem as 
to the average effect upon the offspring of given degrees of morbid variation in the 
parents. I t  may enable the physician, in many cases, to state a belief based on a 
high degree of probability, if it offers no ground for dogma in individual cases.

One of the most noteworthy results of Mr. F r a n c is  GAl t o n ’s researches is his 
discovery of the mode in which a population actually reproduces itself by regression 
and fraternal variation. I t  is with some expansion and fuller mathematical treatment 
of these ideas that this memoir commences.
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* The physical and arithmetical statements of W eismann’s “ Theory of Germ Plasm ” offer, so far as I 
have heen able to interpret them, no sound basis for a quantitative theory of hered ty in the mathemati
cian’s sense.
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(2.) Definitions.

It is necessary to give definitions to several current biological conceptions, in 
order to introduce them into our mathematical analysis.

(a.) Variation.—If a curve be constructed, of which the ordinate y is such that 
y 8x measures the frequency with which an organ lying in size between x and x -f- Sa;,
occurs in a considerable population (500 to 1000 or more), the constants which, for 
any particular organ for any particular animal determine the form of this curve, are 
termed the constants o f variation, or more briefly, the variation of the given organ.

The assumption is made that the frequency is continuous, or that we really reach a 
curve. In the great majority of cases, where real statistical methods have been used, 
continuous curves (or, practically, polygons) have been found, and we shall assume this 
continuity to hold in all cases to which our formulae are applied.

The size of the organ ( x )which corresponds to the ordinate (y) through the 
centroid of the frequency curve, is termed the mean; the size of the organ, which 
corresponds to the ordinate bisecting the area of the frequency curve, is termed the 
median; the size of the organ corresponding to maximum frequency is termed the mode.

We assume, what may be considered as fairly established, that variation curves in 
zoometry, and more especially anthropometry, approximate closely to probability 
curves. When the variation curve has more than one mode, it may, as a rule, be resolved 
into simple probability curves, each with a single mode, and it may be even hetero
geneous and require resolution, when only one mode is apparent.* These probability 
curves may be skew, and in this case the treatment of the problem of heredity involves 
a discussion of skew-correlation,t but in a very great range of cases the frequency 
is sufficiently closely given by the normal probability curve. Here the variation is 
defined by a single constant,| the standard deviation <r, and the equation to the curve 
is given by

y —
N

\ /  27
-**/(2<r*)

9

and we shall confine our attention to such variation in the present memoir. The 
following assumption, therefore, lies at the basis of our present treatment of heredity. 
The variation of any organ in a sufficiently large population—which may be selected 
in any manner other than by this organ itself from a still larger population— 
is closely defined by a normal probability curve.

(6.) Correlation.—Two organs in the same individual, or in a connected pair of

* On resolution and skew variation, see ‘ Contributions to the Mathematical Theory of Evolution,’ 
Memoirs I. and II., ‘ Phil. Trans.,’ vols. 185 and 186.

t  Dealt with in a memoir not yet published.
J Inheritance can be treated by single-constant variation in the case of most organs in human adults, 

but it could not be dealt with in like manner in the of case pedigree buttercups, see D b VRiES : * Berichte 
dor Deutschen Botanischen Gesellschaft,’ 1894 and 1895.



individuals, are said to be correlated, when a series of the first organ of a definite size 
being selected, the mean of the sizes of the corresponding second organs is found to be 
a function of the size of the selected first organ. If the mean is independent of this 
size, the organs are said to be non-correlated. Correlation is defined mathematically 
by any constant, or series of constants, which determine the above function.

The word “ organ ” in the above definitions of variation and correlation must be 
understood to cover any measurable characteristic of an organism, and the word 
“ size,” its quantitative value.

(c.) Natural Selection.—This is of two kinds : Secular Natural Selection is 
measured by the changes due solely to mortality, in the mean and standard deviation # 
of the vaiiation-curve as we pass from one adult generation to the next. In 
statistical observations on man it is by no means easy—as we shall indicate later-—to 
differentiate it from the effects of sexual selection, and of altered sanitary conditions.

Periodic Natural Selection may leave no trace of itself in the adult variation-curves 
of successive generations ; it is measured by the changes due solely to mortality in 
the mean and standard deviation of the variation curves at successive stages of the 
same generation—due allowance being made for the changes of the valuation-constants 
due to growth. In other words, if we watched a generation from birth to the adult 
stage, carefully preserving it from any form of selective mortality, such as arises from 
the struggle for existence, we should still find changes in the variation-constants due 
to the law of growth. If now the same generation be subjected to the struggle for 
existence, i.e.,placed in its natural surroundings, the variation-constants will differ 
from their values at the corresponding stages of the unselected growth. This 
difference is due to the selective mortality, i.e., to natural selection. But this 
selective mortality may go on and still leave the variation-constants of the adult 
stage of each generation the same. In this case we speak of it as periodic natural 
selection. It repeats itself in each generation, but produces no secular change. I t  
maintains an adult standard, but is not a factor of progressive evolution.

No estimate of periodic natural selection can be formed until the law of growth 
has been accurately ascertained by a series of observations on individuals. The 
influence of secular natural selection will be allowed for in our investigations by 
supposing the means and standard deviations of successive adult variation-curves to 
be not necessarily the same.*

(d.) Sexual Selection.—Sexual Selection! is of two kinds, due respectively to what

* Variation-curves for non-adult populations appear to be frequently skew. I propose in another 
paper to discuss the general law of selection on the basis of skew curves and with any arbitrary law of 
growth.

f  I think Darwin’s view would be of the following kind. Let A be the most attractive female, a the 
most efficient male, Z the least attractive female and the least efficient male. Then supposing only 
these four, a and z would both desire A with the result that (1) a would drive away z or (2) kill him.
In the first case z would be free to mate with Z, but if he did so they would tend to produce a miserable 

MDCCCXCVI.— A. 2 L
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may be spoken of as individual and tribal taste. Tribal taste manifests itself in the 
preference of one sex as a whole for mating with members of the other sex having 
special characteristics, or to the rejection as mates by one sex of members of the 
other having special characteristics. The preference and rejection being in neither 
case absolute, but relative. This type of sexual selection, which may be spoken of as 
preferential mating, is measured by the differences in mean and standard deviation 
between the variation-curves for the whole adult population of one sex, and for the 
mated portion of it. For example, the mean height and mean variation in height of 
women generally are not identical, or are not necessarily identical with the mean 
height and mean variation in height of wives. Preferential mating may have 
reference to any organ or measurable characteristic of either sex.

Individual taste on the other hand does not denote the exclusion from mating of 
any section of the population of either sex. I t is due to the preference of individuals 
with an organ or characteristic of given size for mates with the same or another 
organ or characteristic of a size, the average of which differs from the whole popula
tion average. This type of sexual selection which may be spoken of as assortative 
mating is measured mathematically by the coefficient of correlation between the two 
organs or characteristics in mated pairs.

I t will be obvious that preferential mating and assortative mating are fundamental 
ideas to be quantitatively allowed for in any theory of heredity. Their action may 
often be in entirely opposite directions. *

(e.) Reproductive Selection.—One pair may produce more offspring than another, 
and in this manner give through heredity greater weight to their own characteristics. 
For example, the mean height of mothers is not identical, or is not necessarily 
identical with the mean height of wives, nor is the standard-deviation of fathers 
identical or necessarily identical with the standard-deviation of husbands. Further, 
the means and standard-deviations of mothers or fathers of sons may be different 
from those of mothers or fathers of daughters. The quantitative measure of repro
ductive selection is the correlation between the size of any selected organ in either 
male and female and their reproductivity, the reproductivity being measured by the 
number of their offspring in either sex or both sexes.

offspring fated to die out. Of course a might in certain cases after (1) mate with both A and Z. None 
of these possibilities corresponds exactly to what is described in this section as assortative mating, which 
in no way necessitates the exclusion from mating of a and z are not indeed competitors, but seeking 
different qualities in their mates. Thus, in man for example, the intellectual and non-intellectual might, 
and possibly do, sort themselves out in pairs, i.e., there is a correlation between intellectual capacity of 
husband and wife.

* For example, preferential mating might lead in a highly social community to the rejection of 
consumptive mates, while assortative mating might, through localisation or community of habit, lead to 
considerable consumptive correlation. Thus sexual selection as a whole may influence in diverse ways 
the inheritance of the consumptive taint.



The importance of determining whether there is any correlation between repro
ductivity and a given organ of either parent appears to be great. For, if there be, it 
is not easy to understand how, even in the absence of both natural and sexual 
selection, a population can remain in a stable state. For example, suppose the mean 
father or the mean mother or both to be taller than the mean man or the mean 
woman or both, then this reproductive selection would appear to involve a gradual 
increase of height in the population in the same manner as selective breeding of 
animals by man might do. I t is probable, therefore, that if reproductive selection be 
demonstrated by a finite value of the correlation constants, the instability of the 
population which results is partially or completely screened by natural selection.*

{/.) Heredity.—Given any organ in a parent and the same or any other organ in 
its offspring, the mathematical measure of heredity is the correlation of these organs 
for pairs of parent and offspring. If the organs be the same for parent and offspring, 
the heredity may be spoken of as direct, if they be different as cross. The word organ 
here must be taken to include any characteristic which can be quantitatively measured.

If the organs are not those of parent and offspring, but of any two individuals 
with a given degree of blood, relationship, the correlation of the two organs will 
still be the proper measure of the strength of heredity for the given degree of 
relationship. Cf. § 6.

(y.) Regression.—[Regression is a term which has been hitherto used to mark the 
amount of abnormality which falls on the average to the lot of offspring of parents of 
a given degree of abnormality. The mathematical measure of this special regression 
is the ratio of the mean deviation of offspring of selected parents from the mean of 
all offspring to the deviation of the selected parents from the mean of all parents. 
This may be further elucidated as follows :—Let parents, having an organ or charac
teristic of given deviation from the average or normal, be termed a “ parentage/’ let 
the offspring of a parentage be termed a “ fraternity.” Then the coefficient of 
regression may be defined as the ratio of the mean deviation of the fraternity from 
the mean offspring to the deviation of the parentage from the mean parent. Both 
parentage and fraternity may be either male or female. I t will be noted that we 
have so framed our definition of regression, that it marks the deviation of the 
fraternity from the filial and not the parental mean. Ŵ e are thus able to allow for 
secular natural selection and reproductive selection. We shall see in the sequel that 
the coefficient of regression is a function of the variations in parents and offspring, 
and further of the correlations which define parental heredity and assortative mating. 
Further, as in heredity, the deviation or abnormality in parentage and fraternity may 
be measured with respect to the same or different organs; we have thus direct and 
cross regression.

From this special definition of regression in relation to parents and offspring, we
* I hope shortly to publish a paper on “ Reproductive Selection in Man, ’ and show how completely 

it appears to screen Natural Selection in the case of civilised man.
2 L 2
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may pass to a general conception of regression. Let A and B be two correlated organs 
(variables or measurable characteristics) in the same or different individuals, and let 
the sub-group of organs B, corresponding to a sub-group of A with a definite value a, 
be extracted. Let the first of these sub-groups be termed an array, and the second a 
type. Then we define the coefficient of regression of the array on the type to be 
the ratio of the mean-deviation of the array from the mean B-organ to the deviation 
of the type a from the mean A-organ. The following are illustrations of types and 
arrays:— -
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Type. Array.

Organ of given magnitude in— Distribution of the correlated organs in—
P a r e n t ...................................... Fraternity.
Offspring . . . . Parentage.
Wife. . . . . . . . . Male matage.
H u s b a n d ................................. Feqiale matage.

Given value of— Distribution of correlated—
Height . . . . . . . . Spans.
Cephalic i n d e x ...................... Alveolar indices.
Barometric height . . . . Heights at second station.
Local w a g e s ........................... Local pauper percentages.

Etc. Etc.

It will be seen in the sequel that for the same pair of correlated organs or charac
teristics, the coefficient of regression is, if the law of frequency be the normal law, 
the same for the arrays corresponding to all types. But the coefficient is not the 
same when the type and array organs are interchanged, the regression of
husbands (male matage) on wives is not the same as the regression of wives (female 
matage) on husbands.

(A.) Panmixia.—Suppose that starting from a population of given mean and varia
tion for any particular organ, secular natural selection of definite amount takes place 
for p generations and produces a population of another definite mean and variation 
for this same organ. Now suppose natural selection, whether periodic or secular, to be 
suspended for q generations, and sexual selection to be non-extatit or negligible, then 
those members of the general population which were formerly weeded out, will now 
mix with all the other members of the population, and the results of interbreeding 
are spoken of as panmixia. The mathematical measure of the result on the given 
organ of panmixia acting for q generations is the change in mean and variation of 
the population with regard to that organ during these q generations. Should the 
mean and variation of the population tend with increase of q to approach the mean 
and variation of the population p  +  qgenerations previously, panmixia may be said to 
reverse natural selection.
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We have now defined the chief factors which will be dealt with in the present 
memoir, and shown how they are to be quantitatively measured. We shall now pro
ceed ta  their mathematical analysis on the fundamental assumption that the variations 
with which we are about to deal obey the normal law of frequency.

(3.) Correlation with special reference to the Problem of Heredity.

(a.) Historical.—The fundamental theorems of correlation were for the first time 
and almost exhaustively discussed by B r a v a is  (‘Analyse mathematique sur les pro
babilities des erreurs de situation d’un point.’ Memoires par divers Savans, T. IX., Paris, 
1846, pp. 255-332) nearly half a century ago. He deals completely with the correlation 
of two and three variables. Forty years later Mr. J. I). H a m il t o n  D ic k so n  (‘Proc. 
Boy. Soc./1886, p. 63) dealt with a special problem proposed to him by Mr. G a l t o n , and 
reached on a somewhat narrow basis* some of B r a v a is ’ results for correlation of two 
variables. Mr. G a l t o n  at the same time introduced an improved notation which may be 
summed up in the ‘ G a l t o n  function ’ or coefficient of correlation. This indeed appears 
in B r a v a is ’ work, but a single symbol is not used for it. I t will be found of great value 
in the present discussion. In 1892 Professor E d g e w o r t h , also unconscious of B r a v a is ’ 

memoir, dealt in a paper on ‘Correlated Averages’ with correlation for three variables 
(‘Phil. Mag.’ vol. 34,1892, pp. 194-204.) He obtained results identical with B r a v a is ’, 

although expressed in terms of * G a l t o n ’s functions.’ He indicates also how the 
method may be extended to higher degrees of correlation. He starts by assuming a 
general form for the frequency of any complex of n organs each of given size. This 
form has been deduced on more or less legitimate assumptions by various writers. 
Several other authors, notably S c h o l s , d e  F o r est  and C z u b e r , have dealt with the 
same topic, although little of first-class importance has been added to the researches 
of B r a v a is . T o Mr. G a l t o n  alone is due the idea of applying these results— 
usually spoken of as “ the laws of error in the position of a point in space ”—to the 
problem of correlation in the theory of evolution.

The investigation of correlation which will now be given does not profess, except 
at certain stated points, to reach novel results. I t endeavours, however, to reach 
the necessary fundamental formulae with a clear statement of what assumptions are 
really made, and with special reference to what seems legitimate in the case of 
heredity.

(b.) Theory of Correlation.—Let rj2) . . be the deviations from their
respective means of a complex of organs or measurable characteristics. These organs 
may be in the same or in different individuals, or partly belong to one and partly to 
another individual. The complex may be constituted by a natural or artificial tie

* The coefficient of correlation was assumed to be the same for the arrays of all types, a result which 
really flows from the normal law of frequency.
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of any kind, but the tie is to remain the same for every complex, whether it be the 
result of mating or parentage, or flow from any physiological or social relation, &e.

We shall now assume that the sizes of this complex of organs are determined by a 
great variety of independent contributory causes, for example, magnitudes of other 
organs not in the complex, variations in environment, climate, nourishment, physical 
training, various ancestral influences, and innumerable other causes, which cannot be 
individually observed or their effects measured. Let these causes be m in number, 
m being generally much greater than n, and let their deviations from their mean 
intensities be e1, e2, e3, . . . em, then 7]lt v)2, rj3,. . . r)n will be functions of e1, e2, e3, 
Further, certain of the es will appear only in certain of the s, and the e’s will not 
be fully determined for a given rj complex.

We shall in the next place assume that the variations in intensity of the contri
butory causes are small as compared with their absolute intensity, and that these 
variations follow the normal law of distribution.* The mean complex being reached 
with the mean intensities of contributory causes, we have by the principle of the 
superposition of small quantities : •

Vi — a n € i  +  a ia e2 +  a 13e3 +  • • 

^ 2  =  a 2 le l  +  a 22e 2 +  a 23€3 +  ' *

i

a«lel "b a«2e2 ~b a»2e3 “b • • • “b J

. (i).

Here any of the system of as may be zero.
Further, the chance that we have a conjunction of contributory causes lying 

between ej and €2 +  Sej, e2 and e2 +  8e2 . . . em and em +  Bem will be given by

P =  Ce“ ^  + 2$ +^ +'“ +2̂  X S e^ S es, . . . 8m, ....................... (“ )

where the standard deviations of the variation distributions for e1} e2, e3, . . . e» are 
respectively #Cj, k2, k3, . . .  Kn} and C is a constant.

Now by aid of the equations (1.) let n of the variables e, say, the first , be replaced 
by the variables then the probability that we have a complex with organs lying 
between Vl and Vl +  % and % +  8 ^ .  . . and rjn +  8^, together with a series
of contributory causes lying between en+1 and ell+l +  8e„+1, en+2 and en+2 +  oe,/+2 . .  . 
and em -j- will be

P ' =  C 'e~ ^ 3 S^1 . • . 8^» Sew+i 8en+2 . . • 8ew

* This may be taken at any rate as a first, approximation. It is at this point that the theory of skew- 
correlation diverges from our present treatment.



where C is a constant, a function of C and the s, and consists of the following 
parts:—

(i.) A quadratic function of the t/ s from 7)l to rjn,
(ii.) A quadratic function of the e’s from en+1 to eM)
(iii.) A series of functions of the type :

€n +l  ( b l , n + l V l  +  ^ 2 ,« + 1 ^ 2  +  • ' • • +  K, n+lV)n)>

e»+2 (b l,n + 2 V l 4" >̂2,n+2'f]2 +  • • • 4~ ^n,n+ 2^n)i

€m (^1, mVl4" ^2, 4" * • • 4* m7)n),

where some of the 6’s may be zero.
Now if P' be integrated for the values from — oo to +  oo of all the contributory 

causes e*+1, en+2 . . . em we shall have the whole chance of a complex with organs falling 
between tj1 and rfo -f- Brj1} r)2 and r)2 +  Br)2 . . . v)„ and rjH -j- Brjn. But every time we
integrate with regard to an e, en+1) say. we alter the constants of each contributory part 
of <£2, but do not alter the triple constitution of <£2, except to cause one e to disappear 
from its (ii.) and (iii-) constituents. At the same time we alter C' without intro
ducing into it any terms in rj. Thus, finally, after m — integrations, <f>2 is reduced 
to its first constituent, or we conclude that the chance of a complex of organs between 
i?! and rj1 -f- Brfo, and rj2 -J- Brj2 . . . r)fland r)n +  BrjH occurring is given by

P =  Ce“lx* Brjl Brjz. . . Brju ...(iii.)

where îs a quadratic function of the rjs. This is the law of frequency for the 
complex.

Now our deduction of (iii.) seems to have considerable justification in case of 
heredity. We allow for an indefinite number of quite inappreciable and unascer- 
tainable independent contributory causes. We suppose that some of these causes 
are common to parent and offspring; how many and in what degree we make no 
pretence at saying. We assume, however, that the action of these causes does not 
differ very widely in intensity throughout the special range of organisms from which 
our complexes are drawn, and further, that the variation in intensity of any con
tributory cause follows that law of frequency, which we know to be at any rate 
approximately true, for distributions of physical and organic variation similar in 
character to those in which we may with a high degree of probability suppose the 
phenomena of heredity to ultimately have their origin.

Having thus deduced, with special reference to our particular topic, Bravais’ law 
of frequency, I propose to consider its characteristics in two special cases, as it is 
needful to deduce for our present purposes one or two, I believe, novel results.
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(4.) Special Case o f Two Correlated Organs.

(a.) Theory.—Let x and y be the deviations of a pair of organs (or measurable 
characteristics) from their respective means. Let crj and <r2 the standard devia
tions of x  and y, treated as independent variations. Let N be the total number of 
pairs and z X 8x 8y the frequency of a pair falling between x and -f Sx, and 
y +  Sy, then, by Bravais’ form,

v  —  O x  e“(w#*+2**y+w*) 

where glt g2, and h are constants.
Integrate z for all values of y from — a to -f- a, and we must have the normal 

curve of ̂ -variation, hence

2^5 =  9\ 0  —

Similarly integrating z for all values of x, we have

2“ 1  =  9i(!  -  h V 9 i9 a ) -

Now integrate z for all values of x  and y to obtain the total frequency, and we 
have

N =  Cir/ \ /g xg2 — a. .M

If we now write r for — h/ \ / 9 \ 9 z >  we can throw z into the form

N 1 r jg8 y2 .
Z =   ----------------- 7=  ,  e4 W ( l - r * )  <r1<r!!(l-r® ) +  <r/(l-r=*);47T<r1<r3 v l — t1

(b.) On the best Value o f the Correlation Coefficient.— This is the well-known 
Galtonian form of the frequency for two correlated variables, and r is the Galton 
function or coefficient of correlation. The question now arises as to what is 
practically the best method of determining r. I do not feel satisfied that the 
method used by Mr. G a l t o n  and Professor W e l d o n  will give the best results. The 
problem is similar to that of determining cr for a variation-curve, it may be found from 
the mean error or the median, but, as we know, the error of mean square gives the 
theoretically best results.

Let the n pairs of organs be x lt yx, x2> y2, x$, ys, &c. . . .  then the chance of the 
observed series for a given value of r varies as
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1 if g|2 _ + 2/i2 •)
2 (. o-!2 (1 -  r2) o-io-jj(1 -  r2) <ra2(1 -  r2) f

, f **2 _ 2*W + 2/2* ■)
X  6  4 l  n 2 (1 -  r2) <ra«r,0 “  o-22 ( l  -  »-2) )

f  a82 _  . y32 ■)
X  6  * lo - 12(l —r2) cri<ra ( l  — r2)  <r22( l  —r2) I

X  . ,  . .

or, S denoting summation, since tr /  =  S ( =  S ( , the chance varies as

(1 — ?,2)i

where A is written for S {xy)l{n<rx<r2)t and S corresponds to the product-moment 
of dynamics, as S ( x2) to the moment of inertia.

Now, assume r  to differ by p from the value previously selected, and expand by 
T a y l o r ’s theorem, after expressing the function, in the following manner :—

U r — (1 __ r2)i»

We have

1 t 1 , (1 +  r2) ( \  — ,log UT.„ =  -Jlog Ur  +  p  +1 \  (2r3 +  6r) — 1 — 6r2 — i A 
_  r2̂ 2 r • 2 __ rŝ 3

+
j \  (6 +  3.6r2 -f 6r4) -f 4r5 — 6r4 — 28rs — 18r 8 
¥  ' U  7 i ■ 9N4.' " P  H" & C .(1 -  r2)

Hence log ^  and therefore ur is a maximum when r  =  A, for the coefficient of 
is then negative. Thus, it appears that the observed result is the most probable, 
when r is given the value S (xy)f{no-1cr2). This value presents no practical difficulty 
in calculation, and therefore we shall adopt it. It is the value given by Bravais, 
but he does not show that it is the best.#

(c.) Probable Error of the Correlation Coefficients.—Assuming that r has this 
value, we may put A =  r in the above result, and we find

%r+p — UrS
»t(l + r2) p2 2nr (r2+3) p3 
(1—r2)2 2 -  (X -r2/3 3 -  &c'

Now ur+p is the chance of the observed series on the assumption that the coefficient

* It seems desirable to draw special attention to this best value of the correlation coefficient, as 
it has hitherto been frequently calculated by methods of somewhat arbitrary character, involving only 
a portion of the observations.
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of correlation ris r +  pinstead of r.Hence the above is the law of distribution of
variation in the coefficient of correlation. If the second term be negligible as com
pared with the first, we see that p follows the normal law of distribution. Thus we 
may say that with sufficient accuracy for most cases the standard deviation of a 
coefficient of correlation is

1 — r2 •
\/n(1 +  r2) ’

. * 1 — T3
or its probable error =  '674506 *

The ratio of the first term neglected to the term retained

__ ± r  (r2 4- 3)
— 3 (r2 +  i )  ( i  _  r2) />’

or to determine the order, giving p its probable value oil a first approximation, we 
have

1 r /y* + 3 )
ratio =  I x/ n (r2 + X *674506.

This may be shown to be a maximum for =  1 , and the ratio then takes the value 

or the second term in this most unfavourable case will only be about 4 per
v n

cent, of the first when n = 1 0 0 0 . For r =  *5, the ratio takes the value 1 * 0 4 6 / or 
for n =  1000 is about 3'3 per cent.

I t will be sufficient, therefore, for most practical purposes to assume that the 
probable error of a coefficient of correlation

=  - 6 7 4 5 0 6 ^ ^ ; ^ .

(<A) Constancy of Correlation Coefficients for Local Races.—This result is not only 
of importance in dealing with the problem of heredity, it is crucial for determining 
whether constancy of correlation is characteristic of all races of the same species. 
Mr. Galton has suggested that the coefficient of correlation might be found to be 
constant for any pair of organs in different families of the same race. Professor 
Weldon has determined a series of coefficients of correlation for shrimps and crabs, 
which he thinks justify him in assuming “ as at least an empirical working rule that 
Galton’s function has the same value in all local races. The question whether the 
empirical rule is rigidly true will have to be determined by fuller investigation, 
based on larger samples.”*

26G PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

# ‘ Roy. Soc. Proc.,’ vol. 54, p. 329, 1893.



Now whether the sample be large enough or not seems to depend on the just 
determined value of the probable error, and in Professor W eldon’s case the probable 
error is so small, as compared with the value determined for Galton’s function, 
that I think we may safely draw conclusions from his results.

Taking the case of shrimps, we have for the most reliable determination of r, that 
for total length of carapace and length of post-spinous portion* :—

PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 2 G7

» n. r. p.e. of r.

Plymouth . . . . 1000 •81 •0057
Southport . . . 800 •85 •0050

Thus the difference between the r ’s is not very large, but still between five 
and six times the probable error (*0075) of their difference.

Taking two cases from Professor W eldon’s results for crabs,t with of con
siderably different order, we have :—

1 n. r. p.e. of r.

Breadth, frontal, and . . . . f Naples 1000 •29 •0187
R. antero-lateral margin . . Plymouth 1000 •24 •0196

R. antero-lateral margin, and . f Naples 1000 •60 •0117
L. dentary m a r g in ...................... \ Plymouth 1000 •70 •0089

With these probable errors the identity of the first pair of v s is unlikely ; the 
identity of the second excessively improbable.

The conclusions therefore to be drawn from our results are these The samples 
taken were sufficiently large to determine v with close practical accuiacy. Hence, 
therefore, unless there were large errors of measurement, or in the determination of r, 
the evidence of these observations is against the constancy of Galton’s function for 
local races of the same species. If the differences in the values of r be attributable 
not to deviation in the sample from the mean, but to experimental eiror 01 to 
methods of calculation, then it would appear that the methods adopted or the 
measurements are not sufficiently close to supply an answer to the problem proposed, 
it being an essential condition of the requisite observations that the experimental, or the 
arithmetic error shall be less than the probable error of the sample. It seems to me 
extremely improbable that the divergence should be due to errors of measurement,^ 
and Professor W eldon’s papers, I venture to think, illustrate not the constancy of

* * Roy. Soc. Proc.,’ vol. 51, p. 2, 1892.
•f* i Roy. Soc. Proc./ vol. 54, p. 327,1893.
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correlation in species, but the equally interesting point of the extent and manner of 
its variation in local races.

(5.) Regression, Uniparental Inheritance, and Assortative Mating,

(a.) General Formula.—On the basis of the above discussion we can obtain the
formulae requisite for calculating scientific measures of uniparental inheritance 
and assortative mating.

Let male or female parents solely be kept in view, and let male or female parents 
be considered which have an organ or measurable characteristic differing h from that 
of the general population of male or female parents. Then the frequency of a 
variation x in the same or any other organ of the offspring is given by

N 1 , f \z — ----------77----- -  ,2tto-iO-3 ^(1 -

The offspring, therefore, have variation following a normal distribution about the 
mean

and with standard deviation oq ^ /(l -r . r2).

Hence, by our definition, the coefficient of regression =  x jh  =  and the
variability of the offspring of the selected parents is reduced from that of the 
general population of offspring in the ratio of — r2) to 1. We thus have a 
measure of the manner in which selection of parents reduces the variability in 
offspring, i.e., tends to make the latter closer to a definite type. This result is achieved 
even with promiscuity in the case of one parent, if there be selection in the case of 
the other. The greater closeness of approach to type when both parents are selected 
will be dealt with under biparental inheritance.

We note that the coefficient of regression and the restriction of variability are the 
same whatever type of parent be adopted, or the closeness with which selection leads 
to a given type of offspring is independent of the parent adopted and the type of 
offspring which results from this parent.*

* This is, of course, true of the regression and variability of the array corresponding to any type 
whatever, when frequency follows the normal law. Mr. Gr; U. Yule points out lo me that if the 
coefficient of regression be constant for the arrays of all types, then it follows that whatever be the law of 
frequency, the coefficient of regression must =  ra fa %, where r — S This much generalises
the formula. At the same time, in the case of skew-correlation, the coefficient of regression usually 
varies with the type, and the fundamental problem is to determine what function it is of the type. Let 
bridegrooms of age differing by p  years from the mean age of all bridegrooms have an array of brides 
with a mean age differing q years from the mean age of all brides; then is not constant for all 
values of p.



These results have been reached by Mr. G a l t o n  in his work on ‘Natural 
Inheritance.’ He, however, supposes the population to be stable, and makes the 
mean and variation of successive genei'ations the same, x0 is measured from the 
mean of the general population of parents, and crl taken equal to <r2. I t seems better 
to keep our formulae perfectly general, and allow for possible natural selection of the 
secular kind as well as for possible reproductive selection.

(b.) Special case o f Stature in Man.—In order to get some idea of the nature of 
direct and cross inheritance, of assortative mating, &c., in man, I have, in conjunction 
with Professor W. F. It. W e l d o n , issued a circular and card appealing for help in 
collecting family measurements. We hope eventually to procure 1000-2000 families 
with data of height, span, and arm-length, but it may be many months, or even 
years, before sufficient material has been accumulated to allow of fairly definite state
ments being made. Meanwhile, Mr. G a l t o n , with his accustomed generosity, has 
placed at my disposal the family data on which his work on ‘Natural Inheritance’ 
was based. These data contain statistics with regard to one organ, , for about
200 families. The number is not sufficiently great to make the probable error of 
quite small enough dimensions in several cases, and so allow of definite conclusions. 
The data do not offer, as those we are collecting, material for the treatment of cross 
as well as direct inheritance. Nevertheless * the drift of Mr. G a l t o n ’s statistics is in 
many cases obvious enough, and even in other cases, where the weight of the numerical 
results is not great, the conversion of our formulae into numbers will still assist the 
reader to understand their significance, and serve to some extent for comparison when 
wider series of statistics are forthcoming.* Hence, in the numerical results of this 
paper, I wish more to draw attention to method than emphasise general laws. Mr. 
G a l t o n ’s families appear to have been drawn from the upper middle classes, and 
therefore any conclusions formed must not be hastily extended to the whole 
community.
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* Only those who have attempted to get the measurements of, say 20 families, will appreciate the 
difficulty of the task of completing even 200 for one organ. Parents and children must be alive and 
fall within suitable limits of age; and what is more, their interest mast be aroused.
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The following tables give the chief results :—

T a b l e  I.—Variation.

Class. Number. Mean Height 
in inches.

Probable 
Error 

of M.H.
S.D. in 
inches.

Probable 
Error 

of S.D.

M a l e s ................................. 683 69215 •066 2592 •047
H u sb a n d s ............................ 200 69136 •126 2-628 •089
Sons . . . . .  . . . 483 69-247 *081 2-617 •057
Fathers in general . 935 69175 •055 2-501 039
Fathers of sons . . . . 483 69-106 •071 2-325 •050
Fathers of daughters . 452 69-248 •086 2-731 •061
Females . . . . . 652 64043 •061 2-325 •043
W ives . . 200 63-839 •110 2-303 •078
D au gh ters............................ 452 64118 *075 2-347 •053
Mothers in general . 935 64099 051 2-308 036
Mothers of sons . . . . 483 64-054 •072 2-334 *051
Mothers of daughters . . 452 64147 •072 2-274 •051

T a b l e  IJ.—Correlation.

Class. Coefficient r. Probable Error of r.

Husbands and wives . . . •0931 •0473
Fathers and s o n s ...................... •3959 0241
Fathers and daughters •3603 •0260
Mothers and sons . . . . . •3018 •0267
Mothers and daughters . *2841 •0281

T a b l e  III.—Regression.

Class. Coefficient of Regression.

Assortative M a t i n g : —
Husbands on wives .................................. •1062
Wives on husbands .................................. •0816

Inheritance:—
Fathers on s o n s ....................................... •3517
Sons on fathers : ................................. •4456

Fathers on d a u g h te r s ............................ •4192
Daughters on f a t h e r s ............................ •3096

Mothers on s o n s ....................................... •2692
Sons on m o th e r s ...................... ..... •3384

Mothers on Daughters . . . . . .
1 ;-V

•2753
Daughters on mothers . . . . . . •2932
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T a b l e  IY.—Variation in Selected Groups.

Class of Setected. S.D. in 
inches.

S.D. in 
inches. Unselected.

Matage:—
Wives of selected husbands . . . . 2*293 2-303 All wives
Husbands of selected wives . . . . 2-617 2-628 All husbands

Parentage:—
Fathers of selected s o n s ...................... 2-135 2-325 All fathers of sons
Fathers of selected daughters . 2-548 2-731 All fathers of daughters
Mothers of selected s o n s ...................... 2-225 2-334 All mothers of sons
Mothers of selected daughters . . 2-180 2-274 All mothers of daughters

Fraternity:—
2-617Sons of selected fathers . . . . . 2-403 All sons

Daughters of selected fathers 2189 2-347 All daughters
Sons of selected mothers . . . . . 2-495 2-617 All sons
Daughters of selected mothers . . . 2-250 2-347 All daughters

— ___ '— !—  — L

T a b l e  Y.—Sexual Ratio.

Class. Ratio of Means. Ratio of S. D.’s. Ratio of V.’s.*

Husbands to wives . . . . 1-082 1141 1-055
Males to f e m a le s ...................... 1-081 1115 1-032
Sons to daughters...................... 1-080 1115 1-032
Fathers to mothers . . , 1-079 1-084 1*005 '

* V  =  the “ coefficient of variation ” or percentage of variation in organ 
=  100 S. D. -f- (mean). See below.

__-Mr. GAlton  excluded from his calculations the larger families, but it seems to me that large
families form an essential feature of the community. Two brothers are more likely to be two brothers 
of a large than of a small family, and, accordingly, large families ought to be given their proportionate 
weight. The whole problem, indeed, of reproductive selection turns upon the inclusion of large families.

Explanation of the Tables.—These tables were c&lcuhited in the following manner. 
Table I. A father or mother appears once for each child in this Table. The mean 
heights of each group were then calculated, as well as their standard deviations 
(S.D.) or deviations of mean square. The probable errors of the means and standard 
deviations were then found by means of the formulae

p.e. of M.H. =  *674506 X S.D./v/^_ 
p.e. of S.D. =  -674506 X S.D./v/2

where nis the number of cases recorded in the second column of the Table.
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To obtain Table II., tables of double entry* were formed for the class enumerated 
in the first column, e . g ., height of husband and height of wife as the variables 
x and y , and frequency of each pair of heights as From this table S was 
calculated by very laborious but straightforward arithmetic. This product moment 
was reduced to parallel axes (xr, y') through the centroid of the system and r 
determined from the formula r =  S {x y,)lncri( r 2(see P- 265). The p.e. of r was then 
found from the formula on p. 266.

The coefficients of regression, in Table III., have the value roq/o-o, given on p. 267, 
where, if oq be the standard deviation of A, and oq of B, rcrjcr2 is the regression of 
an A array on a B type, and roq/oq, the regression of a B array on an A type.

In Table IV., the array is first stated and then the type ; e.g., in the first line the 
type is the husband of given height, the array the distribution of all wives of 
husbands of this height. The first S.D. is that of the array obtained from the 
formula S.D. =  crlv l  — r3, of p. 267, oq being the second S.D, of Table IV., or the 
S.D. of the whole group from which the array has been extracted by selecting a 
particular value of the correlated group.

Table V. gives the ratio for corresponding groups of the two sexes of the constants 
given in Table I.

Now, a consideration of the probable errors recorded in Tables I. and II. shows us 
that, in several cases, definite conclusions may be drawn, and in certain other cases 
very probable conclusions. In particular, the probable errors of the correlation 
coefficients of inheritance are sufficiently small to show that these coefficients give 
the chief features of heredity in the group and for the characteristic we are dealing 
with. W e may note one or two special features.

(i.) Natural Selection.—We are dealing with two adult populations, and, therefore, 
should only expect to find traces of secular natural selection. The data, however, 
are not suited, either by their nature or number, to illustrate this point. There 
is a slight increase in height of sons over height of husbands, and a larger increase in 
height of daughters over height of mothers. Neither can be definitely asserted to be 
significant. Even if they were significant they might be accounted for by (a) 
shrinkage due to old age,+ and (b) increased physical activity and exercise in the 
middle classes of the younger generation, especially daughters. If we turn from 
means to S.D.’s we see again an insignificant change in the range of variation of 
husbands and sons, the sons being slightly less variable than fathers. This result, 
were it necessary to account for it, would be more likely due to our having taken 
sons from a less general population than husbands—a point to be borne in mind

* It did not seem necessary, to publish these tables, but the corresponding tables will be published 
when the fuller data for heredity in man, which I am at present collecting, are complete.

t  In my own collection of data, several parents state that they are now shorter than they used to be. 
The shrinkage in the case of fathers of sons cannot be great in Mr. G-alton’s statistics, to judge by the 
means, unless we suppose a sensible regression in sons’ stature.



when statistics of this kind are collected, and more than one son in a family is 
included. There is a more significant difference in the variation of wives and 
daughters. I t  is, however, in the opposite sense to what we may suppose would 
be produced by natural selection, or by the fact that we have drawn daughters from 
a less general population than wives. There is no definite evidence as to natural 
selection to be drawn from these results accordingly.

(ii.) Sexual Selection.—(a.) Preferential Mating.—We have no general populations 
to compare with those of husbands and wives. If we suppose the population stable, 
and treat sons and daughters as characteristic of the general unmarried population, 
husbands are not a significant selection from sons. Possibly the difference between 
the variation in daughters and wives might be accounted for by a distaste for very tall 
or very short wives in the middle classes. The difference is, however, not very signifi
cant, but it should be borne in mind in dealing with a larger range of statistics.

(b.) Associative Mating.—Although the probable error (Table II.) is about half the 
coefficient of correlation, it is unlikely that the latter can be really zero, and although 
we must not lay very great stress on the actual value of r, still we are justified in 
considering that there is a definite amount of assortative mating with regard to height 
going on in the middle classes. I t may be expressed by saying that wives 1" taller than 
the mean will have on an average husbands ’ taller than the mean, and husbands 
taller than the mean, wives on an average •08" taller than the mean (Table III.). 
Table IV. shows us that the variation in matages would hardly be discoverable directly 
from our present range of statistics.*

(iii.) Reproductive Selection.—Although in the matter of means we cannot assert 
significance between the heights of males in general and fathers in particular, it is 
quite possible that such will reveal itself in more ample data. On the other hand, we 
see at once that fathers are definitely less variable than husbands, and fathers of sons 
remarkably less variable than fathers of daughters. Thus, while the height of a 
father is less closely related to his chances of having a daughter, any tendency to 
normality is of service in the chances of having a son. Eeproductivity in males 
seems to be thus essentially correlated to height, and again, height to be potential 
in the question of male or female offspring.

An endeavour to directly calculate the correlation of reproductivity and height is

PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 273

* Of course 200 couples give graphically nothing like a surface of correlation, nor can any section of 
it he taken as a fair normal curve. We assume a priori that 1000 couples would give a fair surface. This 
is practically what I have found for skull-measurements, 900 give an excellent curve, 50 a doubly, or even 
trebly, peaked polygon. None the less, sets of 50 skulls give means and S.D.’s in close accord. For 
example, in Professor F linders P etrie’s newly discovered race, 50 male crania from T. and Q. graves give 
for cephalic index : Mean, 72‘96, S.D., 2'82; while 53 male crania from General and B. graves give : 
Mean, 72'92, S.D., 2'95. The 103 crania together g ive: Mean, 72‘938, S.D., 2'885, with a probable error of 
S.D. =  -29. The variation curves would not suggest any such close agreement at all. Ih e constants, 
however, suffice to show the homogeneous character of the two sets of excavations.
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frustrated by the obvious fact that size of adult families does not follow any approach to 
a normal distribution. Thus, I find in 205 adult families the following frequency:_
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Title. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
‘—1 

15

(1) Sons and

___

32 22 23 31 23 19 18 18 8 5 5 l
daughters

(2) Sous only . 25 43 46 42 30 10 5 3 ! . . • * 1
(3) Daughters only i 25 56 44 34 21 13 5 3 3 1

This Table shows the number of those families in which (1) the number of sons and 
daughters, (2) the number of sons only, (3) the number of daughters only correspond, 
with the title in the top line.

Now, although, as I propose to show later, the quantity, r =  S icr2), is really
a significant characteristic of correlation, just as oq and c are significant for variation 
even in the case of skew frequency, still there is little to be gained by working it out 
in this particular case, where, the statistics being insufficient to accurately determine 
the skew law of frequency, we shall not be able to find what we want—the law of 
regression.*

But several points as to paternal reproductivity may be learnt from these families. 
In the first place, of the 25 families with no sons, the father in 5 cases only was below 
the mean, in 20 cases above the mean height. The mean height of fathers in general 
is 5' 9"*17, but of sonless fathers is 5' 11"*03. Of the 25 daughterless fathers, 14 are 
below and 11 above the mean height; the mean height of the daughterless father 
being 5' 8"'71. Or, the same point may be emphasised iu this way : If short fathers 
be taken as those below 5' 6"*5, and tall fathers as those above 5' 11"‘5} short fathers 
have 65 sons and tall fathers 67 sons. We should accordingly, with our proportion 
of sons and daughters, expect 61 daughters to short fathers and 63 to tall fathers, 
but we find short fathers with 73 and tall fathers with 81. This point in reproduc
tive selection, that mediocre fathers have more tendency to sons and exceptional 
fathers to daughters, seems of considerable importance in relation to the prepotency of 
paternal inheritance. A similar point, but less emphatically significant, may be noted 
in the case of mothers. Mothers of daughters are less variable than mothers of sons. 
Without laying too great stress on statistics of so small a range and of one charac
teristic only, we may still suggest that it might be worth while to investigate whether 
the offspring of a mediocre parent and an abnormal parent do not tend to follow the 
sex of the mediocre parent.

* Much, more complete statistics of size in families have recently been sent to me by Mr. F. H oward 

Collins. They give a remarkably smooth skew frequency distribution, thus demonstrating the need of 
the theory of skew correlation when we are dealing with reproductive selection. I propose to illustrate 
this in a memoir on skew correlation.



Finally, it is impossible to more than hazard suggestions as to reproductive selec
tion in relation to mothers’ height. I t will be noticed that both mothers of sons and 
mothers of daughters are taller than wives, and, further, daughters, while taller than 
wives, are not so tall as mothers of daughters. Hence, while the difference in height 
of daughters and wives might be due to natural selection or improved physical 
training, it might also be accounted for by greater reproductivity as to daughters in 
tall women, i.e., mothers of daughters taller than wives, and this tallness being trans
mitted in a lesser extent to daughters. This would be a case of secular change due 
to reproductive selection. The statistics are, however, too few to make the differences 
in the mean heights of wives, daughters and mothers, very definitely significant.

(iv.) I n h e r i t a n c e ..—Mr. G a l t o n  has concluded from his data that the coefficient
of regression is '3333 from father to son or from son to father, and by the assumption 
of the “ midparent” has practically given the mother an equal prepotency with the 
father in heredity. The fuller theory developed in this paper does not seem in entire 
agreement with these conclusions. In the first place, the theory of uni-parental 
inheritance shows us that it is not the constancy of variation in two successive gene
rations with which we have to deal, but the question whether sons have the same 
degree of variability as the “ fathers of sons,” and this must be definitely answered in 
the negative. Table II. shows us that there are undoubtedly significant differences in 
the coefficients of correlation, which may be summed up in the words prepotency in 
heredity o f the father. I t must be remembered that this is only for one characteristic, 
height, but in this characteristic both sons and daughters, on the average, take very 

considerably more after their father than after their mother. Turning to Table V., we 
see that the ratio of the mean heights of the two sexes, considered in three different 
classes, is practically the same, i.e., 1*08, or 13 to 12, as Mr. G a l t o n  has expressed it. 
Now, in Table III. we see that the coefficients of regression in paternal inheritance 
are not only sensibly greater than those of maternal inheritance, but, as these coeffi
cients have to be multiplied by the absolute deviations of father or mother from their 
means to obtain the absolute deviations of offspring, and as these absolute deviations 
will be in the ratio of 13 to 12, there is a considerable further reduction to be made 
in comparing the strength of maternal with that of paternal heredity.

Thus it may be said that paternal heredity is to maternal heredity, in the case of sons, 
as '4456 to *3384 X i f  or to *3124, and in the case of daughters, *3096 X -fi or *3354 to 
*2932. Thus, while daughters inherit less from both their parents on the average than 
sons, both—and sons especially—take more after their father than their mother. The 
inferior inheritance of daughters may, to some extent, be counterbalanced by the law 
already noticed, that exceptional fathers have more often daughters than sons.

We may illustrate this by two examples—the regression of grandson on grand
father, and of great-grandson on great-grandfather when the inheritance is respectively 
through the male and female lines.
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Male line. Female line.

Grandson on grandfather........................... •1986 •0885
Great-grandson on great-grandfather . . •1048 •0307

In the first case, the strength of inheritance is more than double through the male; 
in the second, more than triple through the male what it is through the female line. 
Were this law of inheritance true, not only of stature, but of other physical, and 
especially of mental characteristics, some justification might be found for confining 
hereditary peerages initially given for merit to the male line. Meanwhile, it cannot 
be too strongly emphasized that the present results apply only to one organ, are 
based on comparatively few families drawn from a special class of the community, and 
thus stand in need of careful criticism in the light of ampler statistical material.

Another point already briefly referred to, which seems of significance, is the in
equality of regression in the case of ascent and descent in the direct line. I t may 
seem paradoxical to assert that sons are more like fathers than fathers are like sons, but 
the solution is bound up in the statement that fathers of sons are less variable than 
sons, or, in another form, that every son is not to the same degree a potential father. 
Similarly, the opposite paradox that fathers are, on the average, more like their 
daughters than daughters are like their fathers, finds its solution in the relatively 
great variability of fathers of daughters.

In Table IV. are tabulated alongside, in each case, the standard deviation for the 
corresponding general population, the standard deviations for inheritance from 
selected classes. Here again we see a general law for height, which deserves to be 
investigated for other organs, and for a variety of animals, namely, we breed “ truer 
to the type,” have less variability in offspring, if we breed from selected males rather 
than from selected females. We shall see later the effect of selecting both parents.

(c.) On Further Relations between C, , and Variability. 
(i.) The Coefficient o f Variation V.—In dealing with the comparative variation of 
men and women (or, indeed, very often of the two sexes of any animal), we have 
constantly to bear in mind that relative size influences not only the means but the 
deviations from the means. When dealing with absolute measurements, it is, of 
course, idle to compare the variation of the larger male organ directly with the varia
tion of the smaller female organ. The same remark applies also to the comparison of 
large and small built races.

If the absolute measurements* have in the case of man to be on the average altered 
in the ratio of 13 to 12 to obtain those of the woman, if Mr. Galton has gone so far 
as to replace any woman by an equivalent man on this basis, then, clearly, to compare

* The ratio 13 to 12 is not only true of stature, but approximately of several other organs, weight, 
brain-capacity, &c., &c.
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deviations in man and woman, we must alter the deviations in the same ratio. 
Freeing ourselves from this particular ratio, we may take as a measure of variation 
the ratio of standard deviation to mean, or what is more convenient, this quantity 
multiplied by 100. W e shall, accordingly, define Y, the coefficient of variation, as 
the percentage variation in the mean, the standard deviation being treated as the 
total variation in the mean; since the p.e. =  *674,506 X S.D., Y multiplied by 
*674,506 may be called the “ probable percentage variation.” Of course, it does not 
follow because we have defined in this manner our “ coefficient of variation,” that this 
coefficient is really a significant quantity in the comparison of various races ; it may 
be only a convenient mathematical expression, but I believe there is evidence to show 
that it is a more reliable test of “ efficiency ” in a race* than absolute variation. At 
present, however, we will merely adopt it as a convenient expression for a certain 
function, and proceed to examine its relation to correlation.

Let mlf m2 he the means of two correlated organs; oq, <x2 their standard deviations; 
r their coefficient of correlation; Y1} Y2 their coefficients of variation; and Bl5 B2 
the respective regressions for deviations d 2 and d1 of the two organs.

Now

or

and similarly

But we see that the amounts d2/m2 and d1/m1 are equally significant deviations in 
the case of the second and first organ, while the amounts B &nd B are 
equally significant regressions in the case of the first and second organ.t

I t follows, therefore, that the significances of the mutual regressions of the two 
organs are as the squares of their coefficients of variation.

Hence inequality of coefficients of variation marks inequality of mutual regressions. 
Now coefficients of variation are rarely, if ever, equal for the same organ in corres
ponding classes of men and women. In dealing with male and female skull measuie- 
ments for a great variety of races, this inequality is often very marked, and, therefore, 
differences of variation tell, especially in mutual regression in the case of sexual 
selection and inheritance from the opposite sex. I  hey are sufficient, I think, to pre
clude Mr. G a l t o n ’s theory of the mid-parent from being considered as more than a

* By “ race efficiency,” I would denote stability, combined with capacity to play a part in the history 
of civilization. I hope later to publish details of variation, especially in skull measurements of different 
races of man, the data of which I have been for some years reducing.

t  For example, 1" and if"  I term equally significant deviations or regressions in the stature of man 
and woman, and l ,f and in the stature of woman and man.



first approximation. Turning to Table V., we see that variation in height is greater 
for males than females; but while very sensible for husbands and wives, and sons 
and daughters, it is insignificant for fathers and mothers. This superiority of male 
to female variation, as measured by the coefficient of variation, is in accordance with 
the usual belief that the male is more variable than the female, but it is entirely out 
of accordance with the great bulk of the statistics I have so far reduced. The belief 
seems to have arisen from a very loose notion of how variation is to be estimated- 
These stature statistics of the English middle classes seem to some extent anomalous. 
For example, I find from statistics of stature in the German working classes :—
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Male coefficient of variation. . . =  4*0245,
Female „ „ . . . =  4*2582.

Ratio of female to male coefficient =  1*058, thus more than reversing the highest 
English ratio, that of husbands and wives. I t is noteworthy that, while the varia
tion is thus reversed, the ratio of the mean heights equals 1*078, and remains practi
cally the same. These remarks are introduced in order to prevent any too hasty 
generalisation as to the nature of male and female correlation based on a current 
belief in the greater intensity of male variation.

(ii.) Coefficient o f Correlation and Coefficients o f Variation.—Let x and y be two 
correlated organs, and let £ and rj be corresponding deviations from the mean values 
m1 and m2. We shall suppose that £ and tj are so small that the squares of the ratios 
£/m1 and y/mkare negligible as compared with the first powers. Let r  be the 
coefficient of correlation of x  and y, oq, oq their standard deviations, tq, v2 their 
coefficients of variation, and let z be any function f ( x .  y) of x and y with a deviation £, 
corresponding to £• and rj, and a standard deviation, mean and coefficient of variation 
respectively 2, M, and V.

Differentiating z = f ( x ,  y) and remembering our hypothesis as to the smallness 
of the variations, we have :

£ =  fx$ +  fy -
Squaring:

e  = f ? P + f , W  +  S M b h

Summing for every possible value of £ and r), and dividing by n the total number 
of correlated pairs:

S(g») „  , 2 S (P ) ^  , 8 S , ^  r &<£9) 
-- Jx n n

or,
2* = / /< r 12 + /,V ,»  +  2/,/,<rlp-ii X S(fo)

w<r1o'3

Now, if there were no correlation, we should have: 2“*—fx  “b f v 5 hence
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any law of frequency whatever which causes S (£77) =  0 ,—for example, if it be equally 
likely that 77 occurs with an equal negative or positive value of £,—will show that 
x and y are independent variations. Hence, if we define r =  S (^/(woqoq) as the 
coefficient of correlation, we see that it has a significance extending much further 
than the normal law of error. Just as crx, cr2 are radii of gyration (and independent 
of any special law of error), so S (£77) is a product moment, and its vanishing marks 
the absence of correlation, or directions of independent variation.

We see, then, that the coefficient of correlation may be found from

r _  - / « w - W  J

or by calculating standard deviations.
The question naturally arises as to what is the best value of f(x , y). This will 

often be already answered by the data themselves. A common case is that in which 
the variations in x and y are given, and the variation in their ratio or the index x/y 
is calculated. In this particular instance f x =  M/wj and f y — — Mjm.2. Hence

. _  v  + v  -  y2
1 ~~ 2vlv2

We thus throw back the determination of correlation on ascertaining three 
coefficients of variation.

This formula, while less general than the one previously given, in that we have 
neglected squares of small quantities, is more general in that we have not limited 
ourselves to any special law of frequency.

(iii.) Example.—The formula may be illustrated by the following statistics taken 
from a not yet published paper on variation in man. =  coefficient of correlation 
between length and breadth.

Adult Male Crania.

Professor Flinders Petrie’s newly discovered race.*

Length of skull . . . wq =  185*2777, oq =  5*7783, Vj 3 1187
Breadth of skull. . . m2 =  135*0194, cr2 =  4*4076, ft =  3*4183
Cephalic index, B/L . M =  72*9379, t  =  2*8848, V =  3*9551

r =  *2705.

* Professor Flinders P etrie kindly replied to my request for 100 skulls of a homogeneous race, 3,000 
to 4,000 years old, by bringing back to England the finest anthropological collection—skeletons as well 
as crania—known to me. The collection was packed and brought to England at the charge of Mr. 
A. B. P earson-G-ee. Mr. H erbert Thompson has made a series of measurements on 301 skulls, and 
? , details of which will be published later, and the above constants are calculated from his measure

ments. The date of the new race is about 3000 B.C.
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M odern German (Bavarian Peasants*).

Length of skull . .
Breadth of skull. .
Cephalic index, B/L

ml — 180*58, 
m2 =  150*47, 
M =  83*41, 

r =  *2849.

<rx =  5*8441, 
o-2 =  5*8488, 
t  =  3*5794,

Vj =  3*2363 
v2 =  3*8871 
Y =  4*2913

Modern French (Parisianst).

Length of skull . . . m1 =  181*85, o-j =  5*9420, =  3*2675
Breadth of skull. . . m2 =  144*93, cr2 =  5*2139, v2 =  3*5975
Cephalic index, B/L . M =  79*82, 2 =  3*7865, Y =  4*7438

r =  *0474.

The probable error of r in all three cases lies between *06 and *07. Now it is clear 
that had we only dealt with the race from Egypt and the Bavarians, we might easily 
have concluded that the coefficient of correlation was constant for local races of man, 
and had remained so for nearly 5,000 years. The French numbers completely upset 
this view. In order to test my French results I give another series from the 
Anthropological Collection at Munich ; the skulls are those of French soldiers who 
died at Munich during the Franco-German war.

Modern French (Peasants).

Length of skull . . . mx = 179*93, =  6*2987, =  3*5006
Breadth of skull . . . m2 =  143*51, cr2 =  5*4208, v2 =  3*777*2
Cephalic index, B/L . M =  79*7857, 2 =3*8410, V =  4*8141

r =  *1265.

This collection numbers only 57 crania, and the probable error of r is about *09, 
but clearly we have the same general features as in the previous French series. In 
particular the closeness in the line for the cephalic index constants is remarkable. 
The value of r  might possibly be the same as for the Parisians; it is highly improb
able that it should agree with the value of for the Germans or the race from 
Egypt. We are compelled to conclude, therefore, that it is very unlikely that 
“ GAlton’s function ” is constant for all local races of man.

* Calculated from measurements given by Professor J. Ranke : ‘ Beitrage zur physischen Anthro- 
pologie der Bayern,’ Bd. 1, S. 88, Kapitel VI., I may take this opportunity of acknowledging the 
extreme kindness of Professor Ranke in helping me in a variety of ways.

t  Calculated from measurements extracted from the manuscripts of M. Paul Broca, which I owe 
to the courtesy of M. Manouvrier. He has responded to my request by forwarding to me copies of a 
great variety of measurements, which will be largely used in a paper on variation in man.



An examination of the above numbers brings out a fact which X am not sure has 
been noted before : namely, the alteration from dolicocepbaly to bracbycephaly appears 
to chiefly depend upon an alteration in the breadth and not in the length of the skull. 
We see too that, if variation be judged, not by standard-deviations, but by the 
coefficients of variation advocated in this paper, the breadth of skull is in all cases a 
sensibly more variable quantity than the length, and, further—a point to which I 
shall return on another occasion—that the more civilised races are the more variable. 
Both of these results have, I believe, very important bearing on the mathematico- 
statistical theory of evolution. On the present occasion the above example is only 
given to illustrate the relation of variation to correlation.

(6.) Collateral Heredity.

(a.) Stature in Man.—The whole theory of correlation as applied to uniparental 
inheritance may be at once applied to correlation between brothers, sisters and 
brothers and sisters. To illustrate the theory I give the following tables, again 
based on Mr. Galton’s statistics.

In the pairs sister-sister and brother-brother the elder sister or the elder brother 
has been taken first in order to ascertain the effect of, earlier birth on correlation, 
In the pairs sister-brother, I had no data as to relative age.
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T a b l e  VI.—Variation.

Class. Number. Mean Height 
in inches.

Probable 
error of 
M.H.

S.D.
in inches;

Probable 
error Of S.D.

Elder sisters of sisters . . . . 595 63-869 •0617 2-2303 •0436
Younger sisters of sisters . . 595 64-199 •0695 2-5119 •0491

Elder brothers of brothers . , 605 690174 •0715 - 2-6080 - •0506
Younger brothers of brothers -605 69-0814 •0725 2-6434 •0513

Sisters of brothers , . . . . 1181 63-9274 •0440 2-2430 •0311
Brothers of s i s t e r s ...................... 1181 69-0963 0533 2-7164 •0377

T a b l e  VII.— Correlation.

Class. Coefficient r. Probable error of r.

S is te r - s is t e r ................................ •4436 •0203
Brother-brother . . . . . . •3913 •0216
Sister-brother. . . . , •3754 •0158

2 oMDCCCXCVI.— A.



T a b l e  VIII.—Regression.
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Class. Coefficient of Regression.

Younger sister on elder sister . . . . '4996
Elder sister on younger sister . . . . •3939

Younger brother on elder brother . . . •3966
Elder brother on younger brother. . . •3860

Sister on brother............................................ •3100
Brother on brother ....................................... •4547 .

T a b l e  IX.— Variation in Selected Groups.

Selected fraternity. S.D.
in inches.

S.D.
in inches. Unselected.

Younger sisters of selected elder 
Elder sisters of selected younger

2*2512
1-9989

2-5119
2-2303

A ll younger sisters of sisters 
All elder sisters of sisters

Younger brothers of selected elder . 
Elder brothers of selected younger .

2-4327
2-4000

26434
2-6080

All younger brothers of brothers 
All elder brothers of brothers

Sisters of selected brother . . .
Brothers of selected sister . . . . j

2-0789
2-5178

2-2430
2-7164

All sisters of brothers 
All brothers of sisters

These tables have been calculated in precisely the same manner as the previous 
series.

(b.) Conclusions.—  Now these results seem at several points of very great sug
gestiveness. In the first place, with regard to variation, we see that elder sisters are 
significantly more mediocre than younger sisters ; younger sisters are taller and more 
variable. The same difference appears in the case of elder and younger brothers, but 
the probable errors do not allow us in this case to assert that the difference is 
certainly significant. To illustrate this conclusion we give the constants for pairs of 
sisters, no respect being paid to relative age.
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T a b l e  X.—Sisters of Sisters.

M ean h e i g h t ...............................................................................

1

64-0454
Probable error of mean h e i g h t ........................ ...... •0655
S .D ............................................................................................ . 2 3 6 6 8
Probable error of S .D ..................................................... .....  . •0463

Coefficient of correlation r ...................................................... •4386
Probable error of r .......................................... ..... •0205
Coefficient o f regression ............................................................. •4386
S .D . of array of sisters of selected s i s t e r ........................ 2 1 2 7 0

I t  will be seen from this table th a t elder and younger sisters of sisters are 
respectively less and more variable than  sisters of sisters in general. I t  will be noted 
also th a t sisters of brothers are, both in stature and variation, nearer akin to elder 
sisters of sisters than  to younger sisters. I t  deserves accordingly to be investigated 
whether or not sisters are not on the average older than brothers—on this point I  have 
no data. As sisters of brothers approximate to elder sisters of sisters, so brothers of 
sisters correspond more closely to younger than  to elder brothers of brothers. These 
are points which require fuller investigation, when ampler statistics are forthcoming. 
Turning to correlation we note th a t the coefficients in the case of collateral 
inheritance are slightly greater than  in the case of direct inheritance. I t  will be 
remarked a t once th a t the values are much less than those given by Mr. G a l t o n , 

“ N atural Inheritance,” p. 1 3 3 ,  who has himself drawn attention to the considerable 
difference between the constants for collateral inheritance given by his R.F.F. D ata 
and by his Special Data. Mr. G a l t o n  having kindly allowed me to use his data, I  
have recalculated from the formula v =  S {xy}/{n(rlcr<̂) the value of r  for the Special 
Data, taking my pairs of brothers precisely as I  had done for the Records of Family 
Faculties. I  find r  =  * 5 9 9 0  with a  probable error of ±  * 0 1 2 4 . This value is not as 
high as Mr. G a l t o n ’s , bu t differs very widely from the value * 3 9 1 3  given above.

In  making the calculations, however, I  was much struck by the peculiarities 
presented by a certain portion of the data, which I  will speak of as the Essex 
contribution. The brothers therein were very short and remarkably close together. 
I  therefore went through the calculations again, separating the Essex contribution, 
and with the following results :—

Mr . G a l t o n ’s  Special Data.

Mean h e ig h t. . 
Probable error . 
r for brothers . 
Probable error o f r

W hole population. E ssex contribution. Remainder.

68-544 67*797 68-797
•0402 •1013 •0457
•5990 •7175 •5574
•0124 •0200 •0152

2 O



Now the probable error of the difference of the Essex contribution and the 
remainder is *1111" for height and *0251 for correlation. Thus difference in height 
is nine times, and the difference in correlation more than six times the corresponding 
probable error. I t is absolutely necessary therefore to conclude that the Essex con
tribution differs significantly from the remainder of the data. Now the Essex 
contribution appears to be drawn from brothers in a volunteer regiment, and I am 
inclined to think there may be two sources accounting for its peculiarities, 
(a) unconscious selection as to height by those who join the volunteers, (6) a greater 
correlation among the agricultural and working classes than among the middle classes. 
At any rate the great variation within the family to be found in the R.F.F. data does 
not repeat itself either in the Essex contribution or in other portions of the special 
data, which appear also to be drawn from military and working class sources.

I would accordingly suggest that the R.F.F. data and the-Special data give 
different results, because the latter are largely drawn from a different class of the 
population from the former (and possibly in the case of volunteer regiments by a 
method which itself tends to emphasise correlation). I should expect that the 
influence of natural selection is far greater—witness the greater infantile m ortality- 
in the working classes, and that accordingly we should find the variation in a 
fraternity sensibly less, or the correlation much greater. I believe, then, that 
difference of variation in different classes of the community will ultimately be found 
to account for part, if not all, of the difference between the two values given for the 
correlation of brothers by the Special data and by the R.F.F. data.

Considering the amount by which the elimination of a portion only of the hetero
geneity of the Special data reduces r, it does not seem likely that the R.F.F. data are 
so wide of the mark in the correlation values as might at first be thought. I doubt 
whether the correlation coefficients for Collateral inheritance-—at any rate in the 
middle classes—can be greater than *5. I  have not at present sufficient data of my 
own to make a trustworthy determination of brother-brother correlation, but I was 
able to find the correlation of 237 brother-sister pairs from about 160 families. The 
measurements were taken without boots, and give values for the mean heights of 
brothers and sisters sensibly over 69" and 64" respectively. The families were all 
middle-class families—mostly those of male and female college students. They thus 
approximate to Mr. G Alton’s R.F.F. series. The result was

r =  ‘4703 ‘0308
The previous result was

r =  ‘3754 *0158

The probable error of the difference therefore == ‘0346 and the difference *095, 
between two and three times the probable error. The two differ, of course, consider-
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ably,* but they are nearer together than to Mr. Galton’s *67, and being entirely inde
pendent series, may be taken to justify the statement made above that the coefficient 
for the middle classes can hardly exceed *5. Thus there is not, I think, sufficient 
ground at present for forming any definite conclusion as to the manner in which lineal 
is related to collateral heredity. I t does not seem to me necessary that the coefficient 
for the former should be half that for the latter, as supposed by Mr. GAlton.

In some respects, indeed, the Special data verify the conclusions we may draw from 
the R.F.F. data. Thus R.F.F., Special data, and the two components into which I 
have divided the latter, all four agree in making the younger brother taller than the 
elder brother. The variability of both brothers is practically equal in the Special 
data and slightly greater than that of the R.F.F. data—2'656 as compared with 2*626 
—a difference not significant, and which, if it were, might be put down to the 
mixture of classes in the Special data.

Assuming that the regression coefficients in Table VIII. give the relative it not 
the absolute values for collateral inheritance, we draw from them a few suggestions 
for further inquiry when the statistics are forthcoming. In the first place, sisters are 
more like each other than brothers. At any rate, the younger sister is more like the 
elder sister than brother is like brother. If  this appears to contradict the principle 
that sons are more like their parents than daughters, a solution of the paradox must be 
sought in the relative variabilities of daughters, elder sisters, and younger sisters. 
To compare the strength of inheritance in brothers and sisters, we have to consider 
not *3100 and *4 5 4 7 , but these coefficients of regression multiplied and divided 
respectively by 13/12, or *3358 and *4197, whence we see that the brother takes 
more after the sister than the sister after the brother.

It will be wise, however, to lay no great stress on these results, until a wider series.
of statistics has been collected.

The following example must be taken only as the roughest approximation, but so
far as it goes as confirming the above results.

An exceptional grandmother in Badent had a length-breadth head index of 90, her 
20 grandchildren had a mean head index of 83*55, with a S.D. =  3*025. The mean 
head index of the general population} was 83*15 with S. D. =  3*63. Thus, if rx be the 
regression of offspring on parent, and r2of offspring on each other, X 6*85 =  *4,
and \ / ( i  — rz )  =  3*025/3*63. * , a _ >

Hence, r x =  *24 and r% =  *55. Considering the large probable error of the S.D. ot
the fraternity (*32), these results indicate inheritance in head indices of the same order 
as in stature. *

* The difference is to be expected. Mr. Galton’s R.F.F. series allows for due weight being given to 
the variability in large families. My statistics take only four members at a maximum, and frequent y

only two out of each family. • *
t  o. Ammon, • Die naturliohe Anslese beim Mensehen,’ p. 13. Three eh.ld.-en were unmeasnred, and

I have accordingly had to disregard this generation.
% Calculated from results for 6748, Badenser, given by Ammon, p. 67.
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(7 .) Special Case o f Three Correlated Organs.

We need not stay long over the general theory as it has been fully treated by 
Bravais. We indicate its general outline in a modified form. By p. 263 we have, if 
x, y, z be the deviations from the means of the three organs, and o ,̂ cr2, cr3 their 
standard deviations,

. / .  x2 . x y2 . % z2 2yz 2zx . 2xy \
P =  Ce+ 1,1
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This may be written in either the form,

or,

— ia / x ;iy _ 2̂̂ 1 ( y ~ z + v2v&\2
P  —  * \0 T  Ai<ra Aj (r3/  X  g  2Aj '  <r2 a 3 A2A! — p32 /

_A~,A2A3 — 2i/;V2y3 *** A]r̂  —* A3v3̂  ̂ 7 7 7X e 2(a1a2-.v3*> dxdydz  .

P =  Ce **vST w
_ 1 f / y \ 2 A2At ~ y3g  ̂/ g y A3Ar - v22 __ 2yz Vl\̂  4- 1 3̂ >X e *1 \ir$J Ai cr2cr3 a3 > dx dy dz

(A).

(B).

Integrating A for x ,y ,z  successively between ±  0 0 , we have, if n be the number of 
correlated triplets, and

X =  AiX2X3 —- 2 j'1v2v3 — XjVj2 X2v23 — X3v32,

n =  C . (2 tt)3/2 <xjcr2cr3/ \ / y ,  
or,

C =  WV/x /((27t)8/2 cr^go-g).

Integrating B for a? between i  °°j we have
i f /  y \ 2 — v £  , l  zV  A3A1 — y22 _  2yz +  y3y3 >

P' =  CV ***«*' w8/ n <r2<rs Ar

But this must be the correlation distribution for y and z treated independently of 
or, comparing with p. 264, if rlf r2, r 3 be the three correlation coeflicients for the pairs 
yz, zx, xy respectively, we have

X i/(X  iX 2 —  v%) — 1 r± =  X1/(X 3X1 v%).
(vi \  +  v 2v 3) / ( X 2X1 ^32)  =  r i*

Integrating A for x  and y from ±  °°, we must have the distribution for treated 
independently, or a normal distribution tr3 ; this gives at once

AiX3 — v3* =  x-
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Hence we have by symmetry the equations,

Xi =  x ( !  ~  ri%x2 =  X  i1 ~  * 22) ,  X3 =  x  (1 —  r 32) ,
vixi +  n n  — xri> ^2X2 +  w i  =  xr2> =  x?v

We easily deduce

X2 ( r l V2r fi) —  ( X2X3 “  v \ )  ( v l \  +  V 3) “  (^2X2 +  V i ) (^3X3 +  ^1^2) = : ^iX»
or,

v i  — X  ( n  “  V s ) ,

and similarly,
v 2  —  X  ( r 2 —  V i ) »  =  X  ( r s  —  V f ) *

Finally,
X 2 K r i  “  p )  ( 1  -  n 2 )  +  ( * *  —  V s )  ( » »  “  V 2 ) }  =  X r i f  

or,
X ( i  — r A2 — r22 — r32 +  2?qr2r3) == 1.

Thus all the constants are determined, and we have,

p  _  rcv 'x
( 2 7 t) 3/2o-1o-2«t3

- f x  f  ~  0  -  n*) +  ^  (1 -  r,*) + 4 ;(1  -  rs*) -  2 (»-! -  r,rs) JSL - 2  -  2 (r, -  }  ,  ; 7e *■ ®i <,** «s* «3<n

This agrees with B ravais’ result, except that lie writes for rA, r2, r3 the values 
t(yz)j{n<r^)y etc., which we have shown to be the best values (see loc. p. 2 6 7 ).

Obviously we have the following general results. If  be the standard deviation of 
a group of x-organs selected with regard to values h2 and h3 of y and z,

—

v 'lx d -n * )}
=  O'! \ J 1 — rx3 — r22 — y32 + 2r1r2r3 

1 — rA2

and if hx be the deviation of the mean of the selected cc-crgans from the a?-mean of the 
whole population

^ f ^ ^  +  T ^ T - A s -1 1 — r-f a0 ' 1 — r ,3 crs

Expressions of the form will be spoken of as coefficients of double correla

tion, and expressions of the form ^   ̂ fas coefficients of double regression.4'

* [The above values for and \  are still true, as Mr. G. U. Yule points out to me, whatever he the 
law of frequency, provided the standard-deviations of all arrays be the same and be a linear function 
of h2 and T&q.]
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(c.) Bi-parental Inheritance of Stature.

T a b l e  XII.—Correlation as Influenced by Assortative Mating.

Class.

Correlation coefficients.

Modified by mating. Direct.

Daughters and fathers' . . . .
,, mothers . . . .

•3368
•2528

•3603
•2841

Sons and fathers . . . . •3710 •3959
„ m others........................... •2673 •3018

T a b l e  XIII.—Regression Coefficients as Influenced by Assortative Mating.

Class.

Regression coefficients.

Modified by mating. Direct.

Daughters on fathers . . . .  
„ mothers . . .

•2895
•2609

•3096
•2932

Sons on fathers . . • •4176 •4456
,, mothers . . . . . . •2997 •3384

Thus we see that both in ' correlation and regression very sensible differences a r e  

made by the introduction of bi-parental formulae.

T a b l e  XIY.—Variation in Selected Groups.

Class.

Standard deviations.

All offspring.

(H>
Offspring of 

selected mother.

(iii.)
Offspring of 

selected father.

( iy )  y 
Offspring of 

selected mother 
and father.

S o n s ...........................
Daughter's . . . .

2617
2-347

2-495
2250

2-403
2-189

2-300
2-108
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Still one or two remarkable general principles may be noticed. Let us suppose, what 
is not improbable, that there is a first organ, say in the father, which has no sensible 
correlation with a second organ in the offspring, but that the latter organ in the 
mother is closely correlated by assortative mating with the first organ in the father. 
The formula for regression in the offspring of parents having the deviations 3 and A3 

in the two organs (or characteristics) will now be

K r i r 3 <T\ 7. i r 3 Y L  7

1 -  rx3 <r3 ** +  1 -  rx3 g

This shows us tha t the possession in any exceptional degree of the first organ by 
the father will actually reduce the amount of the second organ which the offspring 
inherits from the mother. Let a special example be used to illustrate this. Suppose 
the problem to be the inheritance of artistic sense from the mother and (h1} h3) be 
measures of the deviations of this sense in son and mother from the normal. Suppose 
further tha t be a measure of the father’s physique, say his girth of chest. Now it is 
conceivable tha t artistic sense in the mother may be closely correlated with physique in 
father. I f  now we deal with artistic sense of the son as related to physique in father 
and artistic sense in mother, we conclude that exceptional physique in the father will 
reduce the exceptional artistic sense which the son inherits from his mother. Simi
larly, the exceptional physique which the son would inherit from his father would be 
reduced by exceptional artistic sense in his mother. I t  will be noted that these 
results have no relation whatever to the coexistence or not of artistic sense with 
physique in the father or the mother. They depend entirely on the influence of 
assortative mating. I t  is remarkable that, given mothers of high artistic sense, then 
this will be handed down in a greater degree to those offspring whose fathers have a 
physique below the average, than to those of fathers who have a physique above the 
average.

The above example is not to be taken as a demonstrated truth, but as an illustration 
of the effect of assortative mating on cross-heredity. Innumerable similar statements 
can be made, but it seems desirable to await the collection of definite statistics before 
discussing them at length.

The only statistics which are at present at my disposal for the consideration of 
bi-parental inheritance are Mr. Galto n’s “ Family Records,” and to these I now turn.

2 PMDCCCXCVT.--- A.



(8 .) Double Regression and Biparental Inheritance.

(a.) General Formulae and Comparison with the Theory o f the Midparent.—If we 
apply the results of Section (7) to the problem of inheritance, we obtain some interesting 
results. Let rx — coefficient of correlation for the same or different organs in two 
parents, i.e., be the measure of assortative mating; r 3 =  coefficient of correlation of 
organs of offspring and male parent, i.e., be the measure of paternal inheritance; 
r 2 =  coefficient of correlation of organs of offspring and female parent, i.e., be the 
measure of maternal inheritance; then the above formulae express the chief charac
teristic of biparental inheritance as modified by assortative mating. If rlf as 
probably is frequently the case, be small, then we see that the effect of assortative 
mating is to reduce the deviation of the offspring. Suppose there were no assortative 
mating, then the mean deviation of the offspring of selected parents would be
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and the actual value rv being small, is clearly less than this. Again, even admitting the 
insignificance of the assortative mating in some cases, we see that, unless =  
and further special relations hold between the variations of parents and offspring, this 
formula is not reducible to a mid-parent formula.

For example, in the case of stature, consider the male offspring of two pairs 
of parents. In the first case, let the father be 4" and the mother *923'' above the 
average; in the second, let the father be 1 " and the mother 3"*692 above the 
average. In both cases the height of the mid-parent is 2”' 5 above the average, 
and the average male offspring will, on the mid-parent theory, exceed the mean by 
l"-67. But in the first case, the bi-parental formula gives l" ’95, and in the second, 
1"*52. In the case of the female offspring of the same pairs, the mid-parental formula 
gives l/ 7*54 for both pairs, and the bi-parental formula 1"’41 and 1"*25 respectively. 
These differences are due to the prepotency of paternal inheritance, and to the 
inequality of the variation in different male and female groups.

These results have, of course, no greater validity than the statistics upon which they 
are based—a validity which Mr. Galton has been very careful to weigh (‘Natural 
Inheritance/ pp. 73, 131), but, I think, they suffice to show that the mid-parent theory 
must be looked upon as only an approximation of a rough kind.

It must further be borne in mind, that the variability of a fraternity with given 
mid-parent is, if assortative mating be neglected^ </l — r 22 — r 33 ; or if r2 be
=  r3, it is equal to cr1 — 2 r2a, and not — r2.

(6 .) Effect of Assortative Mating on Cross Heredity.—Our formula of course 
applies to the problems I have classed as those of cross heredity. Unfortunately, I 
have no statistics at present to give any illustration of the intensity of cross-heredity.
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G e n e r a l  F ormulae f o r  R e g r e ss io n  i n  S t a t u r e  :—

h2 =  deviation of father; hz =  deviation of mother.

Sons :—The mean height of array of sons corresponding to fathers of height h2 and 
mothers of height hz is

hy =  *4176 h2 +  *2997 A3, 
or,

=  - 4 1 7 6 +  *2766 (1*08 A3).

Daughters:—The mean height of array of daughters corresponding to fathers of 
height and mothers of height hz is

h \ =  *2895 h2+  *2609 
=  -3136 (A2/l*08) +  ‘2609 As.

In the second expressions given with both formulae, the parental heights are 
exhibited in terms of the equivalent heights of the sex of the offspring.

E xp lana tion  o f  the Tables.—Table XII. gives the value of the correlation coefficient
as influenced by assortative mating, **« -  r\rz 

1 — r-f The values of the simple correlation

coefficients (r1} r2, r3) are taken from Table II. Against each coefficient is placed the 
value of the “ direct ” coefficient, on the supposition that i \  =  0—e.g., r3—in order to 
exhibit immediately the influence of assortative mating.

Table XIII. gives the regression coefficients as influenced by assortative mating,
e.g., “ — — (see p. 286), and “ direct” or uninfluenced by such mating, e.g.,

r3 —; the former are calculated from the values given in Tables XII. and I., and the 
latter are reproduced from Table III.

Table XIY. exhibits the decreasing variation in arrays of sons and daughters, 
when we select (i.) neither father nor mother, (ii.) a mother of given type, (iii.) a father 
of given type, and (iv.) both mother and father of given types; (i.) is taken from 
Table I., (ii.) and (iii.) from Table IV., and (iv.) is calculated from the formula for 

deduced on p. 287.
(d.) Conclusions. Prepotency o f  Father.—These tables bring out the essential 

prepotency of the father in the case of both sons and daughters, the ratio of the 
contributions being 42 to 28 in the first case and 31 to 26 in the second case. A 
prepotency of the father * in other characteristics has been noted by Mr. G a lt o n  

in his “ Hereditary Genius,” but it is there attributed to the greater ease with which 
the male characteristic (genius) makes itself apparent. It deserves, however, to be

* Prepotency of either parent might, I  think, be easily tested statistically in the case of morbid 
inheritance, particularly in tubercular disease. Dr. R. E. T hompson  (‘ Family Phthisis,’ pp. 89 and 95), 
indicates a prepotency of the mother in both male and female inheritance of this disease.

2 P 2
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considered whether there is not, at any rate in many characteristics, an actual and 
not apparent male prepotency. It is, perhaps, needless to point out the sensible, if 
small, modifications introduced into inheritance by assortative mating.

Lastly, we note in Table XIV. the increasing tendency to ‘‘breed truer” as we 
select (i.) mother, (ii.) father, and (iii.) both mother and father.

(9.) On Some P oin ts connected w ith Inheritance.

(a.) On the S k ip p in g  o f  Generations.—It must be carefully borne in mind that the 
formulae we have discussed make not the least pretence to explain the mechanism of 
inheritance. All they attempt is to provide a basis for the quantitative measure 
of inheritance—a schedule, as it were, for tabulating and appreciating statistics. 
At the same time we may reasonably ask whether our formulae are wide enough to 
embrace certain of the more isolated and remarkable features of heredity. Let the 
subscripts 1, 2, 3, 4 refer respectively to father, mother, son, daughter. Thus, cr3 
would be the S.D. of the son population, h2 a deviation of a mother from the mean 
of mothers, r14 the correlation coefficient of fathers and daughters, and so on. Now 
if we consider the general form for- single correlation :

z =  z0e Va

we may give any values whatever to a ' and a " , and any value to r, which is less than 
unity, and deduce the theoretical results. Let us suppose r  to be of finite value, but 
that a"  is very small as compared with a .Then the regression ot on =  jar
will be very small, while the regression of xon =  N 'ra  j <r' will be large. On the
other hand, the deviation in y  will never be very remote from its mean. All this is 
perfectly true whatever be the value of r.

Now let us apply this to some secondary sexual characteristic, say hair on the 
face. A very small amount of hair on the woman’s face, with a very large amount of 
hair on the man’s face, is compatible with a large value of ; a small amount of hair 
on the woman’s face may be accounted for by a low mean and very small standaid 
deviation. The regression from father to daughter will be .expressed by

Ai =  rM %A,°i

or, since cr4 is extremely small, the daughter will hardly differ sensibly horn the 
mean small hairiness of women. The regression from daughter to daughter’s son 
will be

O-o, ^4 ;
r23 r~ 4̂ ■— r23rl4 a- l l<r2 °i



or, since cr3 and oq are nearly, if not practically, equal, and cr3 and oq also, we have— 
regression from grandfather to grandson through the female line =

This may be a very sensible quantity, if the correlation coefficients are of consider
able magnitude. What we have here, then, is the shipping o f  a  , the
inheritance of an especially male characteristic through the female line. The same 
reasoning would apply to the inheritance of an especially female characteristic through 
the male line. The formula, of course, gives no explanation  of why oq is small and 
r14 finite. It is only suggested that these outlying facts of heredity are not neces
sarily inconsistent with the formula. It may be argued that this account of skipping 
a generation would only apply to a characteristic which actually exists in both sexes, 
even if only in a small degree in one of them, and further, it assumes the distribution 
of this small degree to be of a normal character. This argument would certainly 
touch characteristics functionally necessary and peculiar to one sex; it may be 
doubted how far it would affect the question of secondary sexual characteristics, 
which may have rudimentary values in the sex of which they are not characteristic. It 
must further be remembered, however, that our correlation formulae are perfectly true 
for cross heredity, and accordingly the idea of rudimentary value may be pushed a 
good way, even to the idea of latency in a second closely-allied organ. The idea of 
latency here is not to be pressed into any theory of panmixia or of germ plasm. 
Given that certain bulls get good milkers, we have the problem, what organ or 
characteristic, rudimentary or not, in bulls has the highest numerical coefficient 
of correlation with the milk-giving capacity of the cows they beget ? We may not be 
able to ascertain this organ or characteristic, but the problem is really a statistical 
one, and does not assert anything as to the mechanism of heredity. The skipping of 
a generation in secondary, or even in primary, sexual characteristics, does not seem 
accordingly to present anything of a character which our formula fails to cover. In 
particular, in the case of morbid inheritances, such as gout and colour-blindness, 
which, while peculiarly male diseases, are yet handed down through the female line, 
our formula seems to be of considerable suggestiveness. This suggestiveness 
essentially depends on the independence of the two factors—correlation and varia
tion—which are components of the formula. Thus, while there appears to be no 
necessary relation between power of transmitting and capacity for developing a 
disease, the independence of correlation and variation will probably allow us to 
account for most special cases. The reader must be careful to note that we are not 
compelled to give r  or cr meanings relating directly to the intensity of the disease; 
they may refer to the size of organs or intensity of characteristics on which the 
liability to the disease or its intensity directly or indirectly depends. Bearing this in 
mind, we have only to put r13 finite, or vanishingly small, while both oq and cr3 
are finite, to grasp (i.) how gout may be transmitted from grandfather through either 
son or daughter to grandson, and yet (ii.) how colour-blindness and haemophilia are 
transmitted, as a rule, through daughter only to grandson—in both cases the
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daughter generally herself escaping (?q4 finite and oq very small). The protection of 
the transmitting sex is due, not to smallness of correlation, but to relative smallness 
of variation in that sex.

(b.) General Formulae fo r  F our Correlated Organs.—Another point—especially 
important for the problem of morbid inheritance—is the relative ages at which a 
characteristic appears in parent and offspring. Darw in  has noted how a characteristic 
appearing at a given age in the parent will reappear at the same age—sometimes 
indeed earlier—in the offspring. In particular, inherited diseases tend to develop 
themselves at an earlier date in the offspring than in the parent in proportion to 
the intensity of the inheritance. This appears to be especially the case in gout, 
rheumatic fever, diabetes, and phthisis.*

Now, the quantities with which we have to deal here are fo u r  in number, ages of 
parent and offspring on appearance of disease and intensities of the disease in the 
parent and offspring. We require, accordingly, the formulae for triple correlation. 
Proceeding, as in the earlier discussions, we find, if aq, aq, xs, aq be the deviation of 
the four quantities from their respective means, oq, oq, cr3, oq their standard deviations, 
r 12, r 13, r 14, r23, r24, r3i, the six correlation coefficients pair and pair of organs or 
characteristic z Saq Sx2 Sx3 Saq, the frequency out of a total of n quadruplets of the 
quadruplets with organs or characteristics between aq, aq, x3, aq and aq 4 * Saq, 
aq -f“ âq, aq 4 ~ Saq, aq 4 " Saq ’

z __ n^X
47T2<r1cr2<T3cr4.

where
\ L =z l  — r 23 — r3f  — r423 4- 2

Vp =  r 12 (1 — r 3f )  — r 13r23 — rq4r24 4- r34 (ru r23 +  r 13r2i),
and .

1 /x =  1 -  ?q32 “  1̂32 -  -  r  +  r i32r34.2 +  W  +  1̂3 2̂4
+  2  (V-UrU +  *84rHr lS +  r12r Mr24 +  V lS^s)
— 2 (aiar14r23r34 4- r14r13r23r24 - f  r12r13r24r34),

while the remaining, \ 5s and v’s may be written down by symmetry from A.x and vi2.
Accordingly we have for regression the formula

_ JL Cl (^Y+^(3 Y +*J*Y+aJ^Y -2,12̂  - 2,l8£a -&,M
l 2 n \<Tj/ V oq / V <r3 /  \  cr4 /  oqoa

aa —2^3 - 2^
cr 4 cr2cry ■ cr̂ cr4 crgcr4

O’! ^  I "1.
Xa <r3 3 0-3

f tS +  xA-i oq

and for the standard deviation of a group of organs a, corresponding to selected 
organs A2, h3, /q (i.e., an array)

t i  =  oq/\/x^i‘
* Here, as elsewhere, I have to thank my friend, Dr. R. T. Ryle, for the kindness .with which he • 

has allowed me to examine the material he has collected with regard to morbid inheritance.



(c.) Antedating o f Family Diseases.—We may now apply these results to the case 
of morbid inheritance, making the following assumptions :—

(a.) The distribution of the disease with regard to both age and intensity will be 
taken to be the same for any two successive generations, and to be normal.

(b.) The age at which the disease appears and its intensity are both directly 
inherited, but the age of appearance and intensity of the disease in the parent are 
not directly correlated with the intensity of the disease and the age of its reappear
ance in the offspring.

Let e be the coefficient of correlation between the age of appearance of disease in 
the parent and the age of the offspring at its reappearance ; let be the standard- 
deviation for the frequency of the disease at different ages, and M the mean age at 
which the disease appears in the population.

Let 7j be the coefficient of correlation between the intensity of the disease in the 
parent and the intensity of the disease in the offspring; let cr' the standard-deviation 
of the intensity-frequency and M' he the mean intensity.*

Let M +  Ax, M' +  I x, be the mean age of the appearance of the disease and its 
mean intensity for an array of offspring, whose parents exhibited the disease 
when M +  A2 years old with an intensity M' +  I2.

Let the subscripts 1 , 2 , 3 , 4 refer respectively to age of offspring, age of parent, 
and intensity in offspring and intensity in parent. Then, in the formula for triple 
correlation, we must p u t :

*12 =  e5 **34 ^  V* *18 =  *24 =  K’ **14 =  **23
H ence:

Xi =  X2 =  1 — rf — K3, =  e +  ( 3 — ),
\ 3 =  \ 4 — 1 — e3 — /c3, v34 =  +  e (k3 — erj),

1̂3 =  2̂4 =  k — k (k2 — erj),
*14 =  *28 =  “  (e +  V)>

1 / ^ = 1  — e2 — yf — 2  k3 -j- (/c3 — e f f '

Substituting these values in the regression formula, we find :

e + y(k2 — ey) * , * — * (jf— ^ t   K ( 6 + v) t
■“ •1 1 _  ^2 _  ^3 3 ‘ 1 — rf — /c2 <r' 1 1 — — 3

Now as the parents in the group M +  A2, M' +  I2 are in no way selected by

* It m ight be difficult to get a mathematical measure of the intensity of a disease. For simple 
theory as apart from statistical measurements, such is, however, unnecessary. The terms used m  
medical works, acute, subacute, chronic, &c., sufficiently indicate that the relative intensity of various 
cases is a fact duly recognized by the trained medical mind, if it cannot always be quantitatively 
expressed.
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parentage, or influenced by heredity, being general statistics, we shall assume that, 

on the average, A 2 — K~r Ig» and hence :

tc — k ( « 3 — a 
1 — 773 — /c3 <t' (II — 77L,) =  | k + Krj (y  e)

1 — 77s — a3} p i l i

Similarly :
, « e (77 +  e) 1 er' 

K +  1 _  e2 _  J o-
(Ax — eA3).

These formulae give the chief influence of age of appearance and intensity of 
disease in parent upon intensity and age of appearance in the offspring. If we 
suppose k  positive, i.e., if increased age of appearance means for the diseased 
population as a whole increased intensity, then intensity of disease in parents tends 
to lower the age at which the disease appears in the offspring, and this tendency to 
antedate is the greater, the greater the correlation (rj) between intensity of the 
disease in parent and child, i.e., the stronger the hereditability of the disease. If k 

be negative, i.e., increased age of appearance means for the diseased population as a 
whole decreased intensity, then the opposite result will follow, for A 1 will have a less 
negative value than if rj =  0, i.e.,the age of offspring be raised towards the mean.*
It would thus seem possible that the antedating of inheritance in the case of gout 
and diabetes might correspond to a post-dating in the cases of diseases intenser in 
youthful incidence.

Our second formula shows that for diseases with increased intensity at increased 
age of appearance, a late age of appearance in the parent decreases the intensity of 
appearance in the offspring, while the reverse holds if the disease is intenser for 
youthful than for senile incidence.

I t must be noted that the correlation between intensity and age without regard to 
heredity is given by :

1! =  * -  A„a

so that heredity affects the constant of correlation k  by multiplying it by the 
quantity:

1 1 6 (v + 6)
1  — e3 — k2

The second part of this expression is by no means necessarily negligible as 
compared with the first part, if heredity be strong. For example, with the order of 
correlation we have found between parent and offspring, in the case of stature the

* Generally but not absolutely, for v2 +  « 3 for some diseases may be > 1 ,  and, if not d if fe r e n t ,  

then the second term is the important term,



second term might be J  to £, while, for values of the order 7  in the correlation 
coefficients, it would be a much more important term than the first, i.e., heredity 
would completely obscure the general correlation between intensity and age.

Similar remarks apply, of course, to the formula

and the modification of its k by the factor

1 _L 71 ill + 6)^  1 _  yf_ *3 *

While the above discussion has been adapted particularly to the problem of morbid 
inheritance, it should be noted that the general formula© for triple correlation apply 
to a number of interesting problems on the inheritance of two faculties by the 
offspring from the parent. In particular, the above special formulae in rj, e, and k 

apply without modification to any case when (a) the two faculties are correlated in 
like manner ( k)in parent and offspring, ( the two faculties are each directly 
inherited ( rjand e), (c) there is an insensible or zero amount of cross heredity. I do 
not stay to develop the formulae at present, because I hope to return to them when 
I have more ample statistics to illustrate the properties of cross heredity from.

(d.) On the SJceivness of Disease Curves.—There is one qualifying remark which 
must, however, be made before we leave the topic of morbid inheritance. We have 
assumed that the frequency surface for intensity and age of appearance of disease is a 
normal correlation surface. This, however, is only an approximation. If we add 
together all the intensities for each age, we shall have a frequency with age curve for 
the disease, and if the correlation surface were a true normal surface, this would be a 
true normal curve. In many diseases, possibly in all, it is however, a distinctly skew 
curve, and this whether we take the case-frequency or the mortality-frequency. This 
has been illustrated in “ Contributions to Mathematical Theory of Evolution, II.” 
(‘Phil. Trans./ vol. 186, A.), Plate 1 2 , for enteric fever.# The following statistics 
illustrate the same skewness for a disease more distinctly associated with heredity! .*—
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P hthisis : 2 0 0 0  cases with History of Parental Phthisis.

p

1
!

1 ° 15 2 0 25 30
]■

35 40
1 !

45 50 j 55 60
1

Frequency 26 1 0 0 436 549 392 d  217 149 65
j '

2 7 i 6  | 9 
|

* 1

* It is, I think, true for all fevers, some of which, however, have k positive and others k negative, 
t  R. E. T homson , ‘ Family Phthisis,* p. 22, London, 1884.
MDCCCXCVI.— A. 2 Q



I t  is clear that we have here to deal with a skew curve of the kind discussed in my 
second memoir, and the intensity-age distribution must be a skew correlation surface 
to give rise to such a curve. The full treatment, accordingly, of morbid inheritance 
requires a discussion of skew correlation. I hope to be able to return to it again 
when dealing with the general theory of disease distributions. Meanwhile, the 
considerations of this section are based on an approximate theory, which, however, 
can hardly fail to give the main outlines of the subject, if a more accurate develop
ment might be requisite when actual statistics were forthcoming to be dealt with.

( 1 0 .) Natural Selection and Panmixia.

(a.)Fundamental Theorem in Selection.—The general theory of correlation shows 
us that taking p  +  1 correlated organs, if we select p  of them of definite dimensions, 
the remaining organ will follow a normal law of distribution, of which the standard- 
deviation and mean can be determined. Now, in the problem of natural selection, 
we do not select absolutely definite dimensions, and the p  organs selected may be 
specially correlated together in selection, in a manner totally different from their 
“ natural ” correlation or correlation of birth. We, therefore, require a generalised 
investigation of the following kind : Given +  1 normally correlated organs, p out 
of these organs are selected in the following manner i each organ is selected normally 
round a given mean, and the p  selected organs, pair and pair, are correlated in any
arbitrary manner. What will be the nature of the distribution of the remaining 
(p  +  l) th organ ?

Geometrically in ^-dimensional space we have a correlation surface of the pth 
order among the p  organs, and out of this, with any origin we please, we cut an 
arbitrary correlation surface of the p iXlorder—of course, of smaller dimensions the
problem is to find the distribution of the +  l) th organ related to this arbitrary 
surface cut out of what we may term the natural surface.

If the p  organs are organs of ancestry—as many as w e  please—and the (p +  l)th 
organ that of a descendant, we have here the general problem of natural selection
modified by inheritance. 'J |

We will distinguish the two correlation surfaces as the unselected and the selected. 
Let f i i ,  f i z ,  /33, .' . . be the regression coefficients of the ( p  +  l)th organ on the p organs 
for unselected correlation, then for values of the p  organs h2, A3, . . from their
respective means, the (p +  l) th organ will have a distribution centering round 

_p fizh.2 +  /?3A3 +  . . . , and a standard deviation cr given by the general theory of 
correlation (i.e., the S.D. of the array). Similarly, for values +  xlt h2 -f x2) 
A3 +  x 3 . .. of the p  organs, the ( p  +  *)th will have a distribution with standard-
deviation cr and centre

(k  +  *i) +  f t  ( f t + *s) +  f t  (ft +  *s) +  ■ • • =  £ + s  (A’O* say-
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Thus a deviation of the p th organ lying between v and v -f- from the mean of 
these organs will occur with a frequency varying as

d v e  ^  F~ •

Now let the selected correlation surface centering round h2, /?3. . . .  be given by 

% constant + ... + ̂ î xix̂  + ••••) ̂

Then the total frequency of the p th organ lying between v and v +  dv =

Constant X dv f f f . .. e- . . .
J o o —-WOO—J co —

To carry out the integrations, let us first transfer the expression in the exponential 
power to its “ centre,” writing v — £ =  u,and . . .  as the coordinates of 
the centre.

To find the “ centre” we have the equations :

f t  (u — S (ft^i'))/^ =  «ji +  aux2 +  +  . . . ,
f t  (u — S (Pi%i ))/(t2 =  anx{ +  +  a2Sx3' +  . . . ,
f t  (u — S (/W))/o-2 =  a31aq' +  +  a33x3 +  . . . ,

hence
Afl?i' =  (ftAn +  ftAl2 +  ftA13 +  . . . — S (ft«i'))M
Ax2 =  (ftA2i 4" ftA22 +  ftA23. 4” • • ')(u S (fta  ̂))/c2>
Ax3 =  (ftA31 4- ftA33 4- ftA33 4  . .  .)(w — S (ft^i/))/cr3>

where A is the determinant of the <x’s, and the A’s are its minors, clearly ay =  ay; 
and Ay == A .̂ Multiplying these equations by ft, ft, f t  . . .  respectively, and 
adding we find

cr3AS (ft# i) =  {ft2An 4" ft2A22 f t2A33 4- • • •
+  2A12 f tf t  +  2A13 f tf t  4- • • (w — S (fiix\))

— {S (ft2An) +  2S (A12 ftft)}(^ S (fta; 2)),
hence

« ( f t - v ) = ^ Ax ; x

where
X =  S (A 2A11) +  2S

2 Q 2



We can now transfer the exponential expression to its centre and we find for the 
frequency

Constant X d u e  *fe3 ~*+x) f f f. ,.   ̂8 (***(a“ + ̂ ))+ 8 (a““i^))}
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Where xL, x2, x3. . .  , now denote the coordinates transferred to the new origin.
The integrations can then be performed without changing the u factor, and finally 
the frequency

=  constant X d*“/(<t2+a).

Hence we notice the following important results :
(a.) The_p +  1th organ follows a normal distribution.
(b.) Its standard deviation % is given by

S» =  *» +  A * ^  +  & » ^ , +  . k  +  2 A &  ^  +  S fiA  +  • • •

(c.) Its mean (since u — v  —  £ )  =  +  +  . . .

We conclude that
(i.) so long as selection is normal, however complex may be the system of organs 

selected, and however complex their correlation, the distribution of any single organ 
remains normal. This possibly accounts for the persistency with which normal 
grouping reappears in nature.

(ii.) If we select organs varying about any means whatever, the mean of the 
correlated organ resulting from this selection will be identical with the mean we 
should have obtained by selecting organs actually at the means of selection.

(iii.) The standard deviation of the organ which results from the selection is not 
that of an array (cr) arising from selection of the organs actually at the means, but is 
(as we might expect) greater. This greater variability is due to the expression

+  +  2 A A ^ + ; . - ;

which admits of the following interpretation.
Consider the selection correlation surface

z =  constant X + «■*>+ • • • + • •>

and give aq and x2 chosen values % and rj2.
Transfer the remaining variables to the *ecentre.” The equations to do this are
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/  +  V ia n  +  y z a i2 =  V ia n  +  V2a i2 +  +  +  . . .

9  V la l2 +  V2a 22 =  V la 21 +  V2a 22 4* +  +  . . .

^  ^ 1 ^ 3 1  H ~  r) 2 Cl,32  “ 1“  4 “  ^S4,x 4  4 ~  • • •

0  =  rjiCCji 4 -  r?4>2Cl'42 “ I”  a ±3X3 H “  a 44,X± 4 “ • • •

where fand g  are w ritten  for a 13a;'3 4 - 4 - . . . and a 23af3 4 - 4 - . .
tively. Solving, we find

^ 1 1  ( f  +  *?ia n  4“ V2a l2) +  ^ 1 2  (9 +  Vl^lZ +  V2a22) — >7i A,
^-21  ( / +  Via n4 - >72^ 12) +  A 22 (g  4 - 4 - r)2a 22) =  A.

Hence

f  =
Vl-A-c, %Aif
A A  __ A  2 ^  V ^ l l■^11 ̂ 2 2  a 12

9  =  A  -  V]a 12 -  Vsa.,2.A11A22

B ut the  exponential expression w ith its origin changed is given by

z  =  constant X  6~~* + + a& v/ + 1 + 9Vz)

V  Q —4 (<(33'?;S2 + ai + . . . + 2 + . . .)

. respec-

In teg ra tin g  between the  lim its 4 1 00 for all the variables x 3, x±, x 5 . . we shall 
have the  correlation surface for rj1} rj2, or substitu ting  fo rjf  and g

z' =  constant X e ~ * 1 -  (a122/aua22) { au + â 2 ~2r>̂  AuAa2} t

Comparing th is w ith the  formula on p. 2 6 4 ,  we see th a t if  p 12 be the  correlation 
coefficient of x lf x 2 and sL, s2 the ir standard  deviations

Pl22 =  '̂ -122/ ĵ -1 1̂ -22 512 =  -^-ll/A 522 == A-22/ A or Pl25l52 =  Ajg/A • • (€)*
Thus we conclude th a t the standard  deviation for the organ resulting from the 

selection is given by

X2 =  cr3 4“ fii2si2 4“ ^ 2% 2 d“ • • • 4” % 4" • • •

H ere cr, j8*, /82 . . . refer to  the natural or unselected correlation surface, and 
s1} s2,. . . p12 . . .  to the selection correlation surface.

( 6 .)  E d g e w o r t h ’s  Theorem.— W"e may stay  for a moment over the results (e )  above 
in order to deduce Professor E d g e w o r t h ’s  Theorem,* which we shall shortly require 
to use. By the theory of minors ( S a l m o n ’s  ‘ H igher A lgebra,’ 1 8 6 6 ,  p . 2 4 )  we have

* B riefly  stated  w ith  som e rather d istu rb in g  printer’s errors in th e  ‘ P h il. M ag.,’ vol. 34, p. 201, 1892. .
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> 1 II - A - iu A ] 2 > A13 . . . .
A2i, A33 • • • •
- ^ 3 U A o3 . . . .

• • 9 # • ♦ • i

APs^s^So2 . . 1 , Pl2> P l3

P 21’ 1 , P23

P 3 V PS2> 1  ,

Hence l /A  =  s12s.22s^2 . ... R, where R is the determinant formed by the correlation 
coefficients with a diagonal of units.

Further, if Bn, B22 . . . B12 . . .  be the minors of the A-determinant, and Rn, 
R22, . . . B 12, . . .  of the R-determinant, we have (S a l m o n , c i t . ) :

®hi “  Bu/A  ̂ 2 =  A H n s12s22s32 . . .  =  R11/(Rs13),
*-*'22 =  Bgg/Â  2 =  AR22s12s32s32 . . . I s 2 —  R22/(Rs23), 

al2 ^  ^ 12! 3 :=: AR125l% V  • * • 152 =  B12/(R.91S2).

Thus, the correlation surface may be written

** e~ A (* ^ +S &  +,; + • •')
(27t)^51S3S3 . . . \ /R

where n is the total number of sets of p  organs and is a numerical factor denoting 
the number of \ p  +  l)th organs corresponding to each set—in inheritance what may 
be termed a factor of reproductivity #—which is assumed to be practically constant, 
if not over the whole unselected correlation surface, at least over the selected 
portion of it.

(c.) Selection o f Parentages. Correlation Coefficients for Ancestry.—The results on 
p. 300 and p. 301 for the regression £ and the standard-deviation X whenp  correlated 
organs are arbitrarily selected about p  means will, I think, be found to express the 
chief features of natural selection. A few special corollaries may follow here.

Cor. 1 .—If a single parentage be selected with mean above the mean of the

general population and standard deviation slt then l31 =  r01 , where r01 is the

* The variation of this factor is, however, the essential feature of reproductive selection, as I shall 
show on another occasion.



correlation coefficient of parent and offspring, and oq, cr0 their standard-deviations in 
the unselected state. Thus we have

PROP. K. PEARSON ON THE MATHEMATICAL THEORY OP EVOLUTION. 303

€ — roi ^7 hi > S'2 =  o-o2 (! “  ^oi2) +  % 2 ^  *1*

If  the parent and offspring are of the same sex and there be no reproductive 
selection, cr0 =  <x]3 and we have

£ =  * o A  S 2 =  cr02 (1 — r013) +

Cor. 2 .—If  a bi-parentage be selected with parental means h2, standard- 
deviations Sj, 6‘2, and coefficient of assortative mating p]2> then

r l2r 02 ° 0

1 -  V  <*\
hl + r 0 3 r!2r0l V) 1

1 - v  2’
-- f t f t  +  f tf t ,

S2 =  o-q2 ( !  — ? V  — r 023 — r ]33 +  2r01r03r 13) +  f t V  - f  f t V  +  2f t f t p 12,V 2*

Let us use these results to investigate how the offspring of a selected parentage or 
bi-parentage degenerate. At first sight, it would appear that with our general 
proposition the discussion of the effect of selections would be perfectly straight
forward. So it is, but the conclusion which follows, although it might have been 
foreseen, is remarkable in its consequences. We have only to calculate out the /3’s 
for p selected ancestors, and we obtain the regression £ in the descendant by putting 
in the values f t , h2, ft, . .  . of the means of the selected ancestors. For example, 
suppose now a parent, a grandparent, and a great-grandparent to have been selected. 
We can find the fts at once from the results on p. 294. If 1 , 2 , 3 , 4 denote the suc
cessive generations, and r the correlation coefficient of parent and offspring, we find

r l2 =  r, r13 =  r2, r14j =  r \  r23 =  r, r 24 =  r3, r 43 =  r,

whence we deduce at once

Xj =  1 — 2r3 - f  r4, v i2 =  r  (1 — 2r* +  r5),

v \z == vn  ~  1 /x  =  ( 1 r2)3>
or

f t  == r  —, f t  =  f t  =  0 - f t  == crj \ / l  • ?'3-"a

Similarly, if we take offspring (1 ), parent (2 ), and maternal and paternal of the 
same sex, grandparents (3 and 4), we have :

ri2 =  r, r13 =  r 3, ru =  r 3, r 33 — r, r 34 =  r, r 34 =  0 ,
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whence
Ax =  1 — 2r2, vn  =  r  (1 —. 2r2), v13 =  v14 =  0, 1 =  1 — 3r2 +  2r4,

or,
/B, =  r ? \  P i - -  P i —  0, 2 , =  <r, v/1 -  *?.

Thus we see that in both cases the grandparents are quite indifferent, when the 
immediate parent has been selected.

These theorems can be at once generalised by means of E dgeworth’s theorem. 
Suppose we select a complete parentage for generations in the case of partlieno- 
genetic reproduction, or a parentage of one sex, say males, in the case of sexual 
reproduction, then in either ease our scheme of subscripts of the correlation-coefficients, 
—̂  marking a generation, is

and
1 V ?.2 y S

r 1 r r2 - y P ~%

y % r 1 , r  . . y P  3

y P  1 y P ~~2i y P  — 3 . 1

Multiply the second line by r, and subtract from the first, and we have
E, =  (1 — r2) R.n ,

Take B,1? (q < p), and we have
i 1 'Y* ff*2 y (l mm‘  ̂ yQ  ̂ yP 2

^  y  | 'Y* /yQ. 2  ̂ yP ^
=

rP~q+ 2 yV-’l ^

Multiply the second column by r, and subtract from the first, and we have 
l2 =  0 if q > 2.
I f  q  =  2, we have

r
y&

y& yP  2

ry ryV

yP~l yP—3 # # 1

or, dividing the first column by r, K12 =  ^Bn.
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Hence £ =  r  ~ h 2, and cr 2 — oq2 (1 — r2),
or precisely the results we should have obtained by selecting only the immediate 
parent.

To simplify the analysis for biparental selection, assume that the correlation 
coefficients of both parents are equal, and that there is no assortative mating.

We have the scheme for the correlation-coefficients subscripts, —> marking a 
generation:

_ an(l so on.
_____—

15—
Thus r mn is at once expressible as zero, or a power of r, the simple coefficient of 

correlation for parent and offspring, according as and n  do not or do lie in the
direct descent. 

Hence we find
1 r r /y%& 7»2

r 1 0 r r 0 0
r 0 1 0 0 r r

r 0 1 0 0 0
/y& r 0 0 1 0 0
/y& 0 r 0 0 1 0

0 r 0 0 0 1
3̂ r2 0 r 0 0 0

ry* 3 7-»2 0 r 0 0 0
,̂*3 T l 0 0 r 0 0
7.3 /yul 0 0 r 0 0
ry* 3 0 0 0 r 0
r3 0 fy& 0 0 r 0

co 0 ry& 0 0 0 r
.̂3 0 /ySL 0 0 0 r

ry& r3 ry* 3 /̂»3 r3 r3 ŷ»3 r3 . # * I
/y%& ryQ> r2 /y*% 0 0 0 0 .
0 0 0 0 /y& . .
r V 0 0 0 0 0 0 .
0 0 r r 0 0 0 0 . .. .

0 0 0 0 r r 0 0 .’ *
0 0 0 0 0 0 r r  .
1 0 0 0 0 0 0 0 .
0 1 0 0 0 0 0 0 .
0 0 1 0 0 0 0 0 .
0 0 0 1 0 0 0 0 .
0 0 0 0 1 0 0 0 .
0 0 0 0 0 1 0 0 ,. . .
0 0 0 0 0 0 1 0 . !
0 0 0 0 0 0 0 . 1 .!! ’ i

l
Add the second and third rows, multiply them by v and subtract from the fiist, 

and we find :
K =  (1 -  2r2) Hn.

2  Rmdcccxcvi.— a .
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If q> 3 and < p  we have

r 1 0 r r 0 0 f* ryfl /yfl 0 0 0 0 . . .

> 0 l 0 0 r r 0 0 0 0

4 r 0 1 0 0 0 r r 0 0 0 0 0 o . . .

r 0 0 1 0 0 0 0 r r 0 0 0 0 . . .

0 r 0 0 l 0 0 0 0 0 r r 0 0 . . .

0 r 0 0 0 1 0 0 0 0 0 0 r r  . . .
^3 0 r 0 0 0 1 0 0 0 0 0 0 0 . . .

CO

0 r 0 0 0 0 1 0 0 0 0 0 0 . . .

Whence, adding the second and third columns, multiplying by r and subtracting from 
the first, we have I!1? =  0.

Lastly, B12 =  rBu and R13 =  rRn ; for R12 is of the form of R1? above without the 
second column. Divide the first column by and subtract the second column (the 
third of R1? above) and it becomes the first of Rn, the remainder is identical in R12 
and Rn. Hence, R12 =  rRn. Similarly we find R13, Thus we conclude that

£ =  r  —  h.2 -f- v —  ho, a  2 (1 — r 3 — r 3).

the formulae for biparental inheritance with equal parental correlation, and no assorta- 
tive mating. The analysis for unequal parental correlation and assortative mating 
follows the same lines, is far more lengthy, but leads to the same result, i.e., no gain 
by selection of the same amount, oft repeated.

(d.) Secular Natural Selection and Steady Selection. Focus of Regression.—We 
thus see that, on the theory with which we are concerned, a knowledge of the ancestry 
beyond the parents in no way alters our judgment as to the size of organ or degree of 
characteristic probable in the offspring, nor its variability.* An exceptional father 
is as likely to have exceptional children i f  he comes of a mediocre stock as i f  he comes 
o f an exceptional stock. The value of £ will be no greater nor the value of less if 
the parents have been selected for p  generations than if they have been selected for 
one only. This result seems to me somewhat surprising, but I cannot see how it is 
to be escaped so long as we assume the normal distribution of frequency, which 
appears in so many cases to be a close approximation to fact. It is of course possible

* This seems specially noteworthy; it would seem natural to suppose that the offspring of a long 
selected stock would be less variable than those of one just started—that the offspring of a gradually 
created variety would be more stable than those so to speak of a sport. It appears not.
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that in some manner repeated selection causes a progression of the “ focus of regres
sion,” by which term I would understand the mean of the general population from 
which selection has originally taken place. I have been very careful so far not to 
hazard any statement with regard to this focus of regression. I have measured only 
the amount by which the offspring of exceptional parents diverge, not from the mean 
of the parental population but from the mean of the offspring population. In this 
manner our formulae allowed for the play of secular natural selection. I t is quite true 
that the word “ regression ” thus loses its accustomary meaning, which it can only 
hear if the population be stable and the means of two generations sensibly identical; 
this is the case for which, I think, the word was introduced by Mr. G  Al t o n . # The 
sense given to it in the present paper is accordingly a technical one; as already 
defined, it is the ratio of the mean deviation of the offspring of a selected parentage 
to the deviation in the parent which characterises the selection, the deviations in 
offspring and parents being respectively measured from the means of the corre
sponding general populations. Now here, at the very outset of our consideration of 
panmixia arises a very real difficulty, which is vital for the whole theory of evolution 
by natural selection. According to Mr. G a l t o n  the population being stable, or no 
secular natural selection or reproductive selection taking place, there is a regression 
of the offspring of selected parents towards the mean of a certain general population, 
and the “ grandchildren” also regress to the same mean. We shall see then that

unless correlation is perfect — =  1  ̂ no amount of continued selection would suffice

to prevent a race from regressing to an original general population when that selection 
was suspended. Panmixia in the sense of its most ardent supporters would be demon
strated. But the difficulty is not the establishment of panmixia, but as to what is to be 
considered the “ original general population.” On the theory of evolution by natural 
selection that general population has itself been produced by a series of selections, and 
selections probably affecting its mean as well as its standard-deviation, hence how is it 
possible to pick, out any particular stage of general population as the “ focus of regres
sion,” and assert that regression of the offspring of parents now selected takes place 
towards that stage of evolution ? Where is the focus of regression to be placed for the 
profile angle of man ? About 80° to 90° or nearer the 40° to 70° of the anthropoid apes? 
The further back the better for those who believe that suspension and reversal of natural 
selection are identical, but no manipulating whatever of the human mortality tables 
would allow for a “ focus of regression ” very considerably below that of the current 
general population. Hence it would seem essential that successive selections must 
connote some progression of the focus of regression. This progression may be con
tinuous with continuous natural selection, or it may take place by starts and leaps, as

* "We can at once restore the true notion of regression, as Mr. Galton points out to me, bj measuring 
each organ or characteristic in terms of its own standard-deviation. It will then be a coefficient of 
correlation and a proper fraction.

2 R 2



indicated in Mr. G Alton’s idea of organic stability. In either case panmixia would 
only carry back the mean to the current focus of regression, and so be a very minute 
reversal of natural selection.

What our theory really shows is a regression of the offspring of selected parents 
towards the mean of general offspring. This latter mean, supposing no secular 
natural selection, can, it seems to me, only be determined by experiment. I t can 
hardly agree with the general parental mean, if the parents themselves are the 
product of natural selection. On the other hand, the statistics actually obtained for 
stable, or sensibly stable, populations seem to mark a focus of regression close to the 
mean of the current population, and, therefore, a progression of the focus due to past 
selection.* Meanwhile, till experiment has settled how continuous selection affects 
the focus of regression, we may see whither extreme hypotheses lead us. Such are :

(1 .) The focus of regression remains stable during selection.
(2 .) The focus of regression is the mean of the population from which parents have 

been selected.
(e.) Focus o f Regression Stable during Selection.

(i.) Steady Selection cannot be Secular or Produce Truer Breeding.—We have 
seen that on this hypothesis ancestry, as distinct from immediate parentage, is indif
ferent. Thus, in the case of parthenogenebic reproduction, or of sexual reproduction 
with one parent selected, we have seen that one selection leads to the distribution 
(Cor. 1 , p 301) :

i  =  r 01 KS3 =  a-/ ( 1  -  r01*) +  5l3,

and if out of this we again select a parentage, defined by and sv we shall obtain 
the same distribution of offspring, and this however often the process be repeated. 
We must increase the divergence (hj) of the selected from the general population or 
its concentration (1 /sj) or both, if we require any progressive effect from continual 
selection. The same remarks apply to bi-parental selection (mlt m2, s2, s3, 
Persistent selection only suffices to keep the mean and variation at a definite distance 
from those of the general population. Or, on the hypothesis of a stationary focus of 
regression, we conclude that steady selection, however long it , can only be 
periodic and not secular.

This point seems of such importance that it may be best to illustrate it by an 
example drawn from our Table I. and Table III. The mean height of fathers being 
about 69"% the regression of the average sons of fathers of 6 ' in height is about 
l" ’25, or the average height of sons of a 6  fatherhood =  70 45. Hence, if we 
select fathers forming a normal distribution of any standard round 6 ', we shall have a 
normal distribution of sons round 70",45. If we select a second parentage from

* The determination of the focus of regression for some organ in selected domestic ducks for several 
generations and comparison with the means for wild and general domestic ducks would seem a 

possibility.
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those taller sons averaging 6 ', their sons Will still only average 70/,*45, and, however 
long we persist in this process of selection, we shall produce no secular change; the 
population will remain after the £>th selection ju s t where it was both as to mean and 
variation after the first. The only way to produce a secular change is to continually 
increase the standard of the  selected (or to  alter the focus of regression). No steady 
selection would appear to produce “ truer breeding.”

(ii.) P anm ixia  and TJni-parental Regression.— Continual selection of the same 
magnitude for p  generations, merely giving us the same mean and variation, we may 
now ask w hat would be the effect of suspending natural selection for q generations.

Take first the case of parthenogenetic reproduction, or th a t of uni-parental regres
sion. The first parentage after suspension of natural selection will have r3 
for its mean, and { o - j 2 ( l  — r 32) - j -  s22 r 32 o q 2/ ^ 2 }  for its standard-deviation. 
Successive parentages can be found by substituting these values successively in 
themselves for the  quantities m2 and s2. Wb find a t once th a t after q generations 
of suspended selection the mean of the population will differ from the focus of 
regression by

m 2 ( r 3

and the standard-deviation will be given by
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2
9 CTi2  ( 1

1  -  (T tO rJ c r j* -*  

1 — (r3 ^l/Vi)2
+  (^3<r l M * *  2sl2‘

Now if the population simply repeat itself w ithout any natural selection (if there 
be no reproductive selection a t work) crq =  <r2, and in most cases I  have come 
across r 3 oq/oq is a fraction. Hence, as q is indefinitely increased m.2 (r3 <r-ijcr2) q becomes

indefinitely small, and =  oq2, or =  crx2  ^  » if cri he not equal to oq.

W e see, therefore, th a t both, as to mean and variation the population with 
suspended natural selection tends to rapidly regress to the general population from 
which it was selected. This is still true if there has been a continuous secular, 
as distinguished from a periodic natural selection, for we have only to suppose 
and s2 to be the final result of such selection. I f  then the focus of regression 
does not progress w ith continuous selection, all th a t has been asserted as to the 
effect of suspended natural selection holds, a t least so far as concerns a return  to the 
condition of things which prevailed when the focus of regression was the mean of the 
general population. B ut unfortunately the advocates of panmixia want more than 
this, namely, either an indefinite regression of the focus of regression itself, or to 
place it, if steady, a t an indefinitely distant point. The first result would be 
perfectly parallel w ith our second hypothesis—a progression of the focus of regres
sion,— but would demand rather a reversal than  a suspension of natural selection. 
The second result seems quite inconsistent with any statistics of successive genera-
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tions yet taken ; it demands a mortality due to natural selection, which its 
propounders have hardly appreciated.

(iii.) Panmixia and Bi-parental Regression.—The process by which corresponding 
results may be deduced for bi-parental selection may now be briefly indicated.

We suppose both natural selection and assortative mating to have gone on in any 
manner for any number of generations, the final effect, however, if the focus of 
regression be not changed, will be :

Mean of males =  /32m2 4* /33m3 =  pl, say,
Mean of females =  /3'2m.2 +  /3'3m3 =  p \, say,
(S.D. of males) 2 =  o-2 +  +  /332s32 +  2 =  e/,

(S.D. of females)2 =  cr'2 -f fi'2\ 2 +  -f 2/3'2(3'3s.2s3p =  77j2,

where m2, m3, s2, s3, p defines the last step of the natural and sexual selections, and 
j3'2, yS'3 are the regression-coefficients for females.

Now, selection of all sorts ceasing, we must use for the regression-coefficients no 
longer their values modified by sexual selection, but simply :

<x 5 =

fi-2 — r 3 a  1/ 0 -2, @3 —  r 2 Vl /°3>

^ ' 2  = f i  3 —  T 2°" l / 0" S

=  o-i2( l  — r22 — r32) o-'3 =  0 -7 (1  ~ -  »•?),

obtained from the general values, p. 287, by putting rl — 0 . Here r'2 and are 
respectively the maternal and paternal correlation coefficients for inheritance in the
female line. Further, we have very closely <r1 =  cr2 and cr'i =  cr\ — crq
pp> p!p give the male and female means, ep, the male and female standard-deviations,
after p generations in which natural and sexual selection have both been suspended, 
we have:

Pp — $ 2  Ab*—1 ~b  ̂i>
P  p —— zH'p—i 4" 3/^

2V i  —  u*2 4 “ 4"

cr'z 4 “ ^ 2 ep - \  4*  ^  32,?P-10*

Solving the equations for the means first, we have : 

pp — 4 - A2y2>-12,

p p =  A 1(7i — &)
£s

P - \  1 a v  * > -1

1 +  2 /S3 7 2  ’
where
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and

a _ A* lf t  +  Ah (£2 -  72)— ,
7i ~  73

A __ ^  ift"I- A11 ( f t  7l)A o —  “ ■ j
7i ~  72

^  } — i  {ft ~r ft3 ±  vx(ft — ft3)2 4* Iftft-ft

Since the fts for parental inheritance will be < *5, it follows that y, and y2 are 
proper fractions, hence by taking p sufficiently large, we can make pp and as small
as we please.

This result is equally true whether the fts be those for assortative mating or not. 
Thus we conclude that suspended natural selection, whether accompanied by sexual 
selection or not, would ultimately result in a regression of means to the foci of 
regression of the two sexes.

(iv.) Panmixia for Human Stature.—It is worth while illustrating this by an 
example. Let us suppose that owing to natural selection, the mean of the male 
human population were pushed up to 4" above its present level, and the mean of the 
female population were pushed up 3" above its present level, and then let us inquire 
how they would regress in p generations of suspended natural selection with and 
without that factor of sexual selection we have termed assortative mating.

(a.) Without Assortative Mating.—We must take the values of the /3’s from 
Table III. :

Further 

We find

•4456, /33 =  *3384, f t2 =  *3096, f t3 =3 =  *2932.

AH i t t  > __=  4 , AM — 3  •

whence

y1 =  -7069, y3 =  *0419,
Ax =  3-9549, A2 = *0451,

pp =  3*9549 (*7067) * " 1 -f *0451 (•0419)*’" 1, 
fp  — 3*0538 (*7067)*’_ 1  — *0538 (*0419)^-1.

Thus, in four generations (p — 5)the males will have sunk to *9876" and the 
females to *7626'' from the old means* before natural selection started, while in 
nine generations (p — 10), the mean of the males will have sunk to *2036 , and the 
mean of the females to *1816" from the old means; thus the means of the general 
populations of both sexes have been sensibly carried back by panmixia to the focus 
of regression.

* The smallness of the contributions given by the second terms in the values of /ip, fip is to be noted.
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(b.) With Assortative Mating.—We must take the values of the s from 
Table X III .:

f a  =  *4176, f a  =  *2997, B '2 =  '2895, B '3 =  *2609.

We find
y x =  ’6440 y 2 =  *0344,

Aj =  3*9893 A 2 =  *0107,
whence

fxp —3*9893 (*6440)^"1 +  *0107 (*0344)^_1, 

f p —  3*0136 (*6440)^-1 -  *0136 (•0344)^~1.

As before, we note the small importance of the second terms. After four genera
tions (p =  5), we have fxp =  *6862 and f p =  *5184 ; while after nine generations we
have pp — *1180 and ffp — *0892.

Now the effect of assortative mating here, even so little of it as may be detected 
in regard to stature in human mating, is of the exactly opposite character to what 
some of the current language on panmixia would have led us to believe. The more 
assortative mating the more rapid is the regression. The maximum of regression 
would be reached, if this factor of sexual selection exhibited perfect correlation.* 
Hence, assortative mating, if unaccompanied by a stringent natural selection, appears 
rather to emphasize than retard the action of panmixia.

(v.) Effect of Panmixia on Variation.—We now turn to the second part of our 
pioblem, the determination of the standard deviations after p  generations of 
suspended natural selection and assorfcative mating. This involves the solution of 
the equations ep and rjp on p. 3.10.

We find
e / + ° ‘ + ° ’

where

£  \  =  i  {&» +  f t"  ±  - J W  -  W f  +  ‘A W
9  2 J

and 0 1 and C2 are to be found from

* This is not absolutely accurate, for r2 and rs are not equal, so that all the /3’s do not take their 
smallest value for rx =  1. But assuming r2 and r8, r'2 and r'3 not very sensibly different, the result 
stated would practically follow. The whole reasoning in the text is, indeed, subject to another 
limitation, it is supposed that the constants of parental inheritance and of assortative mating are 
independent and characteristic of the race. The former, however, may really depend upon the latter. 
The dependence is very improbably so close as to reverse the principle stated.
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C, +  C2 =  cr3 +  ( f t 2 -  +  f t V .

fetfl +  Qrffc =  f t 3 (<r3 +  (ft2 -  1 ) 6j2 +  f t V )  +  A 2 (o-'3 +  +  ( f t '3 -  1 )

ep2 and T}2 ean then be found at once, if the values of the constants are known.
Remembering that gl and g2 will be proper fractions, we can easily find the effect 

of continued panmixia by putting p  — oo.
We have

e2 _ c 2 I f t  +  C2 ftffg — Ĝi_ ___ cr2 (1 — f t 2) +  cr/2f t 2_
1 A A  ~ (9x +  9 ,)  +  1 “  f t 2f t |  -  f t f t ' 3 -  f t  -  f t ' 3 +  1 ’ 

after some rather lengthy reductions. Similarly

* ^  o^W + ^ q - f t 2)
^  f t2£ 7  -  f t 2/3's2 -  f t2 -  f t 32 + 1 *

H
If we substitute in these the values of the fts, and of cr and cr' given on _p. 310, we 

find:
e» =  *i». =  ^ i-

Thus we see that indefinitely prolonged panmixia carries back not only the means 
of both sexes, but their distributions about the means to the state of affairs when the 
foci of regression were themselves the means of the population.*

The all-important question concerning panmixia is, as we have seen, that of the 
position and stability of the focus of regression, and it seems to me that this is a 
question which it is only possible to settle by experiments. Nor do the experiments, 
at least from the theoretical standpoint, seem attended by difficulties which are 
insuperable. I t is not necessary to select a parthenogenetically reproductive race, it 
is not necessary even to select both parents, it would be sufficient to deal with the 
regression from one selected parent, if this were most convenient.f The simple test 
is this :—If Mx be the mean of selected parents, the mean of their offspring, 
and M2 be the mean of another group of selected parents (e.g., selected out of the

* In order to ascertain whether the standard deviations would return to their old values, supposing 
natural selection to be suspended, but assortative mating maintained, we should have to solve a series of 
equations of the type :

Cp2 =  <r2 +  ^226p_i2 +  ~f~ 2'P 'iP s r i ep- lV p - V

' / /  =  ff'2 +  ft's?epr  +  P'zl+

and then substitute the.values of a-j, and the /3’s from p. 286 in ex and 17 „. I have not yet solved these 
equations. In turning the above formulae into numbers, the caution given in the footnote, p. 312, must 
be borne in mind, i.e., the correlation coefficients for inheritance during assortative mating may differ 
somewhat from those holding when it is suspended.

t  Perhaps a common father and series of selected mothers would give the best results.
MDCCCXCVI.—A. 2 S
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group mx by any series of selections and breedings) and m2 their offspring-mean, is 
(M^mj — — vn2 — Mx +  wx) constant for all stages of selection ? If it be,

it is the stable focus of regression, and 1 — -  _  is the coefficient of regression.

(f.) Progression o f  the Focus o f  Regression w ith  N a tu ra l Selection.
(i.) General R em arks on Regression a n d  F ixedness o f  Character.—Our first 

hypothesis certainly favours the general views of those who support the doctrine of 
panmixia, although to be quite consistent they m ust:

(i.) Place the focus of regression back at the zero size of an organ or the zero 
degree of intensity of a characteristic.

(ii.) Assume much nearer approximation to unity in their coefficients of regression 
than any measurement as yet suggests, or

(iii.) Demand a far higher mortality of period ic  natural selection than has 
anywhere as yet been demonstrated.

Professor W e is m a n n  has no difficulty, apparently, about (i.): “ As soon as natural 
selection ceases to operate upon any character, structural or functional, it begins to 
disappear.” (“ Essays on Heredity,” 1889, p. 90.) He talks of functionless organs 
losing in size with the suspension of natural selection “ until the last remnant finally 
disappears ” ( ibid., p. 292), while “ the disposition of the tail to become rudimentary, 
in cats and dogs, may be explained in the simplest way, by the process which I have 
formerly called panmixia,” i.e.} suspension of natural selection (ibid., p. 430). This 
explanation “ in the simplest way” fails entirely to say whether (ii.) or (iii.) is to be 
accepted after assuming the truth of (i.). What is quite clear is that in the only 
case where either the coefficients of regression or the mortality can at present be even 
approximately stated neither (ii.) nor (iii.) hold. Fox-terriers and domestic ducks 
may be bred with a comparatively small mortality, but how great must be the 
coefficients of regression if their foci of regression are to be placed only as far back, say, 
as at general populations of jackals and wild ducks.* Apart from cases of atavism, 
which may be looked upon as improbable variations amply allowed for by theory, we do 
note, even in dogs, a regression towards a distant ancestry (D a r w in  : Animals and
Plants under Domestication,” vol. 1 , pp. 37, et In these cases, however, change
of environment seems in some way more important than the suspension of natural 
selection. We have, so far, evidence in favour of Mr. GAl t o n ’s view of positions of 
stability for the focus of regression. I t seems, indeed, to be a general opinion among 
breeders that a character can be fixed, a stock made to breed truer by repeated 
selection.

Thus D a r w in  writes on “ Fixedness of Character :” “ It is a general belief amongst 
breeders, that the longer any character has been transmitted by a breed, the more 
fully it will continue to be transmitted. I do not wish to dispute the truth of

* Professor W eism a n n  wonld place the focus of regression for domestic ducks much further back, 
pi'esumably in a wingless stage. (“ Essays on Heredity,” p. 90.)



the proposition that inheritance gains strength simply through long continuance, 
hut I doubt whether it can be proved. In one sense the proposition is little better 
than a truism; if any character has remained constant during many generations, it 
will be likely to continue so, if the conditions of life remain the same. So again 
in improving the breed, if care be taken for a length of time to exclude all inferior 
individuals, the breed will obviously tend to become truer, as it will not have been 
crossed during many generations by an inferior animal.” (“ Animals and Plants 
under Domestication,” vol. 2 , p. 37.)

Down to the words “ if the conditions of life remain the same,” all is consistent 
with the extreme theory of panmixia, but making a breed truer by selection for 
many generations is only consistent with belief in a progression of the focus of 
regression, or in a change towards unity in the coefficient of regression with continued 
selection. The latter alternative would, I think, be quite inconsistent with our whole 
theory of heredity as applied to a practically stable population. As we cannot 
mathematically deal with a theory of progression of the focus of regression without 
some hypothesis of the nature of progression with continued selection, we will 
assume an extreme case, and suppose the focus to progress very rapidly, ., that 
offspring regress to the mean of the population from which their parents have been 
immediately selected. This will at least offer some explanation of animals breeding 
truer with persistent selection, if at the same time it leads to results inconsistent 
with the extreme theory of panmixia.

(ii.) Panmixia and Bi-parental Selection.—Let hlf s1 be the paternal, h2, s2 the 
maternal distribution at each selection. Then with assortative mating after genera
tions, the standard-deviations of the male and female populations will be of the same 
form as after one generation’and be given by the of p. 310. Now this result is not 
like the stable focus of regression out of accord, I think, with experience. I t is note
worthy how comparatively little difference there is in the variation constants of the 
different races of man, although in many cases pretty severe selection may have been 
supposed to have been in progress for many generations. For example, the mean 
cephalic index varies from 70 to 83, but the probable deviation from this mean only 
varies from about 2  to 2 *7 , so that even very primitive races (where the variation is 
small and we may suppose the selection has been severe, or the strain is very pure), 
do not “ breed much truer ” than highly civilised races with a far less mortality. 
The difference between the variation of the most and least variable races is probably 
not more than the f t  terms in the values of e1 and rj1 (p. 310) may be able to account 
for.

Turning now to the alteration of the male and female means in ^-generations of 
selection, let as before ft, ft, f t2, f t3, be the regression coefficients and un, vn, the 
distances from m2, m3, of the means of the male and female populations out of which 
the nib bi-parentage (m2, mz, s3, s3, p) is selected.

Hence : u„ — (ft«„ -f- ftu„) and vn — (ft2w» 4* ft 3^/) are the distances from m3, m<6
2  s 2
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of the means of the male and female populations from which the n -f- 1 th bi-parentage 
is selected.

Thus we have the finite difference equations :

U n + 1 ==  Un  —  { f i z U n "T f t  f l u )

Vnv\ — Vn — +
Assume :

un — Ax”-1, vn =  ^xw_1-
Hence :

A (x -  1 +  A ) =  - m ,  B(x -  1 +  /3 '3) =  -  A/3 'j,
or,

(x -  0 s +  (A  +  p 3) (x - 1 )  +  A/S', -  A A . =  o,
or,

xi =  1 ~  7i and x« =  1 — rs.

where yx and y2 have the same values as on p. 311. Thus :
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where

« , =  A, ( l — + A j ( l

v" =  <x ~  y >) p _ 1  +  * $ 0 1 *  -  n ) ' ’ 1 ;

— 7a) w 2 -4- 
Y i 7 2

( A  —  Y i )  +  @zm z # 

7] “  Ya

Now this solution* is the same as that on p. 311, except (i.) that up and vp. unlike 
fjLp and fx!pi are measured from the selected means, i.e., the mean heights of the male 
and female populations are respectively m2 — up and — vp after ^-generations; 
(ii.) that in the values up and vp (1 — and (1 — y2)^ - 1  replace y1p~1 and y / -1.
We conclude, accordingly, since y l9 y2, and, therefore, 1 — 1 — y2 are proper
fractions, that up and vp grow smaller and smaller, or, if selection be long enough 
continued, the means of the male and female populations will ultimately pass to the 
selection means.

Of course, if selection be suspended at the nth generation, regression will take place 
as on p. 310, but only to the nearest focus of regression, i.e., m2 — u„, m3 — vH. Thus 
the effect of n selections has been to raise the general means permanently by these 
amounts.

* The uniparental or parthenogenitic results for progression of the focus follow at once by simply 
putting /33 =  /S'3 =  /3'3 =  0 in the above formulae.



(iii.) P a n m ix ia  f o r  H u m a n  S ta tu re .— I t  is instructive to note the value of these 
expressions for the case of stature in man. We have at once from the numbers on 
p. 311, supposing p-selections of male and female populations averaging 4" and 3" above 
the present mean, the following results :

(a.) W ithout A ssortative M ating.

up =  3*9549 (-2933)*-1 +  *0451 (-9581)*"1, 
vp =  3-0538 (-2933)*-1 — *0538 (*9581)*“ \

Thus, in five generations ( p  =  5) u 5= *0673 and v5 =  — *0227, or the male and 
female means have been raised 3"*9327 and 3"'0227 respectively. Thus, we see that 
the males have been raised by selection very near to the selection average, while the 
females have actually been raised beyond it.# Thus, continued selection would now 
keep down, and not raise, the female mean, panmixia corresponding to a rise in the 
mean.

(b.) W ith  Assortative M ating.

Up =  3*9893 (-3560)?-1 +  ’0107 (•9656)^“1 
Vp ss 3-0136 (•3560)*’" 1 — -0136 (-9656)*’- 1.

Thus, in five generations, u§ =  *0744 and v5 =  *0366, or the male and female means 
have been raised 3"-9256 and 2"’9634 respectively. The means are accordingly raised 
less rapidly with this form of sexual relation, the female mean, indeed, having in the 
five generations not yet overshot the selection mean.

(iv.) Concluding Rem arks on Regression an d  Fixedness o f  Character.—Accordingly 
on this hypothesis, with the correlation coefficients of inheritance anything like their 
value in man, five generations of selections of the type required in both parents would 
suffice to establish a breed. This seems more or less consonant with breeders’ 
opinions, which, in part at any rate, may be presumed to represent their experience. 
If, however, anything like this hypothesis be true, then the suspension of natural 
selection would not be followed by a rapid regression, or even a slow persistent 
regression, that would require a reversal of natural selection, i.e., a selection of those 
previously destroyed and a destruction of those previously selected. On this hypo
thesis, indeed, it would be probably best to keep the term panmixia for that 
suspension of assortative mating which we have seen assists, rather than retards, the 
processes of natural selection.

Several fairly sound reasons could be given why the focus of regression should he 
taken as the mean of the population from which the parents have been selected, but 
the sole safe argument appears to be experiment.

* This results, of course, from breeding from an average father very much taller relatively than the 
average mother selected.
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The two hypotheses with which we have dealt give practically the two extremes ; 
observation and experiment are perfectly able to determine between them, or to settle 
whether an intermediate theory is necessary which will give a progression, but a 
slower progression, to the focus of regression. There are many ways in which 
analysis can put on the brake, if it be really needful.

At present, all this memoir proposes is to show that such subjects as inheritance, 
regression, assortative mating and panmixia, are capable of perfectly direct quantita
tive treatment, and that such treatment, and not somewhat vague discussion of 
individual instances or of metaphysical possibilities, is what alone can settle the chief 
problems of evolution. What is wanted is a wide extension of the experimental and 
statistical work of Mr. F rancis Galton and Professor W eldon. Such numbers as 
appear in this memoir must be looked upon as illustrative and tentative only. I 
hope later to publish, for a very limited field, namely, skull measurements in man, 
a more complete numerical study with mathematical discussion of variation and 
correlation.


