
NBER WORKING PAPER SERIES

DISENTANGLING GLOBAL VALUE CHAINS

Alonso de Gortari

Working Paper 25868
http://www.nber.org/papers/w25868

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2019

I am extremely grateful to Pol Antras, Elhanan Helpman, and Marc Melitz for their mentorship 
and guidance. I especially thank Kirill Borusyak, Sebastian Fanelli, Guillermo Noguera, 
Fernando Perez Cervantes, Zhi Wang, Kei-Mu Yi, seminar participants at Banco de Mexico, 
Brown, Columbia, CREI, Dartmouth, ECARES, Georgetown McDonough, Harvard, IIES, 
ITAM, Maryland, MIT, Michigan, Minnesota, Princeton, Rochester, UCSD, Yale, and 
conference participants at the ETSG (Warsaw), FREIT (Sapporo), GVC Conference 
(Nottingham), GVC Workshop (Beijing), NBER Economic Consequences of Trade, New Faces 
in Trade (Penn State), SAET (Faro), SED (Mexico City), SEM (Xiamen), for very helpful 
comments. I gratefully acknowledge the hospitality of Banco de Mexico, where part of this paper 
was written. Finally, I thank Gurobi and Odyssey for making this project possible. All errors are 
my own. The views expressed herein are those of the author and do not necessarily reflect the 
views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2019 by Alonso de Gortari. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



Disentangling Global Value Chains
Alonso de Gortari
NBER Working Paper No. 25868
May 2019
JEL No. C6,F1,F6

ABSTRACT

The patterns of production underlying the recent rise of global value chains (GVCs) have become 
increasingly complex. NAFTA supply chains, for example, are now deeply integrated: Using 
Mexican customs data, I find that exports to the U.S. use a much higher share of American inputs 
than exports to other countries. However, the conventional framework used to measure GVCs 
ignores this heterogeneity since it assumes that all output uses the same input mix. I develop a 
new framework that combines input-output data with additional information on supply chain 
linkages in order to construct GVCs reflecting the use of inputs observed in the latter. Improving 
measurement matters quantitatively since it affects both value-added trade measures and 
counterfactual experiments: I show that incorporating Mexican customs data raises the estimated 
share of U.S. value in U.S. imported Mexican manufactures from 18% to 30% and amplifies the 
welfare cost of a NAFTA trade war.

Alonso de Gortari
Princeton University
Julis Romo Rabinowitz Building 223
Princeton, NJ 08540
alonso.degortari@gmail.com



1 Introduction

While writing this paper, the North American Free Trade Agreement (NAFTA) got renegotiated for the �rst

time since its 1994 inception, the United Kingdom discussed its exit from the European Customs Union,

and the United States and China sowed the seeds of a possible full-blown trade war. What are the potential

consequences of these policy changes? How do their e�ects propagate across country borders?

I argue that quantifying the e�ects of economic shocks in a world of highly fragmented production

requires a more accurate and systematic understanding of the global value chains (GVCs) underlying world

trade than has so far been achieved. For example, conditional on the level of bilateral trade �ows, a NAFTA

trade war has di�erent consequences depending on how deeply integrated NAFTA supply chains are. From

the U.S.’s perspective, restrictions on Mexican imports ripple through the value chain and a�ect upstream

U.S.-based suppliers more when Mexican imports embody high U.S. content. In contrast, shocks pass

through more sharply to other countries when Mexican imports embody few U.S. inputs.
1

Understanding

these e�ects thus hinges on properly measuring the GVCs linking production across countries.

GVCs are measured, in practice, using multi-country input-output data and this requires taking a stand

on how to trace value across di�erent stages of production. �e conventional approach does this by as-

suming that all output, within each country-industry, is built with the same input mix. �is assumption is

sharply at odds with the evidence on supply chain linkages based on richer micro-level datasets showing

that, in reality, the use of inputs depends on the downstream use of output. For example, while the con-

ventional approach assumes a common input mix in all Mexican vehicle production, �gure 1 uses Mexican

customs microdata to show that the U.S. accounts for a colossal 74% of the foreign inputs embedded in

vehicles sold to U.S. consumers but for only 18% of the inputs of those sold to German consumers.

�is paper improves GVC measurement by leveraging information beyond that contained in input-

output data − such as customs data − in order to construct more precise value-added trade measures

and counterfactual estimates. �e paper revolves around three main contributions. First, I develop a

GVC theory that tractably incorporates the heterogeneity in the use of inputs observed in �gure 1 and

that provides a unifying framework for studying the literatures on GVC measurement, value-added trade,

and quantitative trade models. Second, I show that any input-output dataset is consistent with many

model parameterizations and develop numerical procedures for constructing bounds on value-added trade

and the welfare consequences of any counterfactual experiment. �ird, I develop two new measurement

frameworks that leverage both input-output data and other sources of information to be�er capture the

supply chain linkages underlying world trade. �e �rst measurement framework narrows the bounds on

value-added trade measures and counterfactual experiments and the second constructs more precise point

estimates than those based on the assumption that all output uses the same input mix.
2

1
Mexico became the U.S.’s main trading partner in 2019. �is makes U.S.-Mexico trade the largest bilateral trade �ow across

any two countries of the world and totals over $600 billion annually.

2
Ultimately, the challenge surrounding GVC measurement is about aggregation and would (mostly) disappear in �rm- or

product-level input-output datasets. However, current datasets are so highly aggregated that this is a major issue for both aca-

demic and policy work. For example, the widely-used WIOD features only 19 manufacturing industries. To put this into perspec-

tive, this means that 6 trillion dollars of U.S. manufacturing output is divided into only 19 categories. �is issue is unlikely to

disappear anytime soon. First, most countries do not collect data on �rm-to-�rm trade. Second, building a multi-country �rm-level

input-output database requires merging �rm-level data across countries and faces considerable political and legal roadblocks.

1
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Figure 1: Distribution of Foreign Inputs Used in Mexican Final Good Motor Vehicle Exports to

the U.S. and Germany: �e shares are constructed using Mexican customs shipment-level data for

2014; details are discussed in section 2.4.1. In contrast to these charts, the conventional approach

for measuring GVCs assumes common input distributions across destinations.

My main empirical result is that measuring GVCs while incorporating Mexican customs data roughly

doubles the share of U.S. value in U.S. imported Mexican manufactures and ampli�es the U.S. welfare cost

of a NAFTA trade war. �ese results are in line with Yi’s (2003) landmark study arguing that deep vertical

specialization magni�es the e�ects of economic shocks and showcase how conventionally measured GVC

�ows miss crucial elements present in today’s highly fragmented supply chains. More generally, any

question studied by the GVC literature can be revisited with these new measurement frameworks while

incorporating whatever additional information is both relevant and available in each context.

I kick o� in section 2 by developing a general GVC theory that can accommodate, with further assump-

tions, how di�erent classes of microfounded models behave in equilibrium and their implications on GVC

measurement. �is general theory is useful for two reasons. First, because it formalizes the connection

between the literature on value-added trade based on equilibrium theories of production and the litera-

ture on counterfactuals based on microfounded theories of production − two literatures that have evolved

mostly independently and in parallel. Second, because it formalizes the key insight underlying this paper:

�at any input-output dataset is consistent with many di�erent GVC networks. In particular, the gen-

eral GVC theory is useful for comparing how di�erent equilibrium theories of production construct GVCs

from input-output data. For example, most trade models incorporate intermediate inputs by assuming that

technology features roundabout production in which all of a country-industry’s output is produced with

the same input mix.
3

While microfoundations di�er substantially, all roundabout models imply that GVCs

should be constructed recursively from input-output data using �rst-order Markov chains.

I argue in favor of models featuring specialized inputs− models in which goods sold to di�erent coun-

tries and industries are built with di�erent input mixes. Specialized inputs models weaken the proportion-

3
Roundabout models come in many varieties, some examples include Krugman and Venables (1995), Eaton and Kortum (2002),

Balistreri et al. (2011), di Giovanni and Levchenko (2013), Bems (2014), Caliendo and Parro (2015), Ossa (2015), Allen et al. (2017).

2



ality assumptions built into roundabout production models and instead imply that GVCs be constructed

using higher-order Markov chains.
4

While roundabout models construct a unique GVC network out of any

given input-output dataset, specialized inputs models are consistent with many GVC networks. Crucially,

specialized inputs can incorporate the heterogeneity in �gure 1 while roundabout production cannot.

�e case for specialized inputs is supported by both the anecdotal and empirical evidence on modern

supply chains in which input suppliers customize their goods to be compatible with speci�c downstream

uses and in which �rms make complex decisions when deciding where to locate each stage of their supply

chain. For example, the lithium ba�ery supplier in Apple’s famously long iPod supply chain manufac-

tures it exactly to the size of the metal frame while the screen supplier ensures that the touch, color, and

dimming capabilities are in line with Apple’s iOS so�ware (Linden et al. 2011). Today, this form of input

specialization is ubiquitous (Rauch 1999, Nunn 2007, Antràs and Staiger 2012, Antràs and Chor 2013) and

implies that the use of inputs varies depending on the use of output since �rms exporting to di�erent coun-

tries and industries have di�erent supply chains.
5

As �gure 1 illustrates, Mexican vehicle manufacturers

exporting to the U.S. rely heavily on U.S. supply chains while those exporting to Germany do not.

Section 3 shows that the distinction between roundabout production and specialized inputs ma�ers

because measures of globalization − i.e. measures quantifying the fragmentation of production such as

value-added trade (Hummels et al. 2001, Johnson and Noguera 2012, Koopman et al. 2014) or average

downstreamness (Antràs et al. 2012) − vary depending on how GVC �ows are constructed from input-

output data. In particular, while the literature de�nes these measures directly with input-output analysis

(Leontief 1941), I de�ne them broadly using the general GVC theory. �is is useful because the former are

only consistent with the equilibrium of roundabout production models whereas the general theory can be

used to derive the correct measures for other equilibrium theories such as specialized inputs.

I quantify the potential mismeasurement by constructing approximate bounds on value-added trade

using the specialized inputs model. I argue that this mismeasurement may be severely misguiding trade

policy since these debates, like the NAFTA renegotiation, are o�en based on measures of supply chain

integration such as the U.S. content returning home through Mexican imports.
6

Higher shares are typically

interpreted as proxying higher costs of disruption − restricting Mexican imports ripple back and hurt the

U.S. more when it provides more value to these supply chains − and conventional (roundabout) estimates

put the U.S. value-added share in Mexican manufacturing imports at about 18%.
7

In contrast, I show that

4
In equilibrium, specialized inputs can be thought of as a generalization of input-output analysis in which the expenditure

shares are conditional on both the purchasing country-industry and the subsequent supply chain through which inputs �ow.

5
Various recent studies suggest that the use of inputs, within country-industries, depend on the downstream use of output.

For example, within-industry exports vary across destinations due to quality (Bastos and Silva 2010), trade regime (Dean et al.

2011), and credit constraints (Manova and Yu 2016). Likewise, the use of imports varies across �rm size (Gopinath and Neiman

2014, Blaum et al. 2017a, 2017b, Antràs et al. 2017), multinational activity (Hanson et al. 2005), �rm capital intensity (Scho� 2004),

and the quality of output (Fieler et al. 2017). Further, recent research has made explicit connections between imports and exports

through quality linkages (Bastos et al. 2018), trade participation (Manova and Zhang 2012), and rules-of-origin (Conconi et al.

2018). Finally, production processes vary also in terms of the intensity of labor inputs. Processing trade �rms export lower-cost

labor assembly goods (De La Cruz et al. 2011, Koopman et al. 2012) while �rms exporting to richer countries hire higher-skilled

workers (Brambilla et al. 2012, Brambilla and Porto 2016). �us, value-added shares also di�er depending on the use of output.

6
For example, U.S. Secretary of Commerce Wilbur Ross argued in the Washington Post (September 21, 2017) that disrupting

Mexican-American supply chains was not worrisome since Mexican imports contained ‘only’ 16% of U.S. value-added (in 2011).

7
In contrast to �gure 1, computing value-added trade requires tracing where value is created along all stages of production.

3



the 2014 World Input-Output Database (WIOD) is consistent with bounds as low as 3% and as high as 52%

− that is, the data is consistent with both li�le and highly integrated Mexican-American supply chains.

Analogously to value-added trade, section 4 shows that di�erent GVC �ows lead to di�erent quanti-

tative counterfactual predictions. For the sake of clarity, and at the cost of generality, I illustrate this with

the simplest specialized inputs microfoundation − a perfect competition Armington model where each

country-industry produces a speci�c variety for each market. Since this model features specialized inputs,

many parameterizations �t the input-output data and this ma�ers quantitatively because the welfare gains

from trade depend on the expenditure share on domestic inputs used in the production of domestically-

sold goods. In other words, mapping the model to di�erent GVC networks delivers di�erent counterfactual

estimates following any economic shock − even though all parameterizations replicate the same data in

the benchmark equilibrium. In particular, roundabout production is the knife-edge parameterization in

which welfare depends on the aggregate domestic expenditure share as in Arkolakis et al. (2012).
8

I quantify the potential mismeasurement by constructing bounds on counterfactual estimates using

the specialized inputs model − i.e. the GVC networks that minimize/maximize the gains from trade. For

example, the autarky bounds in the 2014 WIOD with a trade elasticity of 5 are wide and increasing in

trade openness: the U.S. gains (relatively closed) lie between 2.6-4.0% but the Taiwan gains (relatively

open) lie between 12-129%. Intuitively, the lower (upper) bounds correspond to GVCs in which many

(few) domestic inputs are used to produce domestically-sold goods. Meanwhile, the knife-edge roundabout

model where all output uses the same input mix predicts gains of 3.5% and 18%.
9

Similar insights hold for

the case of general counterfactuals. For example, the roundabout hat algebra approach of Dekle et al. (2007)

implies that a NAFTA trade war in which the U.S. doubles import barriers on Mexican �nal goods decreases

welfare by 0.09% in the U.S. and 0.85% in Mexico. I show that the hat algebra approach can be extended

to specialized inputs and this delivers welfare bounds of 0.07-0.13% for the U.S. and 0.21-1.40% for Mexico.

�e bounds are considerably large and are related to the importance of supply chain linkages across the

NAFTA region. Intuitively, the U.S. (Mexico) upper bound corresponds to GVCs in which Mexican �nal

goods use U.S. (Mexican) inputs intensively while the lower bounds correspond to the opposite case.

In sum, the key message of sections 2, 3, and 4, is that many GVC networks are consistent with any

input-output dataset and that constructing bounds based on specialized inputs is useful for determining the

potential mismeasurement trickling over from the GVC �ows to measures of globalization and quantitative

counterfactual estimates. Since all GVC networks exhaust the information contained in the input-output

data, the la�er can shed no further light on which estimates are most accurate.

Section 5 improves measurement by using readily available information − such as customs data − in

conjunction with input-output data. In a �rst approach, I impose this information as linear constraints on

the optimization problems to narrow the specialized inputs bounds. For example, while Mexican customs

data is silent regarding the share of foreign inputs relative to total inputs used in U.S.-bound car exports,

8
�e su�ciency of input-output data for both measuring GVCs and quantifying the e�ects of economic shocks is intimately

linked to the roundabout assumptions. In the more general case of specialized inputs, however, this su�ciency no longer holds.

9
While these exercises rely on a speci�c class of microfoundations, I conjecture that richer models yield similar qualitative

implications. Other specialized inputs microfoundations include Yi (2003), Yi (2010), Costinot et al. (2012), Antràs and Chor (2013),

Fally and Hillberry (2016), Johnson and Moxnes (2016), Blanchard et al. (2017), Antràs and de Gortari (2017), and Ober�eld (2018).

4



it reveals that 74% of all foreign inputs are U.S. inputs. �is e�ectively constrains the relative distribution

of foreign inputs and tightens the bounds on the U.S. content in Mexican imports from 3-52% to 5-35%.

In a second approach, I use the customs data together with auxiliary assumptions to discipline a set of

targets in the objective function of a minimum-cost �ow problem that searches over all GVCs consistent

with a given input-output dataset. �is approach thus constructs the best informed guess of the true GVC

network while exploiting more information than that contained in input-output data and is useful when

the additional information is insu�cient for measuring GVC �ows directly. For example, since customs

data contains no information on domestic transactions, GVCs cannot be directly measured because there

is not enough information to convert the foreign input expenditure shares in �gure 1 into overall input ex-

penditure shares.
10

Measurement can still be improved in these situations by taking a stand on how to map

the additional information into expenditure shares with auxiliary assumptions. �ese shares will not, in

general, aggregate up perfectly to the input-output data since they rely on imperfect assumptions and this

is where the optimization problem becomes useful. �e la�er takes these shares as targets and reallocates

�ows in order to construct the GVC �ows closest to the researcher’s targets among all those consistent

with a given input-output dataset. In sum, while these GVCs ultimately still depend on some assumptions,

they are closer to the true GVCs underlying input-output data since they weaken the roundabout GVCs’

strong (theoretical) assumptions by using additional (empirical) information.

Incorporating Mexican customs data reveals that Mexican-American supply chains are more integrated

and disrupting them is more costly than previously thought. Speci�cally, I map the customs data to the

optimization targets by taking the stand that Mexico only does processing trade − i.e. that exports use

only imported inputs. �e GVCs based on this best-informed guess then imply that 30% of the value in

U.S. imported Mexican manufactures is U.S. value-added and not 18% as given by the roundabout GVCs.

In addition, the welfare costs of a NAFTA trade war are ampli�ed (dampened) for the U.S. (Mexico) as

consequence of the increased (decreased) share of U.S. (Mexican) value-added in exports to the U.S.

�e two GVC measurement frameworks are easily adaptable and can incorporate additional informa-

tion in a practical manner. While large datasets on supply chain linkages are rarely available, researchers

o�en have access to partial snippets of the overall supply chains underlying global trade that are extremely

informative about how intermediate inputs are used. My application focuses on Mexico since I have access

to Mexican microdata, but the tools can be readily applied to study any other aspect of global production

networks with other datasets. Further, since most countries collect customs data, measuring GVCs in many

countries through this approach can be immediately done once access to this data is obtained.

�e paper’s structure is as follows. Section 2 provides the GVC framework used to compare the equi-

librium theories of roundabout production and specialized inputs in the three next sections. Section 3

studies value-added trade, section 4 studies counterfactuals, and section 5 studies GVC measurement. �e

appendix provides additional results and details on numerical implementation.
11

10
Directly measuring GVC segments requires very rich data such as datasets covering the universe of country-level �rm-to-

�rm transactions. However, these are quite rare. Belgian data is one exception (see Tintelnot et al. 2017, Kikkawa et al. 2017).

11
From a history of science standpoint, this paper is inspired by Samuelson (1952) who asked how to measure bilateral trade

�ows in the presence of only aggregate export data. �is paper takes the same idea to the next iteration: How to measure GVC

�ows in the presence of only bilateral input-output data? From a philosophy of science standpoint, this paper is inspired by

Popper (1959) and argues for a falsi�able approach to GVC measurement. �at is, instead of imposing the theoretically-based

5



2 �e Hunt for GVCs: �e Measurement Challenge

�is section provides the GVC framework used throughout the paper to discuss measures of globalization,

counterfactuals, and measurement in a GVC world. I proceed in four steps. First, I describe the data con-

tained in multi-country input-output datasets. Second, I develop a general theory that provides notation

and a unifying framework for comparing speci�c theories of production − this will also prove useful for

deriving explicitly the connection between the literature on measures of globalization and the literature

on structural models and counterfactuals. �ird, I use the general GVC theory to discuss this paper’s main

focus, the specialized inputs solution, and describe how it nests the conventional roundabout approach as

a special case. Fourth, and �nally, I provide empirical evidence in favor of specialized inputs using Mexican

customs shipment-level data and U.S. domestic input-output tables.

2.1 Multi-Country Input-Output Data

Let J denote both the set and number of countries and K the set and number of industries. I de�ne

S = J × K as the set and number of country-industries, with a generic element s ∈ S being a country-

industry denoted as s = {j, k} with j ∈ J and k ∈ K. Multi-country input-output datasets typically contain

data on bilateral intermediate input �ows across two country-industry pairs, with X (s ′, s) the dollar value

of intermediate inputs sold from country-industry s ′ to country-industry s, and �nal good �ows between

a country-industry and consumers, with F (s ′, j) the dollar value of �nal goods sold from country-industry

s ′ to consumers in country j. �ese are the basic building blocks from which all other aggregate moments

are built. For example, the gross output and gross domestic product of country-industry s ′ equal

GO
(
s ′
)
=
∑
s∈S

X
(
s ′, s

)
+
∑
j∈J

F
(
s ′, j
)

, GDP
(
s ′
)
= GO

(
s ′
)
−
∑
s∈S

X
(
s, s ′

)
.

�ere are currently various sources of multi-country input-output datasets such as those produced by

the World Input-Output Database Project (WIOD), the Global Trade Analysis Project (GTAP), the Institute

for Developing Economies (IDE-JETRO), the Eora Global Supply Chain Database (Eora MRIO), and the

OECD Inter-Country Input-Output Tables (ICIO). Each dataset has its own advantages and limitations and

the analysis in this paper can be readily applied to each. I focus throughout on the WIOD − the most

widely used dataset by the international trade literature − which is available in its 2016 release for J = 44

countries, K = 56 industries (19 in manufacturing), and for the years 2000-2014 (see Timmer et al. 2015).

2.2 A General GVC�eory

GVC �ows constitute the key building blocks of this theory. De�ne G (·) as the dollar value of goods

�owing from an initial country-industry down through a speci�c ordered set of country-industries all the

way to �nal consumption. To �x ideas, suppose there is a single industry (i.e., S = J). Take three countries

j, j ′, j ′′ ∈ J. �en G (j ′, j) denotes the dollar value of �nal goods sold from j ′ to j while G (j ′′, j ′, j) is the

roundabout approach outright, I argue in favor of studying GVCs under initially broad sets of plausibly accurate GVCs obtained

through specialized inputs and to then re�ne these estimates as more information becomes available.
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dollar value of intermediate inputs sold from j ′′ to j ′ which j ′ uses as inputs for the �nal goods sold to j.

More generally, intermediate inputs may be traded at a stage of production that is N ∈ N stages

upstream relative to the production of �nal consumption goods. I write a generic truncated GVC �ow as

GN
(
jN, jN−1

, . . . , j1, j
)

where the superscript N on GN (·) indicates the dimension of this function, i.e.

N is the number of nodes previous to �nal consumption that are speci�ed. Every node corresponds to a

country jn ∈ J ∀n and the n is only meant to indicate the node at which country jn is located. �e �ow

GN
(
jN, jN−1

, . . . , j1, j
)

thus indicates the dollar value of inputs from jN sold to jN−1
, that jN−1

uses to

produce new inputs sold to jN−2
, so on and so forth, until the goods arrive at j1 and are put into �nal goods

shipped and sold to consumers in j. Since using apostrophes is cumbersome with largeN, in general I will

use the notation G1

(
j1, j
)

instead of G (j ′, j) and likewise G2

(
j2, j1, j

)
instead of G (j ′′, j ′, j).

�e extension to a multi-industry world is immediate. GVCs can be de�ned generically as follows.

De�nition 2.1. For any length N ∈ N, GN : SN × J → R+
is the function describing truncated GVC

�ows leading to �nal consumption in countries in J through a sequence ofN upstream stages of production

given by an element of SN =
∏N
n=1

S.

A generic GVC is GN
(
sN, . . . , s1

, j
)

and, as before, I refer to the elements of a country-industry pair as

sn = {jn,kn} with jn ∈ J the country and kn ∈ K the industry of sn ∈ S, where the n is only meant

to indicate the node of GN (·) at which sn is located. For example: a �ow of length N = 1 could be

G1

(
s1

, j
)
= G1 ({Mexico,cars} , U.S.), the sales of Mexican cars to U.S. consumers, while a �ow of length

N = 2 could be G2

(
s2

, s1
, j
)
= G2 ({U.S.,steel} , {Mexico,cars} , U.S.), the sales of U.S. steel in the form of

intermediate inputs that are used exclusively by the Mexican car industry to produce �nal goods sold to

U.S. consumers. Analogously for any N ∈ N and any sequence of production in SN that produces a �nal

good eventually sold to consumers in some country in J.

�e measurement challenge embedded in this GVC theory is that the word truncated appears in def-

inition 2.1. Speci�cally, GN (·) is a truncated GVC because it only speci�es the �ow through N stages of

production even though its most upstream stage, sN, also uses inputs and the full chain of production

is characterized by a (potentially) in�nite number of stages. Since GN (·) is unobserved in the data, the

challenge is to develop a theory of production − i.e. a reasonable set of assumptions − that links GVC

�ows across di�erent stages of production. �at is, take an arbitrary GN
(
sN, sN−1

, . . . , s1
, j
)
. Since this

tells how many inputs are sold from sN to the sequence sN−1 → · · · → s1 → j then there has to be some

relation with the �ow GN−1

(
sN−1

, . . . , s1
, j
)

of inputs that sN−1
itself sells to this production sequence.

In its most general form, the only restriction I impose is that �ows across di�erent stages of production

must satisfy ∑
sN∈S

GN
(
sN, sN−1

, . . . , s1
, j
)
6 GN−1

(
sN−1

, . . . , s1
, j
)

. (1)

�at is, the right-hand side denotes the value of intermediate inputs sold by sN−1
to be used through

the sequence in GN−1

(
sN−1

, . . . , s1
, j
)
. �e le�-hand side denotes the total value of intermediate inputs,

across all sources sN ∈ S, sold to sN−1
and used down this same sequence of production. Imposing equa-

tion (1) thus implies that the total value of inputs purchased by sN−1
for a speci�c downstream sequence

of production need be less or equal than the value of the output that sN−1
itself produces for that sequence.

7



�is theory is general and can encompass most production processes. It relies only on the key restric-

tion that the value of output not fall as goods �ow down the value chain. Whenever the value of output

increases, thus implying equation (1) holds with strict inequality, I say that value was added at theN−1th

stage of production to the inputs purchased from stage N. For example, this theory assumes that∑
s2∈S

G2
(
s2

, {Mexico,cars} , U.S.

)
6 G1 ({Mexico,cars} , U.S.) .

�e right-hand side indicates the dollar value of Mexican cars sold to U.S. consumers and corresponds to

a truncated GVC �ow because the Mexican car industry uses intermediate inputs produced further up-

stream to produce these cars. Meanwhile, G2 ({U.S.,steel} , {Mexico,cars} , U.S.) is the dollar value of U.S.

steel bought as inputs directly in order to produce these exports, so that the summation across all pos-

sible input sources s2 ∈ S yields aggregate input sales to the downstream sequence on the right-hand

side. �e inequality holds strictly if the Mexican car industry adds domestic value-added directly into the

intermediate inputs purchased from the previous stage of production.

I refer to equation (1) as the GVC challenge which can only be solved by taking a stand on how to trace

value across stages of production. �at is, on how GN
(
sN, sN−1

, . . . , s1
, j
)

and GN−1

(
sN−1

, . . . , s1
, j
)

relate to each other across all stages and sequences of production.
12

2.2.1 Relation to Multi-Country Input-Output Data

GVC �ows are not observed directly in input-output data. Rather, the data contains only some (non-

exhaustive) information about the true GVCs. Disentangling GVCs from the data then requires using an

equilibrium theory of production in order to �ll in with assumptions whatever information is not available.

I now describe the information that is available in input-output data. �e �rst thing to note is that the

data provides precise information about the last stage of production. Hence, the simplest GVC �ows, those

with N = 1, are observed and �nal good �ows can be de�ned in terms of GVCs as

F
(
s ′, j
)
= G1

(
s ′, j
)

. (2)

�is mapping is the basic building block from which all theories of intermediate input trade will build

upon since this is the only part of the supply chain that is observed directly in input-output data.

Second, bilateral intermediate input �ows are much more complicated since they aggregate the dollar

value of inputs traded across two country-industries across all stages of the supply chain. �e relation

between these aggregate �ows and GVC �ows is given by

X
(
s ′, s

)
=

∞∑
N=2

∑
sN−2∈S

· · ·
∑
s1∈S

∑
j∈J

GN
(
s ′, s, sN−2

, . . . , s1
, j
)

. (3)

12
Two further comments about the interpretation of GN (·). First, GVCs can be interpreted directly as �rm-level supply chains

by �xing K as the set of �rms instead of the set of industries. Second, though the paper is wri�en in terms of a static production

world where all goods are produced simultaneously, this theory can also accommodate dynamic models since s can be interpreted

as a country-industry-time triple in which inputs of past periods �ow down the value chain to be used as inputs in future periods.
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�e �ow GN (·) is the input value from s ′ sold to s at the Nth stage of production and used through the

downstream sequence sN−2 → · · · → s1 → j. Summing up across sN−2 ∈ S, …, s1 ∈ S, j ∈ J thus delivers

the aggregate input value from s ′ sold to s at the Nth stage of production used across all downstream

sequences of production. �e �rst summation across N > 2 then sums up the input value traded across

all stages of production. �is aggregate value thus equals the input �ows reported in input-output data.

Hence, while input-output data provide precise information on X (s ′, s) and F (s ′, j), disentangling the

GVC �ows GN
(
sN, . . . , s1

, j
)

across all upstream production stages N > 2 requires further assumptions

since a lot of the information is potentially lost in the aggregation into bilateral input �ows in (3).

2.3 �e Specialized Inputs Solution

Disentangling GVCs in the presence of intermediate input trade is a hard task since, in principle, many

theories of production can solve the GVC challenge in (1). Importantly, constructing a GVC network out of

input-output data only requires specifying how GVCs behave in equilibrium and not on how such equilib-

rium was achieved. While microfoundations vary substantially, for the purposes of GVC measurement the

speci�c microfoundation can be ignored and all that ma�ers is how the theory implies that value be traced

across stages of production in equilibrium. Of course, computing counterfactuals does require unpacking

a microfoundation and this will be done in the further downstream sections.

I propose the following specialized inputs solution to resolve the measurement challenge in (1). �e

key assumption is that the use of inputs depends on the destination and use of output, both in terms of

whether goods are sold as �nal goods or intermediate inputs and to which industry in the la�er case.

Starting from the observed GVC G1

(
s1

, j
)
, the input �ow used directly for the production of �nal goods is

given by

G2
(
s2

, s1
, j
)
= aF

(
s2

∣∣s1
, j
)
F
(
s1

, j
)

, (4)

where aF (s
′′ |s ′, j) is the share of inputs from country-industry s ′′ used in the �nal goods produced by

country-industry s ′ that are sold to consumers in market j. Similarly, the mapping into previous stages is

given by assuming that the use of intermediate inputs in the production of new intermediate inputs equals

GN
(
sN, sN−1

, . . . , s1
, j
)
= aX

(
sN
∣∣sN−1

, sN−2
)
GN−1

(
sN−1

, . . . , s1
, j
)

, ∀N > 3, (5)

where aX (s ′′ |s ′, s) is the share of inputs from country-industry s ′′ used in the production of intermediate

inputs by country-industry s ′ sold to country-industry s. Note that while the intermediate input shares

depend on the destination and use of inputs, they are common across all stages of production. �at is, the

input mix used to produce inputs in s ′ and sold to s is the same in all production stages N > 2.

In this context, value-added shares also depend on the destination and use of output and are given by

βF
(
s ′, j
)
= 1 −

∑
s ′′∈S

aF
(
s ′′
∣∣s ′, j) > 0, βX

(
s ′, s

)
= 1 −

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s) > 0.

�ese shares have to be greater or equal than zero given the assumption in (1) that the dollar value of

output never falls as goods �ow along the value chain. Further, at least one of these shares has to be
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strictly positive since GDP in every country-industry s ′ in the data is positive.

In practice, there are many di�erent sets of input shares that perfectly �t the data (i.e. many GVC

networks replicate the same bilateral trade, gross output, and gross domestic product �ows). To see this,

substitute in the specialized inputs solution in (4) and (5) into the set of linear constraints relating GVC

�ows to the observed input-output data in (3) and rearrange to obtain

X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) . (6)

In words, the right-hand side sums up all the intermediate inputs from s ′′ used by s ′ to produce further

downstream inputs sold to all s ∈ S and �nal goods sold to all j ∈ J. Since this is the total value of inputs

sold from s ′′ to s ′, it has to equal the observed �ow X (s ′′, s ′).13

Since all of the information in input-output data is contained in X (s ′, s) and F (s ′, j), any set of input

shares aX (s ′′ |s ′, s) and aF (s
′′ |s, j) satisfying (6) for all bilateral pairs characterize a system of GVC �ows

that perfectly �t the observable data. Crucially, ��ing the data requires imposing S× S restrictions but

the specialized inputs GVC network depends on S× S × (S+ J) input shares. �ese degrees of freedom

imply that there are many di�erent GVC networks that replicate the same observable data.

�is specialized inputs solution nests the standard approach used by the literature to disentangle GVCs.

Speci�cally, both the literature on counterfactuals and the literature on measures of globalization have

largely focused on the roundabout solution in which the GVC challenge is solved by assuming that every

single dollar of output within each country-industry is produced using the exact same input mix. �at is

GN
(
sN, sN−1

, . . . , s1
, j
)
= a

(
sN
∣∣sN−1

)
GN−1

(
sN−1

, . . . , s1
, j
)

, (7)

for allN > 2. Crucially, note that this roundabout solution is nested in the specialized inputs solution and

corresponds to the knife-edge case in which aX (s ′′ |s ′, s) = aF (s
′′ |s ′, j) = a (s ′′ |s ′ ) ∀s ∈ S and ∀j ∈ J.

�e roundabout equilibrium theory of production is a very special solution to the GVC challenge since

it corresponds to the case in which GVCs are fully and uniquely characterized by the input-output data

with the input expenditure shares given by the aggregate value of inputs purchased relative to the produced

gross output. To see this note that from (6)

X
(
s ′′, s ′

)
= a

(
s ′′
∣∣s ′ )

∑
s∈S

X
(
s ′, s

)
+
∑
j∈J

F
(
s ′, j
) , ⇒ a

(
s ′ |s

)
=
X (s ′, s)

GO (s)
. (8)

13
�is is obtained as follows. Substituting (4) and (5) into (3) delivers

X (s ′′, s ′) =

∞∑
N=2

∑
sN∈s′′

∑
sN−1∈s′

∑
sN−2∈S

. . .

∑
s1∈S

∑
j∈J

[
N∏
n=3

aX
(
sn
∣∣sn−1

, sn−2

)]
aF
(
s2

∣∣s1

, j
)
F
(
s1

, j
)

.

�is expression is tedious but straightforward and sums up the inputs sold by s ′′ to s ′ across all stages and chains of production.

Conditional on N, the �rst two stages of the sequence are sN = s ′′ and sN−1 = s ′ (I abuse notation slightly by indicating

summations over single-valued sets). �e subsequent summations sum up the use of inputs across all downstream sequences of

production sN−2 ∈ S, . . . , s1 ∈ S, j ∈ J, while the summation over N > 2 sums up the exchange of inputs across all production

stages. Leveraging the recursive structure of the specialized inputs solution assumed in (5) delivers the succinct expression in (6).
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Since gross output is larger than aggregate input purchases, this also implies that every dollar of output of

s has an equal share of domestic value-added given by β (s) = 1 −
∑
s ′∈S a (s

′ |s) = GDP (s) /GO (s).

�e roundabout solution is currently the most popular approach for incorporating intermediate in-

puts into structural models of international trade (see footnote 3).
14

In particular, it is so highly tractable

that the measurement problem regarding how to disentangle GVCs is completely eliminated as long as

one has input-output data at hand.
15

In other words, any roundabout microstructure has GVCs that can

be characterized, in equilibrium, by the mapping in (7) and is thus equivalent to input-output analysis

(Leontief 1941) − a measurement framework fully characterized by input-output data and with no degrees

of freedom.
16

Importantly, though, while input-output analysis is de�ned directly as the set of technical

coe�cients in (8), I derived these input shares from �rst principles in the sense that I imposed assumptions

on the mapping of GVCs across di�erent stages of the value chain in (7) and then derived the input shares

as an implication. �is la�er approach is more useful since it can be used to compare the implications of

imposing di�erent assumptions, such as specialized inputs, on the GVC challenge in (1).
17

2.3.1 Taking Stock

�roughout this paper I study the implications of modeling GVCs through the lens of the specialized inputs

solution while comparing the results to those obtained from the benchmark roundabout GVCs. �is com-

parison requires making an important conceptual shi� regarding how input-output datasets are typically

interpreted. Since the roundabout GVCs �t the data perfectly in a unique way, working with these �ows

implicitly implies assuming that further disaggregating the data would yield no additional insights or infor-

mation. In contrast, the specialized inputs solution �ts the data perfectly in many ways and thus implicitly

assumes there is important information hidden by the aggregation present in input-output datasets. �is

paper’s exercises are thus concerned with using the specialized inputs solution to systematically under-

stand the implications of such aggregation in currently available input-output datasets.

As a �nal comment, note that there are many other possible solutions to the GVC challenge in (1)

that can be used to study the rich supply chain pa�erns underlying input-output tables. For example, a

previous dra� of this paper studied GVCs through a less stringent lens in which, for a any given positive

14
It is also enormously in�uential beyond trade. Roundabout production has been widely used ever since Samuelson (1951)

provided the key insight that input-output analysis is consistent with the equilibrium of a constant returns to scale production

economy. For example, it has been used in the macroeconomics literature following the seminal input-output models of Domar

(1961), Hulten (1978), and Long and Plosser (1983) to study business cycles (Basu 1995), growth (Jones 2011), misallocation (Jones

2013, Bigio and La’O 2016, Caliendo et al. 2017), aggregate �uctuations (Acemoglu et al. 2012, Carvalho and Gabaix 2013, Carvalho

2014, di Giovanni et al. 2014, Baqaee 2014, Baqaee and Farhi 2017), and development accounting (Bartelme and Gorodnichenko

2015, Cuñat and Zymek 2017). As the GVC literature, these papers can be extended to specialized inputs.

15
Formally, the data fully and uniquely characterizes roundabout GVCs since GN

(
sN, . . . , s1

, j
)
=
∏N
n=2

a (sn |sn−1 ) F (s1
, j) .

16
Input-output analysis is typically described using matrix algebra. Imposing the GVC mapping in (7) on the de�nition of

bilateral intermediate input �ows in (3) and using matrix algebra implies that X = aF + a2F + · · · = a [I− a]−1

F, where

GO = [I− a]−1

F is gross output and [I− a]−1

is known as the Leontief inverse matrix.

17
An even more extreme set of assumptions than the roundabout solution is to assume that GVC linkages are nonexistent. I

call this the ‘only trade in �nal goods’ solution which solves the GVC challenge in (1) by assuming GN
(
sN, sN−1

, . . . , s1
, j
)
= 0

for all N > 2. �is is only consistent with the data if X (s ′, s) = 0, which is obviously not true in current datasets since over

two-thirds of world trade is in intermediate inputs. Nonetheless, these restrictions were still widely imposed even a few decades

ago as can be seen in the Armington model of Anderson (1979) and the Ricardian model of Dornbusch et al. (1977).
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integerM, the GVC solution was resolved through

GN
(
sN, sN−1

, . . . , s1
, j
)
= aX

(
sN
∣∣sN−1

, . . . , sN−M
)
GN−1

(
sN−1

, . . . , s1
, j
)

,

for allN >M. �is corresponds to a richer form of input specialization in which the use of inputs depends

not only on the immediate downstream use of the input, but on the M − 1 further downstream stages.
18

Formally, this approach builds GVCs recursively usingMth order Markov chains and the above specialized

inputs and roundabout solutions correspond to the special cases of 2nd and 1st order Markov chains. �is

generality, however, comes at a considerable cost in dimensionality since it requires SM+1
intermediate

input expenditure shares and so I focus on the la�er relatively low-dimensional cases. Furthermore, note

that while specialized inputs generalizes the roundabout solution, it still features a �avor of roundabout

production in that aX (s ′′ |s ′, s) is common across all stages of production. �is need not be the case since

one could move beyond recursive GVCs by assuming input shares that vary across stages of production and

with, perhaps, �nite GVCs in which output at some stageN > 1 consists entirely of domestic value-added.

�roughout this paper I focus on the specialized inputs solution since it is, in my view, the most

natural and both analytically and computationally tractable way of generalizing the roundabout solution

in order to account for the pa�erns observed in �gure 1. But the reader should keep in mind that this GVC

framework can be used to study many other ways of disentangling GVCs in future research.

2.4 Evidence for Specialized Inputs

�e empirical evidence in favor of specialized inputs has been steadily accumulating over the last couple of

years (see footnote 5). On the intermediate input side, Manova and Zhang (2012) found that large Chinese

�rms export to more countries and use inputs from more source countries than small �rms while Bastos

et al. (2018) showed that Portuguese �rms selling to richer countries export higher quality products built

with higher quality inputs. On the value-added side, Brambilla et al. (2012) and Brambilla and Porto (2016)

discovered that Argentinian �rms exporting to richer countries hire relatively more skilled workers and

pay higher wages while Koopman et al. (2012) and Kee and Tang (2016) established that Chinese processing

trade �rms use less domestic value-added than non-processing trade exporting �rms. �ese facts imply

that both the use of intermediate inputs and value-added varies at the country-industry level depending

on the use of output in a variety of se�ings. I now provide further evidence for Mexico and the U.S.

2.4.1 Evidence from Firm-Level Data

�e case for specialized inputs is supported by Mexican customs data. Speci�cally, I use the universe of

import/export shipments in 2014 to show that the use of inputs varies in exports to di�erent markets. I

proceed in three steps. First, for each �rm I construct its aggregate input purchases from and exports to

each country. Second, I assume that all output within each �rm is produced using the same input mix

and obtain the dollar value of imports from each country used in the exports to each country at the �rm-

18
All of this paper’s results can be generalized to this se�ing and are available upon request.
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Figure 2: Foreign Input Shares in Mexican Manufacturing Exports Across Destinations: Each chart

presents the share of foreign inputs sourced from Mexico’s four main trade partners and a rest of

world remainder (y-axis) used in Mexico’s manufacturing exports to each of its four main trade

partners (x-axis). �at is, cells across rows within each column sum up to 100%. �e shares are

constructed using Mexican customs shipment-level data and these nine manufacturing industries

account for 95% of Mexico’s �nal good manufacturing exports. In contrast, assuming the round-

about solution at the industry-level implies common input distributions across export destinations.

level.
19

. �ird, I take all of the �rms within a manufacturing industry and compute the aggregate value of

imports from a given source used in the exports to a given destination. �is delivers the distribution of

foreign inputs used in exports to each destination market − which should be common across markets if

the roundabout solution were accurate at the industry-level.
20

Figure 2 con�rms the prevalence of specialized inputs in Mexican manufacturing �nal good exports at

the level of aggregation consistent with typical multi-country datasets.
21

Speci�cally, each column in each

19
�is assumption is strong in multi-product �rms where di�erent goods likely use di�erent inputs. However, imposing a

common input mix within the �rm is weaker than imposing it within industries; Ludema et al. (2018) take the same approach.

20
Customs data does not contain domestic purchases so value-added shares cannot be measured at the �rm-level and this

analysis also rests on assuming common value-added shares across �rms within an industry. Imposing the roundabout solution

at the industry-level also assumes this and so, in this respect, this analysis is just as restrictive as the conventional approach.

21
�e la�er is an important point since one could de�ne di�erent �rms as di�erent manufacturing industries and then the
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chart plots the share of foreign inputs sourced from Mexico’s four main trade partners − the U.S., China,

Canada, and Germany − and a rest of world remainder used in exports to each of these markets. In other

words, the cells across a column represent the distribution of foreign inputs used to produce a speci�c

type of manufacturing exports and add up to 100%. For example, motor vehicles is Mexico’s main export

industry and the corresponding chart shows that the use of inputs in exports to the U.S. and Germany

di�er substantially (i.e. these are the distributions in �gure 1).

Overall, �gure 2 shows substantial heterogeneity in input shares in sales to di�erent destinations and

reveals interesting pa�erns. In particular, the U.S. tends to have an outsized role as input supplier in

the exports that return to its own market − thus con�rming the widely-available anecdotal evidence that

Mexico-U.S. trade is based heavily on goods that cross the border back and forth. Sections 3 and 5 will show

this translates into a high share of U.S. content in U.S.-bound exports through richer empirical analysis

that traces where value is created across all stages of the value chain.

2.4.2 Evidence from Disaggregate Domestic Input-Output Tables

�e case for specialized inputs is also supported by domestic input-output tables. Speci�cally, the U.S.

Bureau of Economic Analysis reports data for the year 2007 at a level of disaggregation of both 389 and

71 industrial categories (roughly 6- and 3-digit NAICS codes). �is data is useful because it can help study

whether the use of inputs− at the industry-level− varies depending on the industry to which output is sold

to. I conduct the following thought experiment: Compare the input shares of the 6-digit industries bundled

into single 3-digit industries. If only 6-digit industries with common input mixes are bundled together then

there is no aggregation issue. If not, then the roundabout solution at the 3-digit is misspeci�ed.

Figure 3 illustrates the aggregation issue in the 3-digit computers and electronics industry. �e la�er is

composed of twenty 6-digit industries − the �ve largest are semiconductors, navigation instruments, elec-

tronic computers, communication equipment, and other electronics − while its four largest input suppliers

are other electronic components, semiconductors, broadcast and wireless communication equipment, and

computer storage devices. Figure 3’s le� panel shows that imposing the roundabout solution at the 3-digit

implies all 6-digit subindustries use the same input and value-added mix. Figure 3’s right panel, however,

uses the disaggregate 6-digit data to show that input shares vary substantially within each subindustry.

For example, computer storage devices are used intensively in electronic computers (14.9% of output value)

but only marginally in other subindustries; in contrast, the le� chart assumes a common 2.4% share.
22

Ap-

pendix section A.1 shows that similar pa�erns hold across all U.S. manufacturing industries in that there

is substantial heterogeneity in input shares across sales to di�erent industries. �is exercise motivates

the use of the specialized inputs solution when studying multi-country input-output tables since these are

typically available at an industrial classi�cation level similar to the 3-digit NAICS.

distribution of inputs used in exports to di�erent destinations would be common by construction since I have assumed a com-

mon use of inputs within the �rm. However, the charts in �gure 2 are presented at the relevant level of aggregation since, for

example, manufacturing �ows in the WIOD are available for only 19 aggregate manufacturing industries. Going forward, while

multi-country datasets are likely to become more disaggregate over time it is unlikely that these datasets become available at a

disaggregate enough level to be consistent with the roundabout solution at the industry-level anytime soon (see footnote 2).

22
Note that what ma�ers is the relative di�erence in shares across columns; the shares in levels are low since there are 389

6-digit industries. Also note that, in contrast to �gure 2, these are shares of output value and thus include a row for value-added.
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Figure 3: Implied and True Input and Value-Added Shares Within the Computer and Electronics

Industry: Each chart presents the expenditure share on the top four input suppliers, the other 385

input suppliers, and value-added (y-axis) in the production of the top �ve subindustries (x-axis).

�e le� chart plots shares implied by imposing the roundabout solution on the aggregate 3-digit

industry computer and electronics while the right panel plots the true shares using the disaggregate

6-digit data. Data is from 2007 U.S. input-output tables from the Bureau of Economic Analysis.

Overall, while further disaggregating input-output tables is a key avenue for improving GVC measure-

ment, this paper’s main argument is that there is a lot of currently available data − such as customs −

that can already be used to improve GVC measurement even though it cannot be used to explicitly break

up input-output tables.
23

Section 5 develops two methods for doing so. �e next two sections lead to the

section on measurement by �rst building the argument for why measuring GVCs accurately ma�ers so

much for understanding global trade in a world of highly fragmented production.

3 GVCs and Measures of Globalization

A �rst strand of the GVC literature is concerned with developing measures that be�er capture the extent of

fragmentation of production across borders and stages of the supply chain than those based on traditional

gross trade �ow statistics. �e most in�uential measures are those based on value-added trade (Hummels

et al. 2001, Johnson and Noguera 2012, Koopman et al. 2014, Wang et al. 2013), which capture where value is

created rather than where value is shipped from, and those based on upstreamness (Fally 2012, Antràs et al.

2012, Antràs and Chor 2013), which capture a country’s average position along the value chain. Without

being exhaustive, the literature has also developed measures to capture the factor content of trade (Tre�er

and Zhu 2010), value-added exchange rates (Bems and Johnson 2017), international in�ation spillovers

(Auer et al. 2017), and business cycle synchronization (di Giovanni and Levchenko 2010, Johnson 2014b,

23
�e issue of aggregation in input-output data motivated an important literature in the 1950’s with several papers developing

conditions under which aggregation is innocuous. �e outlook on whether they might hold in practice was grim, though. In the

words of Hatanaka (1952) and McManus (1956), “�ere is very li�le chance that they will be ful�lled by any model”.
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Duval et al. 2016, di Giovanni et al. 2017). I refer to these generically as measures of globalization.

�is section shows that measures of globalization vary substantially across GVC networks built from

the same input-output dataset. For clarity, I focus on value-added trade decompositions but the same ideas

hold generally. I proceed in three steps. First, I show that any measure of globalization can be de�ned using

the general theory of GVCs from section 2. �is contrasts with the conventional approach which de�nes

these measures directly with the roundabout solution. �e more general de�nition proves useful since this

permits the comparison of di�erent equilibrium theories of production in terms of their implications on

these measures. Second, I show how to construct bounds on value-added when imposing the specialized

inputs solution. �ird, and �nally, I use the WIOD to construct the bounds on the share of U.S. value-added

in imported Mexican �nal goods and �nd they are very wide. �is suggests that conventional roundabout

value-added estimates may be highly mismeasured.

3.1 Decomposing Value-Added Trade

Decomposing �nal good consumption into where value-added is produced is useful for understanding how

�nal consumption in some country, say the U.S., is linked to the production of another, say China, through

�nal good exports of a third country, say Mexico. Further, this decomposition is useful for constructing

value-added trade imbalances such as the di�erence between the aggregate �ow of, say, Chinese value-

added consumed in the U.S. arriving through �nal good exports of any country and the total U.S. value-

added that is eventually consumed in China. More speci�cally, in the most general form, the value-added

from s ′′ that arrives through �nal good exports of s ′ and is consumed in country j is de�ned as

VA
(
s ′′
∣∣s ′, j) = 1[s ′′=s ′]

G1
(
s ′, j
)
−
∑
s2∈S

G2
(
s2

, s ′, j
)

+

∞∑
N=3

∑
sN−2∈S

· · ·
∑
s2∈S

GN−1
(
s ′′, sN−2

, . . . , s2
, s ′, j

)
−
∑
sN∈S

GN
(
sN, s ′′, sN−2

, . . . , s2
, s ′, j

) .

(9)

�e �rst term imputes value-added created directly at the assembly stage, appearing only if s ′′ = s ′, while

the remaining terms impute value-added created by s ′′ at all further upstream stages of production and

which eventually arrives, through any possible sequence, to s ′ to be shipped to consumers in j.

Value-added trade can be rewri�en in terms of a model’s equilibrium GVC network once one takes a

stand on the equilibrium theory of production solving the GVC challenge in (1). To exemplify this, I show

how this decomposition simpli�es when assuming the specialized inputs solution in (4) and (5). To make

the exposition clearer, I derive the decomposition separately for the value-added created at each upstream

stage N. First, the value created by s ′′ at the most downstream stage N = 1 embedded in the �nal good

sales of s ′ to j equals

VA1
(
s ′′
∣∣s ′, j) = 1[s ′′=s ′]βF

(
s ′, j
)
F
(
s ′, j
)

, (10)

where the superindex on VA is meant to index the stage at which this value is produced. Clearly, since the

most downstream stage is that of �nal production, s ′′ adds value to the �nal good sales of s ′ if and only
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if s ′′ = s ′, and the decomposition is given by the share of value-added βF (s
′
, j) in each dollar of output

times the sales of �nal goods. Second, the value-added generated at theN = 2 upstream stage is given by

VA2
(
s ′′
∣∣s ′, j) = βX (s ′′, s ′)aF (s ′′ ∣∣s ′, j) F (s ′, j) , (11)

and equals the intermediate input value-added share times the level of inputs from s ′′ used in �nal good

sales from s ′ to j. �ird, and �nally, the value-added created at any further upstream stage N > 3 equals

VAN
(
s ′′
∣∣s ′, j) = ∑

sN−1∈S

. . .

∑
s2∈S

βX
(
s ′′, sN−1

) [ N∏
n=3

aX
(
sn
∣∣sn−1

, sn−2
)]
aF
(
s2

∣∣s ′, j) F (s ′, j) , (12)

with sN = s ′′ and s1 = s ′. Hence, the total value-added of s ′′ embedded in �nal good sales of s ′ to j is

given by the sum of value-added by s ′′ created at all stages of production

VA
(
s ′′
∣∣s ′, j) = ∞∑

N=1

VAN
(
s ′′
∣∣s ′, j) .

While writing the decomposition in terms of summations across stages of production is useful for

illustrating the intuition behind it, in practice it is tedious to implement numerically. �is can be avoided

by writing the de�nitions compactly with linear algebra. To see this, �rst, organize �nal good �ows F (s ′, j)

into a vector F of size 1×SJ. Second, organize the input shares aX (s ′′ |s ′, s) into a matrix aX stacked as

aX =


aX (1 |1, 1) aX (1 |1, 2) . . . aX (1 |1, S) aX (1 |2, 1) . . . aX (1 |S, S)

aX (2 |1, 1) aX (2 |1, 2) . . . aX (2 |1, S) aX (2 |2, 1) . . . aX (2 |S, S)
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

aX (S |1, 1) aX (S |1, 2) . . . aX (S |1, S) aX (S |2, 1) . . . aX (S |S, S)

 ,

of size S× S2
, and let aF be an analogous matrix of elements aF (s

′′ |s ′, j) but of size S × SJ. �ird, let

βX and βF be vectors of elements βX (s ′, s) and βF (s
′
, j) and of size 1 × S2

and 1 × SJ. Finally, denote

the Kronecker product with ⊗ and the Khatri-Rao, or column-wise Kronecker, product with ∗ to de�ne

the following auxiliary matrices. Let
˜F = F ∗ (ISJ×SJ) be of size SJ × SJ, ãX = aX ∗ (IS×S ⊗ 11×S) of

size S2 × S2
, ãF = aF ∗ (IS×S ⊗ 11×J) of size S2 × SJ,

˜βX = βX ∗ (IS×S ⊗ 11×S) of size S × S2
, and

˜βF = βF ∗ (IS×S ⊗ 11×J) of size S× SJ. �e matrix with elements VA (s ′′ |s ′, j) of size S× SJ, stacked

as aX, is given by

VA = ˜βF
˜F+ ˜βX [I− ãX]−1 ãF ˜F. (13)

�e relation between matrix and full notation is that the term
˜βF

˜F summarizes the value-added created

at the most downstream stage and is the matrix representation of (10). Analogously,
˜βX (ãX)

N−2 ãF ˜F

is the matrix representation of VAN (s ′′ |s ′, j) for N > 2 so that the second term in (13), given by∑∞
N=2

˜βX (ãX)
N−2 ãF ˜F = ˜βX [I− ãX]−1 ãF ˜F, is the matrix representation of (11) and (12).

Since the roundabout solution is a special case of specialized inputs, its value-added decomposition is
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nested in (13). Indeed, imposing the GVC mapping in (7) on (9) delivers the value-added decomposition

VA = β [I− a]−1 ˜F, (14)

where now
˜F = F ∗ (IS×S ⊗ 11×J) is a matrix of size S × SJ, β is a diagonal matrix of elements β (s) of

size S× S , and a is the matrix of technical coe�cients a (s ′ |s) of size S× S. �is is the standard formula

used in the GVC literature and mirrors those in Johnson and Noguera (2012) and Koopman et al. (2014).

�e key di�erence between the specialized inputs and roundabout decomposition of value-added trade

is that the former depends on an inverse matrix [I− ãX]−1

of size S2 × S2
while the la�er depends on

the Leontief inverse matrix [I− a]−1

of size S× S. �e former is larger since it summarizes the larger

set of information contained in the specialized inputs technical coe�cients in which input shares vary

depending on the use and destination of output.
24

�is discussion illustrates the value of section 2’s general GVC theory. While value-added trade has

been conventionally de�ned directly in terms of roundabout GVCs as in (14), de�ning this measure gener-

ally in (9) is useful for deriving this decomposition under alternative equilibrium theories of production.
25

3.2 Bounding Value-Added Trade

Conditional on an input-output dataset and an equilibrium theory of production, measures of globalization

can be bounded. In particular, the specialized inputs bounds on the value-added from country-industry t ′′

embedded in the �nal goods shipped from country-industry t ′ to consumers in country i are given by

min/max

{aX(s ′′|s ′,s ),aF(s ′′|s ′,j )}

∞∑
N=1

VAN
(
t ′′
∣∣t ′, i) ,

subject to X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) , ∀s ′′, s ′,

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s) 6 1, ∀s ′, s, (15)∑

s ′′∈S
aF
(
s ′′
∣∣s ′, j) 6 1, ∀s ′, j,

aX
(
s ′′
∣∣s ′, s) ,aF

(
s ′′
∣∣s ′, j) > 0, ∀s ′′, s ′, s, j.

�e endogenous variables are the destination-speci�c input shares for the production of both inputs and

�nal goods. �e linear constraints restrict the optimization problem to only search across GVC networks

that perfectly replicate all entries in the observed input-output data.

In practice, I solve an approximate version of this optimization problem which is much easier to com-

pute numerically and delivers very precise solutions. Solving (15) exactly is challenging numerically for

24
�e invertibility of these matrices can be shown with the arguments of Hawkins and Simon (1949). In the words of Solow

(1952), the necessary condition is that no group of industries be “self-exhausting”.

25
Further, de�ning concepts cleanly at this general level should also prove useful for resolving outstanding debates in the

literature based on speci�c equilibrium theories of production. For example, the ongoing debate about how to de�ne certain

(roundabout) value-added measures between Koopman et al. (2014), Los et al. (2016), Johnson (2017), and Koopman et al. (2018).
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two reasons. First, because it involves searching globally over the full GVC network across all countries

and industries − this makes it highly dimensional. Second, because computing value-added trade requires

tracing value across all stages of production and across all possible production paths − this makes it highly

nonlinear.
26

I avoid these issues by instead solving an approximate version in which I truncate the objective

function and solve for the N-th order bounds as the solutions to

min /max

N∑
N=1

VAN
(
t ′′
∣∣t ′, i) , (16)

subject to the same constraints in (15). �is is more easily implemented numerically since the �rst-order

bounds, whenN = 1, are characterized by a linear program while the second-order bounds, whenN = 2,

are de�ned by a quadratic program. Both can be feasibly solved in high dimensions. �e problem can be

further simpli�ed by focusing on the heterogeneity in input shares while keeping common value-added

shares βX (s ′, s) = βF (s
′
, j) = GDP (s ′) /GO (s ′). �e second-order bounds now correspond to a linear

program while the third-order bounds, with N = 3, are solved by a quadratic program.
27

�e approximate bounds from (16) are close to the exact bounds from (15) as long as N is big enough

and, in practice, the second- and third-order bounds appear to be very well estimated.
28

Speci�cally, Ap-

pendix section A.2 computes the exact and approximate bounds on value-added when using a small ag-

gregated version of the 2014 WIOD. �e results show that the di�erences between the approximate and

exact bounds are negligible. While this exercise cannot be computed in larger datasets, this suggests that

computing approximate bounds is su�cient for obtaining a good estimate of the value-added trade bounds.

As a �nal point, note that computing bounds on any other measure of globalization can be done anal-

ogously to (15) by changing the objective function to whatever variable one is interested in.

3.3 U.S. Value-Added Returned Home�rough Imported Mexican Final Goods

One of the most important features of trade in the NAFTA region is that supply chains have become

deeply integrated. �is integration is o�en proxied with measures such as the amount of U.S. value-added

that returns home through �nal good imports from its NAFTA partners and, in particular, these statistics

received widespread a�ention during the recent NAFTA renegotiation (see footnote 6). �ese measures

ma�er because, �rst, they say something about how each NAFTA country is exploiting its comparative

advantage by specializing on speci�c segments of the supply chain instead of on specializing on di�erent

goods and, second, because it informs about how changes in trade barriers ripple across country borders.
29

26
Formally, the problem is highly dimensional because if there are J countries and K industries, then JK × JK× (JK+ J)

endogenous variables need to be solved for. �e problem is highly nonlinear because VAN (t ′′ |t ′, i ) is a polynomial of order N

in the endogenous variables and the objective function is an in�nite sum of polynomials of every order

27
In this case the linear inequality constraints in (15) are replaced by

∑
s′′∈S aX (s

′′ |s ′, s ) =
∑
s′′∈S aF (s

′′ |s ′, j ) = 1−β (s ′).
An additional feature of focusing on these approximate bounds is that the size of the optimization problem is smaller and only

requires searching within each country-industry s ′ instead of across the global network.

28
�is occurs because value created in very upstream stages represents a tiny share of �nal good output and so higher-order

polynomials beyondN are negligible whenN is large. In the limitN→∞, the approximate bounds converge to the true bounds.

Formally, the gross value traded at upstream stage N decays at least at rate (1 − min {βX (s
′
, s)})

N−2 (1 − min {βF (s
′
, j)}).

29
Policymakers typically interpret a high share of U.S. content in, say, Mexican imports as higher supply chain integration

and so higher costs of disruption. �e exact quantitative e�ects, of course, depend on elasticities of substitution and the costs of
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Figure 4: Share of U.S. Value-Added in U.S. Imported Mexican Final Goods: Roundabout point

estimates are based on the input-output analysis decomposition in (14). Specialized inputs bounds

correspond to either the second-order or third-order bounds on the decomposition in (13) computed

with (16) whenN = 2 orN = 3, whichever is more extreme, and with common value-added shares.

Numbers at top are gross Mexican �nal good imports in each manufacturing industry (in billion

dollars). Data is from the 2014 WIOD.

But how much U.S. value actually returns home through, say, Mexican imports? Figure 4 shows that

conventional estimates might be o� by a wide margin. Speci�cally, �gure 4 provides estimates for the

U.S. content in imported Mexican manufacturing �nal goods in the 2014 WIOD. �e roundabout point

estimates correspond to the conventional estimates used in both academia and policy in which, for exam-

ple, about 18% of the $118 billion of imported Mexican manufactures corresponds to U.S. value created at

upstream production stages. Figure 4 also provides the approximate bounds when using the specialized

inputs decomposition in (13) together with the optimization problem in (16). �is shows that the true

share may be as low as 3% or as high as 52%. Furthermore, the bounds are considerably wide across all

manufacturing industries. Intuitively, the shares vary because, conditional on the level of U.S. imported

Mexican goods, the upper bound corresponds to GVCs in which Mexico produces these goods with a lot

of U.S. inputs while the lower bound corresponds to GVCs in which Mexico uses few U.S. inputs.

�at value-added measures are highly mismeasured appears to be a fairly common feature. For ex-

ample, Johnson and Noguera (2012) and Johnson (2014a) showed the U.S.-China trade de�cit looks less

extreme if it is computed as the di�erence between the U.S. value consumed in China and the Chinese

value consumed in the U.S. instead of the di�erence in gross exports between the two countries. Policy-

relocating supply chains across countries. However, Blanchard et al. (2017) showed this basic intuition holds formally. Speci�cally,

they show that countries like the U.S. should set lower tari�s on imports containing a high share of their own domestic content.
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makers tend to favor this de�nition of trade imbalances since they, arguably, provide a be�er measure of

the relative linkages between both economies.
30

However, Appendix section A.3 shows that the potential

mismeasurement in the value-added trade balance is so large that this statistic might actually be either a

surplus or a much higher de�cit. In other words, this mismeasurement dwarfs, by orders of magnitude,

the di�erence between the conventional estimates of value-added and gross trade balances.

Overall, since economists o�en take the roundabout value-added estimates at face value and given that

these measures feature prominently in both academic and policy debates, I hope these exercises convince

the reader of the importance of understanding how much hinges on this assumption. Crucially, this illus-

trates that some conventional wisdom facts may be pure arti�ce of how the roundabout solution constructs

GVCs. Since the bounds are so wide, this motivates the need of developing new measurement frameworks.

I now take a detour through a parallel literature using input-output data to compute counterfactual exper-

iments and show that similar insights apply there. �e last section revisits both literatures and shows that

additional information beyond that contained in input-output data can be used to improve measurement.

4 GVCs and Counterfactuals

A second strand of the GVC literature is concerned with understanding the implications of economic

shocks, such as changes in trade barriers, on international trade. In particular, in an in�uential contribu-

tion, Arkolakis et al. (2012) (ACR henceforth) argued that, with some assumptions in hand, the welfare

gains from trade − across a variety of microfoundations including roundabout production − rely only on

domestic expenditure shares and thus depend only on data and a trade elasticity.

�is section shows that, in more complex equilibrium theories of production, the quantitative im-

plications of economic shocks di�er depending on how GVCs are constructed using input-output data.

Conceptually, the starting point is the specialized inputs and roundabout solutions to the GVC challenge

in (1) discussed previously since these theories determine how to build the observed equilibrium’s GVC

network. �e next step is to go deeper and unpack the microfoundation underlying these equilibrium the-

ories of production in order to pin down how the GVC network changes following any economic shock.

In other words, while computing value-added trade required assuming either the roundabout or special-

ized inputs solution, it required only assuming that these are the GVCs delivered in equilibrium but it did

not require specifying the speci�c microfoundation that delivers such equilibrium. In contrast, computing

counterfactuals does require taking a stand on a speci�c microfoundation in order to do empirical analysis.

In this sense, this section is more restrictive than the previous one.

I proceed in four steps. First, I develop the simplest microfoundation for specialized inputs through a

variant of the Armington model. Second, I extend the ACR insights and show that the gains from trade

depend on the change in a set of domestic expenditure shares − though here the relevant shares are

the expenditures on domestic inputs used for the production of domestically-sold goods. Since any input-

output dataset is consistent with many GVC networks delivering di�erent values for the la�er, this implies

30
Pascal Lamy, the former director of the WTO, claimed in the Financial Times (January 24, 2011) that “…if we are to debate

something as important as trade imbalances, we should do it on the basis of numbers that re�ect reality… Take the bilateral de�cit

between China and the U.S. A series of estimates based on true domestic content can cut the overall de�cit… by half, if not more.”
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that any counterfactual exercise is consistent with a range of numerical values. �ird, I show formally that

the aggregate domestic expenditure share is not the relevant su�cient statistic in a world of specialized

inputs because it fails to capture how changes in trade barriers ripple through GVC linkages. Fourth, and

�nally, I show how to construct bounds on counterfactual exercises based on the class of models consistent

with the above su�cient statistics formulas and illustrate this empirically with the 2014 WIOD.

4.1 Armington Meets Specialized Inputs

I extend the Armington model with roundabout production (such as in Costinot and Rodrı́guez-Clare 2014)

to specialized inputs. �ere are J countries and K industries, with each country-industry s ∈ J×K

producing J di�erentiated varieties − each tailored to a speci�c market. �e model is based on �ve main

assumptions: (i) both intermediate inputs and �nal goods are produced with the same technology, (ii)

production is specialized in terms of destination country but not destination industry, (iii) production

features constant returns to scale with an upper-tier Cobb-Douglas production function across labor and

intermediate inputs from each industry and a lower-tier constant elasticity of substitution (CES) composite

of inputs across source countries, (iv) market structure is perfect competition, (v) the only source of value-

added in country j is equipped labor L (j) and commands a wage w (j).

While this model is stylized, it is a strict generalization of the standard Armington model corresponding

to the special case in which each country-industry produces the same di�erentiated variety for all markets.

4.1.1 Production

Formally, assumptions (iii) and (iv) imply the model can be described directly in terms of unit prices, the

dual, with the price of a unit of goods from s ′ sold to j given by the marginal cost

p
(
s ′, j
)
= w

(
j ′
)β(s ′,j) ∏

k ′′∈K

 ∑
s ′′∈J×k ′′

α
(
s ′′
∣∣s ′, j) (p (s ′′, j ′) τ (s ′′, j ′))1−σ(k ′′)


γ(k ′′|s ′ ,j )

1−σ(k ′′)

,
(17)

where notation is such that country-industry pairs are summarized by s ′′ = {j ′′,k ′′} and s ′ = {j ′,k ′}. �e

upper-tier Cobb-Douglas is characterized by β (s ′, j), the value-added share, and γ (k ′′ |s ′, j), the expendi-

ture share on industry k ′′ inputs, with β (s ′, j) +
∑
k ′′∈K γ (k

′′ |s ′, j) = 1. �e lower-tier CES composite

is characterized by two parameters. First, an elasticity σ (k ′′) > 1 governing the substitutability of indus-

try k ′′ inputs purchased across sources j ′′ ∈ J − i.e. the industry k ′′ composite combines inputs across

sources as indexed by s ′′ ∈ J×k ′′. Second, a set of exogenous input shi�ers α (s ′′ |s ′, j) governing the

relative expenditure on industry k ′′ inputs from each source j ′′ ∈ J satisfying

∑
s ′′∈J×k ′′ α (s ′′ |s ′, j) = 1

∀k ′′ ∈ K. In addition, p (s ′, j) depends on the endogenous wage paid in s ′,w (j ′) , and the prices that j ′ it-

self pays for inputs purchased from each source s ′′, p (s ′′, j ′), times an exogenous trade cost τ (s ′′, j ′) > 1

governing how many units melt when shipped from s ′′ to j ′.

Production is specialized in that s ′ puts in speci�c shares of domestic value-added and inputs from each

s ′′ into its exports to each market j. �at is, of every dollar sold from s ′ to j a share β (s ′, j) is domestic
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value-added embedded directly by s ′ while the expenditure share on s ′′ inputs is endogenous and given

by

a
(
s ′′
∣∣s ′, j) = α (s ′′ |s ′, j) (p (s ′′, j ′) τ (s ′′, j ′))1−σ(k ′′)∑

t ′′∈J×k ′′ α (t ′′ |s ′, j) (p (t ′′, j ′) τ (t ′′, j ′))1−σ(k ′′)
× γ

(
k ′′
∣∣s ′, j) . (18)

�ese input expenditure shares are disciplined by the parameters α (s ′′ |s ′, j) and I interpret this hetero-

geneity as a simple way of (exogenously) capturing the interdependencies across di�erent stages of the

value chain. For example, if U.S. workers prefer to work with Mexican inputs built with U.S. parts than

with Mexican inputs built with Chinese parts, then Mexico will put in more U.S. than Chinese parts into

its U.S. exports even if both are available at the same price in the Mexican market.

Four comments are in order. First, unpacking or endogenizing α (s ′′ |s ′, j) in order to study why

expenditure shares depend on the use of output is a fascinating research topic, but beyond this paper’s

scope. Moreover, while developing theories of how GVCs are formed is important, it is equally as important

to develop frameworks that can be�er measure these linkages in the data so that these theories can be

tested and validated. Having said that, I have a�empted to tackle the former question in complementary

research (Antràs and de Gortari 2017). Second, while α (s ′′ |s ′, j) is an exogenous shi�er, the expenditure

shares a (s ′′ |s ′, j) are endogenous since they also depend on the endogenous input prices p (s ′′, j ′). �ird,

input speci�city is eroded as goods �ow down the value chain since every country j ′ has access to speci�c

inputs from each source s ′′, but can use them to produce new goods for any downstream market j. Fourth,

this microfoundation is slightly more restrictive than the specialized inputs described in (4) and (5) since

input shares for all goods are common and only vary across destinations: aX (s ′′ |s ′, s) = aF (s
′′ |s ′, j) =

a (s ′′ |s ′, j). I focus the main text on this more restrictive model only to not make the already heavy

notation even heavier − while the autarky exercises below rely on this microfoundation, the NAFTA trade

war counterfactuals are done using a more general model with separate aX (s ′′ |s ′, s) and aF (s
′′ |s ′, j) .

4.1.2 Consumers

As is standard, I assume consumers aggregate goods across industries using an upper tier Cobb-Douglas ag-

gregator with ζ (k ′ |j) denoting the expenditure share on industry k ′ �nal goods by consumers in country

j. Further, within each industry consumers aggregate varieties across source countries into a CES com-

posite with the same elasticity of substitution σ (k ′) > 1 as above and with the free parameters ϕ (s ′ |j)

disciplining the share of �nal goods from s ′ purchased by consumers in each j. �e price index is then

P (j) =
∏
k ′∈K

 ∑
s ′∈J×k ′

ϕ
(
s ′ |j

) (
p
(
s ′, j
)
τ
(
s ′, j
))

1−σ(k ′)


ζ(k ′|j )

1−σ(k ′)

, (19)

and the expenditure share on �nal goods from each source country-industry s ′ equals

πF
(
s ′ |j

)
=

ϕ (s ′ |j) (p (s ′, j) τ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ ϕ (t ′ |j) (p (t ′, j) τ (t ′, j))1−σ(k ′)

× ζ
(
k ′ |j

)
. (20)
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4.1.3 Mapping the Model to Input-Output Data

Mapping the model to the data requires building the model’s analogs of the input-output table elements.

From the consumer’s side, �nal good purchases in j from source s ′ equal a share of aggregate income

F
(
s ′, j
)
= πF

(
s ′ |j

)
×w (j)L (j) .

�e intermediate input side is constructed by noting that a share of the dollar exports to a given market is

used to pay for the inputs embedded in them. �us, aggregate intermediate input sales from s ′′ to s ′ must

equal the total value of inputs used by s ′ to produce exports sold to all destinations

X
(
s ′′, s ′

)
=
∑
j∈J

a
(
s ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) . (21)

Given the input shares and �nal good �ows, these S× S equations implicitly de�ne the S×S input �ows.
31

�ere are multiple parameterizations of this model that can perfectly �t the input-output data. Speci�-

cally, conditional on any vector of iceberg trade costs τ (s ′, j) > 1 and elasticities of substitution σ (k) > 1,

the parameters ϕ (s ′ |j) adjust to match �nal good �ows, the input mix parameters α (s ′′ |s ′, j) adjust to

match intermediate input �ows, and the Cobb-Douglas shares β (s ′, j), γ (k ′′ |s ′, j), and ζ (k ′ |j) adjust

to match GDP and gross output. Since the microstructure permits destination-speci�c input expenditure

shares, it can produce many di�erent GVC networks that aggregate up to the same input-output data.

In particular, the roundabout model corresponds to the knife-edge case of no specialization in which

exports to all markets use the same input mix.
32

With these restrictions, (21) delivers the property of

roundabout models that input shares are proportional to bilateral trade shares as described in (8). �at is,

when the model is parameterized such thatβ (s ′, j) = β (s ′), γ (k ′′ |s ′, j) = γ (k ′′ |s ′ ), andα (s ′′ |s ′ , j) =

α (s ′′ |s ′ ) for all j ∈ J, then a (s ′′ |s ′, j) = a (s ′′ |s ′ ) = X (s ′′, s ′) /GO (s ′).

Hence, while roundabout models may �t the data perfectly, this cannot be interpreted as evidence for

the roundabout approach since many specialized inputs models �t it perfectly. Moreover, input-output

data contains no information identifying which specialized inputs parameterization is most accurate.

4.2 �e Gains from Trade

Building on the insights of ACR, the welfare change following any shock to trade barriers depends on a set

of domestic expenditure shares. I derive this formula using the exact hat-algebra approach in four steps.

Speci�cally, let a hat variable denote the ratio of a given variable x across two equilibria, i.e. x̂ = x1/x0,

31
Alternatively, input �ows can be computed directly with linear algebra through X = a [I− a]−1

F. �is approach is remi-

niscent of the Leontief inverse matrix but requires a matrix of size S2 × S2
instead of size S× S.

32
To be clear, I am using the term roundabout when referring to production processes in which all output uses the same

input mix and in which the model is implemented literally in that the industries in the theory are mapped one-to-one to the

industries in the data (for example, as in Costinot and Rodrı́guez-Clare 2014, Caliendo and Parro 2015, and Caliendo et al. 2017).

More generally, this specialized inputs model can also be interpreted as a more disaggregate multi-industry roundabout model in

which country j has K× J industries in which the goods produced by industry k for country j are only sold to country j. �e

mapping to the data is not one-to-one, however, since the theory has K× J industries per country whereas the data has K.
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and let τ̂ (s ′, j) denote the (exogenous) change in trade costs of goods shipped from s ′ to j. As is standard,

to make notation cleaner I assume that domestic trade costs do not change, i.e. τ̂ (s ′, j) = 1 ∀s ′ ∈ j×K.

First, I derive the change in expenditure shares. From (18), the change in input expenditures from

source s ′′ used by s ′ for goods sold to j as a share of overall expenditure on industry k ′′ inputs equals

â (s ′′ |s ′, j)

γ (k ′′ |s ′, j)
=

(p̂ (s ′′, j ′) τ̂ (s ′′, j ′))1−σ(k ′′)∑
t ′′∈J×k ′′ a (t

′′ |s ′, j)× (p̂ (t ′′, j ′) τ̂ (t ′′, j ′))1−σ(k ′′)
. (22)

Analogously, from (20), the change in the share of �nal good expenditures from source s ′ by consumers

in j relative to overall expenditure on industry k ′ �nal goods equals

π̂F (s
′ |j)

ζ (k ′ |j)
=

(p̂ (s ′, j) τ̂ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ πF (t

′ |j)× (p̂ (t ′, j) τ̂ (t ′, j))1−σ(k ′)
. (23)

Both expenditure changes (22) and (23) depend on the exogenous Cobb-Douglas and elasticity parameters,

the exogenous change in trade costs, the initial GVC network, and the endogenous change in unit prices.

Second, to derive price changes in terms of domestic expenditures, substitute (22) into (17) to obtain

p̂
(
s ′, j
)
= ŵ

(
j ′
)β(s ′,j) ∏

k ′′∈K

(
â
(
s ′′
∣∣s ′, j)− 1

1−σ(k ′′) × p̂
(
s ′′, j ′

)
τ̂
(
s ′′, j ′

))γ(k ′′|s ′,j )
, (24)

where s ′′ can be a source located in any country, that is s ′′ ∈ J × k ′′. �en take (24) de�ned in terms of

domestic industries of j, i.e. s ′ = {j, k ′} and s ′′ = {j, k ′′}, and substitute (24) repeatedly into itself. In the

limit, domestic unit prices depend exclusively on changes in domestic expenditure shares

p̂
(
s ′, j
)
=
∏

s ′′∈j×K

ŵ (j)β(s
′′

,j) ×
∏

s ′′′∈j×K
â
(
s ′′′
∣∣s ′′, j)−γ(k ′′′|s ′′ ,j )

1−σ(k ′′′)

δ(k ′′|s ′,j ) , (25)

with s ′, s ′′, and s ′′′ domestic industries of j. �e change in domestic prices thus depends on the change in

domestic wages and in expenditures on domestic inputs used in the production of domestically-sold goods.

Further, (25) captures the domestic expenditure change across all stages of the supply chain through

δ
(
k ′′
∣∣s ′, j) = 1[k ′′=k ′] + γ

(
k ′′
∣∣s ′, j)+ ∑

s ′′′∈j×K
γ
(
k ′′
∣∣s ′′′, j)γ (k ′′′ ∣∣s ′, j)+ . . . .

�at is, δ (k ′′ |s ′, j) captures the aggregate (gross) use of k ′′ inputs used in all upstream production stages of

a purely domestic supply chain for inputs that are eventually embedded in goods sold by s ′ domestically.
33

�ird, the change in the price index of country j can be wri�en in terms of the change in �nal expen-

33
Note that δ (k ′′ |s ′, j ) contains value-added counted multiple times. Since the focus is on domestic shares, writing the Cobb-

Douglas shares γ (k ′′ |s ′, j ) for country j as a K×K matrix γ delivers the corresponding δ (k ′′ |s ′, j ) shares as δ = [I− γ]−1

.
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diture shares from some source s ′ by substituting in (23) into equation (19)

ˆP (j) =
∏
k ′∈K

(
π̂F
(
s ′ |j

)− 1

1−σ(k ′) × p̂
(
s ′, j
)
τ̂
(
s ′, j
))ζ(k ′|j )

. (26)

Finally, substituting the price changes in (25) into the price index change in (26), de�ned domestically

with s ′ ∈ j×K, delivers the welfare change
ˆW (j) = ŵ (j) / ˆP (j) in terms of domestic expenditure changes

ˆW (j) =
∏

s ′∈j×K

π̂F (s ′ |j) 1

1−σ(k ′) ×
∏

s ′′∈j×K

∏
s ′′′∈j×K

â
(
s ′′′
∣∣s ′′, j)γ(k ′′′|s ′′ ,j )δ(k ′′|s ′ ,j )1−σ(k ′′′)

ζ(k ′|j ) . (27)

�is formula incorporates various elements found previously such as the GVC elements from Antràs

and de Gortari (2017), the domestic expenditure shares from ACR, and the multi-industry input-output

linkages of Caliendo and Parro (2015). Speci�cally, �rst, in a single-industry world this formula becomes

ˆW (j) =

[
π̂F (j |j)× â (j |j, j)

1−β(j,j)
β(j,j)

] 1

1−σ

, (28)

and the change in welfare depends on the change in the share of �nal goods purchased domestically and the

change in the share of domestic inputs used in the production of domestically-sold inputs. Each term cap-

tures the relative importance of domestic goods in the production of a purely domestic supply chain.
34

�is

formula is similar to that derived by Antràs and de Gortari (2017) in a multi-stage Ricardian model where

welfare depends on the expenditure share on goods produced through purely domestic supply chains.

Second, ACR’s benchmark analysis without intermediate inputs is nested here by imposing β (j, j) = 1

ˆW (j) = π̂F (j |j)
1

1−σ .

Further, ACR’s generalization to intermediate inputs under the roundabout solution while imposing sym-

metry, i.e. π̂F (j |j) = â (j |j), is also nested and given by

ˆW (j) = π̂F (j |j)
1

β(j)(1−σ)
. (29)

Hence, ACR’s insight that the gains from trade depend on some form of domestic expenditure shares is also

true in the world of specialized inputs. �ird, and �nally, imposing the roundabout assumptions directly on

(27) delivers the formula of Caliendo and Parro (2015). In sum, (27) extends the roundabout multi-industry

ACR formula with input-output linkages to specialized inputs.

34
�e exponents capture the gross domestic output used in the production of a dollar of �nal goods: �e power 1 on π̂F (j |j )

is the dollar of �nal goods while the power on â (j |j, j ) equals the use of intermediate inputs across all stages of the supply chain

(1 − β (j, j))× 1 + (1 − β (j, j))× (1 − β (j, j))× 1 + · · · = (1 − β (j, j)) /β (j, j) .
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4.3 �e Import Demand System is Not CES

Before delving further, it is helpful to pause and analyze why specialized inputs imply that aggregate

expenditure shares are insu�cient for tracing the implications of changes in trade barriers. In a nutshell,

this occurs because GVCs play a role in propagating trade shocks and specialized inputs determine the

structure of these trade linkages. In words, if both Ford and Volkswagen assemble vehicles in Mexico

but have di�erent supply chains, then changes in Mexican trade costs with di�erent export partners have

asymmetric e�ects on input suppliers depending on the structure of Ford and Volkswagen’s supply chains.

Formally, this can be stated in terms of ACR’s restriction concerning how third country trade shocks

pass through into relative imports; I discuss only the intuition, the proof is in appendix section C. In

a single-industry world, the partial elasticity of imports in j ′ from source j ′′ 6= j ′ relative to domestic

purchases (i.e. from j ′) with respect to changes in trade costs with a third country i ′′ 6= j ′ depends on (i)

the direct e�ect on relative imports present when j ′′ = i ′′, (ii) a substitution e�ect from i ′′ inputs into both

j ′′ and j ′ inputs, and (iii) a supply chain e�ect into j ′′ and j ′ inputs derived from the change in downstream

production. Crucially, the la�er two e�ects depend on the di�erential importance of each export market j

for inputs from j ′′ relative to j ′ and on how trade costs with i ′′ a�ect exports to each j.

�e la�er two e�ects thus illustrate how changes in third-country trade barriers a�ect imports asym-

metrically depending on the depth of supply chain integration. �ese channels are in line with the empiri-

cal evidence suggesting that specialized inputs play a crucial role in propagating trade shocks. For example,

Barrot and Sauvagnat (2016), Carvalho et al. (2016), and Boehm et al. (2018) show that supply chain dis-

ruptions due to natural disasters are propagated by input speci�city through trade networks. Increases in

suppliers’ marginal costs mostly a�ect tightly-linked �rms, rather than entire industries symmetrically as

in roundabout models. �e knife-edge roundabout model, however, is the one case in which the e�ect is

symmetric since all exports get built with the same inputs. In other words, in roundabout models all export

markets j are equally important for inputs from j ′′ and j ′ and so the two la�er e�ects disappear. �is is

the very special case in which model satis�es the ACR condition “the import demand system is CES”.

Finally, note that the gravity equation’s empirical success is not evidence for the roundabout model.

Appendix section C.1 shows that gravity regressions fare well across simulations of the specialized inputs

model even though structural gravity does not hold: While third country trade costs shi� bilateral trade

�ows asymmetrically, on aggregate the bilateral terms dominate. In practice, this misspeci�cation leads

to a�enuated trade elasticity estimates and is similar to introducing classical measurement error − thus

suggesting a downward bias in gravity-based elasticities when deep supply chain linkages are pervasive.

4.4 Bounding Counterfactuals

4.4.1 Autarky Gains from Trade - Single Industry Bounds

I begin by showcasing the bounds approach to counterfactuals in a simpli�ed se�ing. For now, I ig-

nore the data’s industrial dimension and assume there is a single industry per country, i.e. S = J, and

compute the bounds on the gains relative to autarky. In this case, the change in expenditure shares

equals the observed equilibrium’s expenditure shares, i.e. π̂F (j
′ |j ′ ) = πF (j

′ |j ′ ) /1 and â (j ′ |j ′, j ′ ) =
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a (j ′ |j ′, j ′ ) / (1 − β (j ′, j ′)). SinceπF (j
′ |j ′ ) is observed in the data andβ (j ′, j ′) = 1−

∑
j ′′∈J a (j

′′ |j ′, j ′ ),

the only endogenous variables are the input shares a (j ′′ |j ′, j).

�e autarky bounds for country j ′ in any model delivering a welfare formula as in (28) are given by

min/max

{a(j ′′|j ′,j )}j ′′∈J,j∈J

∑
j ′′∈J a (j

′′ |j ′, j ′ )

1 −
∑
j ′′∈J a (j

′′ |j ′, j ′ )
× ln

a (j ′ |j ′, j ′ )∑
j ′′∈J a (j

′′ |j ′, j ′ )
,

subject to X
(
j ′′, j ′

)
=
∑
j∈J

a
(
j ′′
∣∣j ′, j) (X (j ′, j)+ F (j ′, j)) , ∀j ′′,

∑
j ′′∈J

a
(
j ′′
∣∣j ′, j) 6 1, ∀j,

a
(
j ′′
∣∣j ′, j) > 0, ∀j ′′, j.

(30)

�e objective function is a concave transformation of (28), while the constraints restrict the search to GVCs

that replicate the input-output data.
35

�is optimization is relatively easy to solve since the objective

function is well-behaved and the constraints are linear. In the special case with constant value-added

shares, i.e. β (j ′, j) = β (j ′) ∀j ∈ J, this becomes a simple linear program bounding a (j ′ |j ′, j ′ ) directly.

Crucially − and in contrast to the value-added bounds optimization in (15) − computing these bounds

requires only zooming in on all import-export linkages within country j ′. �at is, while the world economy

depends on J× J× J input shares, (30) solves only for J× J endogenous variables. �is occurs for two

reasons: First, because the autarky gains only depend on domestic expenditure shares and so the objective

function only depends on a (j ′′ |j ′, j) across j ′′ and j. Second, because under this simple version of special-

ized inputs, the input-output data constraints only depend on matching the input sales into the domestic

market and the output sales out of the domestic market instead of on the whole input-output dataset.

In other words, computing these bounds requires only searching for extremal domestic GVC linkages.
36

Figure 5 illustrates this in a simple two-country network with constant value-added shares.

Figure 6 plots the gains from trade relative to autarky in the roundabout model (ACR) and in specialized

inputs models with both common and destination-speci�c value-added shares (note the log scale) using the

2014 WIOD. Since the la�er class of models nest the former the bounds are wider and any value within the

bounds is feasible since the optimization constraints are linear and any convex combination of the lower

and upper bounds is a possible initial trade equilibrium. Now, while the optimization does not depend

on the trade elasticity, the la�er is necessary for transforming the solutions into bounds. However, while

using specialized inputs models to measure elasticities is a fascinating research topic, it is beyond this

paper’s scope. �us, I simply set a roundabout trade elasticity of 1 − σ = −5, in line with mainstream

estimates (Anderson and van Wincoop 2003, Costinot and Rodrı́guez-Clare 2014, Head and Mayer 2014).

Importantly, though, note that the log autarky gains from trade are proportional to 1/ (1 − σ), which

implies that changing σ only shi�s the bars in �gure 6 up (if σ is lower) and down (if σ is higher) as can

be seen in Appendix section A.5 for the case of 1 − σ = −2.5 and 1 − σ = −10.

35
Computing autarky bounds incorporates trade imbalances automatically. First, the imbalances observed in the benchmark

equilibrium are fed in through the input-output data. Second, the autarky equilibrium assumes, by construction, no imbalances.

36
�is breaks down with a higher degree of specialization. For example, bounds on GVCs built with third-order Markov

chains, i.e. a (j ′′′ |j ′′, j ′, j ), would be wider, but computing them comes at a substantial cost in dimensionality (see section 2.3.1).
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Home

Home Home

Foreign Foreign

Home

X(H,H) =$48

X(F,H) =$12

X(H,H) + F (H,H)

=$100

X(H,F) + F (H,F)

=$20

Roundabout Lower Bound Upper Bound

a (H |H, H): Share of H inputs in sales to H 40% 48% 38%

a (H |H, F): Share of H inputs in sales to F 40% 0% 50%

X (H |H, H): Dollar value of H inputs in sales to H $40 $48 $38

X (H |H, F): Dollar value of H inputs in sales to F $8 $0 $10

ˆW (H) : Autarky gains from trade in H 7.6% 3.7% 8.7%

Figure 5: GVC Networks in a Simple Home vs Foreign Example: For simplicity, let Home’s value-

added share be common across destinations and given by β (H) = $60/$120 = 50%, while its

domestic �nal good share is πF (H |H ) = $52/$60 = 87%. �e gains are relative to autarky and

computed using (28) with 1−σ = −5. Since home is a relatively closed economy, the upper bound

is mechanically close to the roundabout estimates. �at is, the la�er assign a lot of domestic inputs

into all output and so many domestic inputs can be shi�ed out of exports into domestically sold

goods ($8) but few domestic inputs can be shi�ed into exports from domestically sold goods ($2).

�e bounds on the gains from trade are wide and increasing in trade openness. For example, the U.S.

ACR gains, a relatively closed economy with only 10% of its total inputs purchased abroad, are low at 2.9%

while the range with destination-speci�c value-added shares lies between 1.2-3.1% indicating the gains

might actually be 60% lower or 10% higher. �e range is relatively small, however, with a ratio between

the upper and lower bounds of 2.6. In contrast, very open economies are consistent with a wide range

of domestic GVC networks since one can �nd both trade equilibria in which goods sold domestically use

either mostly domestic inputs or almost no domestic inputs. For example, Taiwan imports about 40% of its

total inputs and has a bounds ratio of 45%/3% = 15. Full results are reported in appendix section A.4.
37

4.4.2 Autarky Gains from Trade - Multiple Industry Bounds

Computing the autarky bounds with multi-industry data is analogous but more complex numerically. In

particular, incorporating destination-speci�c (Cobb-Douglas) value-added and industry shares is challeng-

ing since the welfare gains in (27) are highly nonlinear in these terms. First, because the direct and in-

direct linkages captured by δ (k ′′ |s ′, j) are a function of these shares (see footnote 33). Second, because

the Cobb-Douglas shares capture cross-industry linkages and so the optimization has to be done glob-

ally across all of a country’s GVC network and cannot be done in isolation within each country-industry.

37
�ese bounds feature a mechanical correlation where distance between the ACR gains and the upper bound increases with

trade openness. �is occurs because trade equilibria where domestically-sold goods use arbitrarily few domestic goods (a high

upper bound) can only be found in countries that trade a lot (�gure 5 provides further intuition). In practice, extremely open

economies like the small European markets on the right of �gure 6 feature upper bounds that are quite literally o� the charts.
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Figure 6: Single-Industry Autarky Welfare Gains from Trade: Both roundabout estimates and spe-

cialized inputs bounds based on (28); the la�er computed with (30). All counterfactuals use round-

about trade elasticity 1 − σ = −5. Note the log scale. Data is from 2014 WIOD (at country level).

Hence, to make things simple, I avoid these issues and focus on the special case where industry-level

expenditures are �xed and given by the data − that is, β (s ′, j) = β (s ′) = GDP (s ′) /GO (s ′) and

γ (k ′′ |s ′, j) = γ (k ′′ |s ′ ) =
∑
s ′′∈J×k ′′ X (s ′′, s ′) /GO (s ′) ∀j ∈ J.

�e autarky bounds for country j ′ in any multi-industry model delivering the welfare formula (27) are

found by solving for the extremal GVC networks within every pair of industries separately. Speci�cally,

the extremal domestic shares in country j ′ for the industry pair k ′′ and k ′ are found through

min/max

{a(t ′′|s ′,j )}t ′′∈J×k ′′ ,j∈J

a
(
s ′′
∣∣s ′, j ′ ) ,

subject to X
(
t ′′, s ′

)
=
∑
j∈J

a
(
t ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) ,∀t ′′ ∈ J×k ′′,

∑
t ′′∈J×k ′′

a
(
t ′′
∣∣s ′, j) = γ (k ′′ ∣∣s ′ ) ,∀j ∈ J,

a
(
t ′′
∣∣s ′, j) > 0,∀t ′′ ∈ J×k ′′, j ∈ J,

(31)

where s ′′ = {j ′,k ′′} and s ′ = {j ′,k ′} are domestic country-industries. Optimization problem (31) is a

linear program with J × J endogenous variables and easy to solve numerically. �e bounds are then

constructed by solving this problem for the K×K industry pairs and inserting the solutions into the
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Figure 7: Multi-Industry Autarky Welfare Gains from Trade: Both roundabout estimates and spe-

cialized inputs bounds based on (27); the la�er computed with (31). All counterfactuals use round-

about trade elasticities 1 − σ (k) = −5 ∀k ∈ K. Note the log scale. Data is from 2014 WIOD and

aggregated to J = 30 largest economies with K = 25 industries each (see appendix section B).

terms â (s ′′ |s ′, j ′ ) = a (s ′′ |s ′, j ′ ) /γ (k ′′ |s ′ ) and π̂F (s
′ |j ′ ) = πF (s

′ |j ′ ) /ζ (k ′ |j ′ ) in (27).

It is well known that multi-industry models deliver larger gains from trade (Costinot and Rodrı́guez-

Clare 2014) and �gure 7 shows the same is true for the bounds. �is is not by construction, rather, the

multi-industry bounds are larger and overlap li�le with the single-industry bounds because heterogeneity

in openness across industries leads to disproportionate e�ects on the gains from trade. To understand this

be�er, imagine a world in which the input mix used across all industries were common. As shown by Ossa

(2015), the multi-industry gains in this very special world are still higher as long as there is heterogeneity

in the elasticities of substitution across industries. However, with common elasticities, the gains are the

same in both the multi- and single-industry data. Yet, �gure 7 is built with common elasticities and delivers

higher multi-industry gains. �is happens because even relatively closed countries have some very open

industries and this delivers a very high upper bound even in the presence of zero heterogeneity in the

trade elasticities (see footnote 37). Full results are reported in appendix section A.4.

4.4.3 Arbitrary Changes in Trade Costs

Computing real world or policy-motivated counterfactuals can be done with specialized inputs models

through a generalization of the roundabout exact hat algebra approach as in Dekle et al. (2007). Speci�-

cally, equations (22), (23), (24), and an additional �xed point for the change in wages, deliver the change
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in expenditure shares â (s ′′ |s ′, j) and π̂F (s
′ |j) − and thus the change in welfare in (27) − following

any change to trade barriers τ̂ (s ′, j) as a function of the benchmark equilibrium’s expenditure shares

a (s ′′ |s ′, j) and πF (s
′ |j); see appendix section D.1 for details. Hence, counterfactual equilibria are easily

computed when one knows the GVC �ows underlying the observed input-output data.

Constructing welfare bounds on general counterfactuals, however, is much more complex relative to

the autarky case because the welfare change depends not only on the benchmark equilibrium’s expendi-

ture shares but also on how these change following the trade shock. �is implies that the optimization now

involves two sets of constraints: First, the constraints ensuring that the benchmark equilibrium’s expendi-

ture shares be consistent with the observed data (as in the autarky case) and, second, the set of �xed point

constraints delivering the change in the endogenous variables conditional on both the benchmark equi-

librium’s expenditure shares and the (exogenous) change to trade barriers. Constructing exact bounds is

thus very demanding computationally for two reasons. First, because the �xed point constraints are highly

nonlinear (these do not appear in autarky case since the autarky expenditure shares are known). Second,

because the counterfactual equilibrium now depends on the whole set of expenditures shares across all

countries and industries (whereas in autarky only domestic shares ma�er). Overall, this implies that the

optimization problem depends on many more endogenous variables and is characterized by both a nonlin-

ear objective function and nonlinear constraints.
38

�e formal procedure is described in appendix section

D.2 but, in practice, can only be solved in very low dimensional cases with current computing power.

In order to make progress, I have developed an approximate bounds approach which is straightforward

to implement and reveals a lot of information about the potential size of the true bounds. In a nutshell, this

approach builds upon the fact that, for a given change in trade barriers, a researcher can o�en make an

informed guess about the GVC networks in which these shocks are either very costly or not. For example,

let us study this question with the slightly more general model in which expenditure shares vary across

inputs and �nal goods, i.e. with aX (s ′′ |s ′, s) and aF (s
′′ |s ′, j). Now imagine that the U.S. increases

trade barriers on Mexican �nal good imports. If the U.S. contributes a lot of inputs to these �nal goods,

i.e. if aF ({USA,k ′′} |{MEX,k ′} , USA) is high, then this will have a strong ripple e�ect and hurt upstream

U.S.-based suppliers more than if these shares are low. Likewise, if Mexico contributes a lot of inputs and

aF ({MEX,k ′′} |{MEX,k ′} , USA) is high, then this change in trade barriers will hurt Mexican suppliers

more than if these shares are low. Furthermore, since the bilateral trade data is observed, a researcher can

actually �nd the extreme values for these expenditure shares using a linear program and then compute the

welfare change associated with these GVC �ows through the specialized inputs hat algebra.

Figure 8 shows the approximate bounds on two NAFTA trade war counterfactuals constructed through

this approach − the le� panel shows the U.S. and Mexico welfare losses when the U.S. increases trade

barriers on Mexican �nal good manufactures by 100% while the right panel shows the losses when Mexico

increases barriers on U.S. intermediate input manufactures by 100%. Each panel is based on three extremal

GVC networks (described in the legend) − with the associated welfare numbers depicted in the three

corners of the plo�ed sets. In particular, the three extremal values in the le� panel correspond to the

38
Formally, computing the autarky bounds requires solving K×K linear optimization problems of size J× J each, whereas

computing bounds in general requires solving a single global nonlinear problem with J×K× J×K× J endogenous variables.
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Figure 8: Welfare Losses of a NAFTA Trade War: Each panel plots the joint counterfactual U.S.

and Mexico welfare loss following an increase in trade barriers across 10,000 GVC networks that

replicate every single datapoint in the 2014 WIOD. �e le� panel corresponds to a 100% increase in

trade barriers on U.S. imported Mexican �nal good manufactures and the right panel corresponds

to a 100% increase in trade barriers on Mexican imported U.S. intermediate input manufactures.

Within each panel, each dot is the welfare losses associated with a set of GVC �ows constructed as

a random linear combination of the GVC �ows underlying the three extremal values (described in

the legend). �e diamond in the middle corresponds to the conventional roundabout welfare losses.

GVC networks in which the use of Mexican/U.S./other countries’ inputs in Mexican �nal goods exports

to the U.S. is maximized. Further, each smaller point corresponds to the welfare losses in a GVC network

built as a linear combination of the three extremal GVC networks. Since each extremal GVC network

replicates the 2014 WIOD, so does each linear combination (remember equation 6) and so any point in

�gure 8 corresponds to the welfare losses in a set of GVC �ows consistent with the 2014 WIOD. �e right

panel does a similar experiment but is based on the extremal GVC networks maximizing the share of U.S.

inputs used in Mexican domestic sales, exports to the U.S., and exports to all other countries. �e precise

equations and procedure used to construct �gure 8 is described in appendix section D.3.

Figure 8 suggests that roundabout counterfactual estimates are also potentially highly mismeasured in
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general counterfactuals. �ese correspond to the welfare losses obtained when implementing the standard

exact hat algebra with the observed input-output expenditure shares. �is delivers U.S. and Mexico welfare

losses of 0.09% and 0.85% (le� panel) and 0.11% and 1.39% (right panel). �e approximate bounds, however,

show that U.S. losses in the le� panel may be anywhere between 0.07% to 0.13% and Mexico losses between

0.21% to 1.40%. �e right panel bounds for the U.S. are 0.07% to 0.14% and for Mexico are 0.71% to 2.73%.

�ese are substantial measurement di�erences. Further, �gure 8 captures a trade-o� between U.S. and

Mexican welfare losses governed by the relative importance of Mexican/U.S. inputs in exports to the U.S.

(le�) and by the relative importance of U.S. inputs in domestic sales/exports to the U.S. (right).

Overall, �gure 8 suggests this approach delivers informative bounds as long as the researcher focuses

on extremal GVC networks relevant to the question at hand. To see this, note that the welfare losses

associated to the extremal GVC networks in �gure 8 make intuitive sense. For example, the GVCs in which

Mexico uses the most/least amount of Mexican inputs to produce �nal goods exports to the U.S. (the two

triangles in the le� panel) correspond to a world in which Mexican supply chains are very highly/li�le

exposed to U.S. exports. Hence, choosing GVCs in which Mexico is very highly/li�le exposed to a NAFTA

trade war delivers maximal/minimal Mexican welfare losses. A similar intuition can be derived for the

other extremal GVC networks in �gure 8. �is implies that implementing this approach should generally

be straightforward. In this case, it is relatively obvious that the GVC �ows which maximize/minimize

the welfare losses of a NAFTA trade war are those associated with very highly/li�le integrated Mexican-

American supply chains. Analogous insights can be used when studying other trade shocks.

In sum, the bounds in �gures 6, 7, and 8 show that quantitative counterfactual predictions based on

input-output data vary substantially depending on how GVCs are measured.
39

As in the case of value-

added trade in section 3, since all GVC networks perfectly �t the same data, the la�er can shed no further

light on which speci�c estimates are most reasonable. �e next section makes progress by improving

measurement in order to shed light on which estimates are most reasonable.

5 GVCs and Measurement: Bringing in New Sources of Information

�is last section is devoted to a third strand of the GVC literature concerned with measuring GVC �ows. In

an ideal world, GVCs would be measured directly on the universe of �rm-to-�rm trade �ows. Instead, since

this data is not available, GVCs are typically measured on input-output data together with the roundabout

assumptions. I now show that other sources of readily available information − such as customs data − can

be used to improve measurement in conjunction with input-output data and some auxiliary assumptions.

�is approach’s main a�ribute is that it can be implemented when a researcher has some information about

the GVCs underlying input-output data, but that is insu�cient for fully measuring the �ows directly − as

39
Importantly, note these bounds do not necessarily depend on the Armington microstructure, but hold true for any mi-

crostructure delivering the su�cient statistics welfare formula (27). �at said, more realistic models incorporating elements such

as tari� income, �xed costs, and monopoly power may not be consistent with ACR-type formulas. My goal has been to illustrate

in the simplest way how quantitative results di�er depending on how input-output datasets are interpreted. While outside the

scope of this paper, I conjecture that richer microfoundations − which may or may not deliver ACR-type formulas − deliver

similar qualitative results in the sense that multiple GVC networks both replicate the input-output data and deliver di�erent

quantitative counterfactual estimates.
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is most o�en the case. For example, with customs data that provides the universe of import and export

transactions but that provides no information on domestic transactions.
40

I proceed in three steps. First, I discuss the information on GVC linkages contained in customs datasets

and why a measurement procedure is required in order to exploit this information to measure GVC �ows.

Second, I show how this type of information can be used without additional assumptions to further narrow

the specialized inputs bounds derived in previous sections. �ird, I develop a new measurement framework

that uses this information to provide alternative and be�er measured point estimates than those based on

the roundabout GVCs. In a nutshell, the di�erence between these two approaches is that the �rst one

exploits the additional information through linear constraints on the bounds optimization problems while

the second one exploits the information through the objective function of a minimum-cost �ow problem

that construct speci�c sets of GVC �ows. �roughout, I implement these approaches by revisiting the

value-added and NAFTA counterfactual exercises studied in sections 3 and 4.

5.1 Improving Measurement with Customs Data

Customs micro-level datasets are highly informative about international trade �ows since they report the

universe of �rm-level imports and exports. With some assumptions − as discussed in section 2.4.1 − this

data delivers the use of foreign inputs from each speci�c source relative to overall foreign input expenditure

shares. For example, the measured share of U.S. car part inputs in Mexican �nal good car exports to the

U.S. equals

aF ({USA, cars} |{MEX, cars} , USA)∑
j ′′∈J\MEX

∑
k ′′∈K aF ({j

′′
,k ′′} |{MEX, cars} , USA)

= 47%. (32)

To �x ideas, the 74% in �gure 1 corresponds to the aggregate share across all U.S. manufacturing inputs

(i.e. summing (32) across

∑
k ′′∈K delivers 74%).

41

�is information delivers crucial insights into how supply chains are linked across borders, but cannot

be used to measure GVC �ows directly. �is occurs because customs datasets contain no information on

domestic transactions and thus do not reveal the connection between relative foreign input expenditures

and overall input expenditure shares. In other words, the denominator in (32) cannot be measured in

customs data because it requires knowing what share of overall output value is spent on foreign inputs −

which requires knowing the expenditure on domestic input purchases and domestic value-added.

Nonetheless, knowing that U.S. car parts account for 47% of all foreign inputs in U.S.-bound car ex-

ports is very useful information and the next two sections propose two new approaches for using this

information systematically to improve measurement. �ese represent a middle ground between the pure

measurement and roundabout approaches: they complement the input-output data with �rm-level data

40
Other papers have studied GVCs when incorporating �rm-level data (recent examples include Fetzer et al. 2018, Michel

et al. 2018, Tang et al. 2018). Whereas the traditional focus has been to further disaggregate input-output tables, this section

makes three broader contributions. First, it is based on a GVC framework that explicitly connects GVC measurement with both

the literatures on value-added trade and on quantitative trade models. Second, it develops an entirely new approach to GVC

measurement: the bounds approach. �ird, this section’s two measurement frameworks are not restricted to one speci�c context

or dataset but are quite general and can be used in a variety of se�ings while exploiting di�erent forms of additional information.

41
Customs data contains import transactions by country-industry source − and the subsequent analysis is implemented at

this level of aggregation. Figures 1 and 2 describe foreign input expenditure shares at the country level to keep the charts tidy.
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while imposing some assumptions to �ll in the gaps induced by the lack of domestic transactions data.

5.2 Disentangling GVCs: Narrowing the Bounds

Measurement can be improved through a �rst approach in which additional information is used to narrow

the specialized inputs bounds. I do this by exploiting the new information through additional constraints

on the bounds optimization problems described above.

For example, a natural set of constraints to impose with customs data is to ensure that GVCs respect

the distribution of foreign input expenditures − regardless of the use of domestic inputs or value-added.

In other words, from (32) it is natural to impose

aF ({USA, cars} |{MEX, cars} , USA) 6 (47% + ∆)
∑

j ′′∈J\MEX

∑
k ′′∈K

aF ({j
′′

,k ′′} |{MEX, cars} , USA) ,

aF ({USA, cars} |{MEX, cars} , USA) > (47% − ∆)
∑

j ′′∈J\MEX

∑
k ′′∈K

aF ({j
′′

,k ′′} |{MEX, cars} , USA) .

(33)

For now, assume that ∆ = 0 so that these two inequality constraints imply a single equality constraint.

�is ensures that U.S. car parts account for 47% of all foreign inputs in Mexican car exports to the U.S.

regardless of whether the overall use of foreign inputs is large or small. In other words, the information in

customs data is fully exploited without taking a stand on whether Mexican car exports use a lot of domestic

inputs and value-added or not. What the constraints do imply, however, is that whenever foreign inputs

are used, then 47% have to be U.S. car parts. Imposing these additional constraints across all sources and

destinations on the above optimization problems thus delivers value-added and counterfactual bounds

based on GVCs that both �t the input-output data and respect the information contained in customs data;

see appendix section E.1 for details.

More generally, ∆ > 0 is useful since customs data contains information on trade from all sources

and to all destinations and thus imposes a large number of additional constraints. �is is problematic

numerically because constraining the optimization so heavily can lead to either no feasible solutions or

to severely distorted bounds.
42

By giving the expenditure shares some slack, the problem is more easily

implemented numerically. Hence, the ensuing results include inequality constraints with ∆ = 0.05.

Table 1 shows the restricted specialized inputs bounds when exploiting Mexican customs data through

linear constraints in the bounds optimization problems. For reference, column I lists the roundabout point

estimates while columns II and III list the (unrestricted) specialized inputs bounds from �gures 4 and 8.

�e restricted bounds in columns IV and V are built using exactly the same procedure as the bounds in

columns II and III but when incorporating the whole set of inequality constraints as exempli�ed above.

Appendix section A.6 depicts a graphical comparison of both the restricted and unrestricted bounds.

Regarding value-added, table 1 reveals that the restricted lower bounds are similar whereas the re-

stricted upper bounds fall substantially relative to the unrestricted bounds. For manufacturing as a whole,

the bounds tighten from 3-52% to 5-35%. On the one hand, the lower bounds correspond to GVCs in which

the use of non-U.S. inputs is maximized − e�ectively maximizing the use of Mexican inputs. �e lower

42
For example, if the constraints are all equalities then perfectly hi�ing some tiny expenditure shares, such as the relative use

of inputs from small countries like Luxembourg or Malta, can severely impact the expenditure shares of larger countries.
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Roundabout Specialized Inputs Bounds

Point Unrestricted Restricted

Estimates Lower Upper Lower Upper

U.S. Value-Added in

I II III IV V

Mexican Imports (%)

Total Manufactures 18 3 52 5 35

Basic Metals 9 0 31 0 9

Chemicals 17 3 63 7 49

Coke, Re�ned Oil Products 14 3 78 7 78

Computers, Electronics 23 2 58 5 20

Electrical 19 5 51 6 32

Food, Tobacco 9 3 55 3 55

Machinery 14 3 41 5 28

Metal Products 14 3 59 3 41

Motor Vehicles 17 5 52 5 43

Non-Metallic Minerals 8 0 47 0 47

Other Transport 16 2 44 3 38

Pharmaceuticals 9 1 39 1 30

Rubber, Plastics 19 2 58 5 54

Textiles 12 2 40 4 31

Wood, Paper 14 2 49 4 44

U.S. Increases Trade Barriers on

Mexican Final Goods by 100%

Mexico Welfare Loss 0.85 0.21 1.40 0.29 1.37

U.S. Welfare Loss 0.09 0.07 0.13 0.07 0.11

Mexico Increases Trade Barriers on

U.S. Intermediate Inputs by 100%

Mexico Welfare Loss 1.39 0.71 2.73 0.84 2.67

U.S. Welfare Loss 0.11 0.07 0.14 0.08 0.14

Table 1: Bounds on the U.S. Value-Added in U.S Imported Mexican Final Goods and on the Welfare

Costs of a NAFTA Trade War: Column I is computed with the roundabout GVCs while columns

II and III correspond to the specialized inputs bounds depicted in �gures 4 and 8. �e restricted

bounds in columns IV and V are computed using the same procedure as the unrestricted bounds

in columns II and III but when adding the linear constraints as in equation (33) based on Mexican

customs data. Input-Output data is from the 2014 WIOD.

bounds change li�le because the relative use of foreign inputs is largely irrelevant and thus assuming a

given share of U.S. inputs in the la�er imposes e�ectively few new constraints. On the other hand, the

restricted upper bounds fall substantially because the unrestricted bounds correspond to GVCs in which

exports to the U.S. use mostly U.S. inputs. Imposing the customs data lowers these bounds by shi�ing out

U.S. inputs until a speci�c mix of foreign inputs is obtained. Computers and electronics are a particularly

illustrative example since the customs data shows that, in reality, U.S. inputs in this industry are rarely

used to produce exports to the U.S. (remember �gure 2). Hence, while the input-output data is consistent

with a high share of U.S. value in computers and electronics exports, the customs data severely restricts
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the use of U.S. inputs and thus lowers the upper bound from 58% to 20%. Interestingly, the roundabout

point estimate for computers and electronics (23%) is actually outside of the restricted bounds.
43

Regarding NAFTA counterfactuals, the restricted bounds change only in the speci�c cases in which

the customs data constrains the relevant GVC �ows substantially. For example, when trade barriers on

Mexican �nal goods increase, all bounds are relatively unchanged except the upper bound for U.S. welfare.

�e la�er falls because the highest U.S. welfare cost is associated with GVCs in which Mexican exports

to the U.S. get built exclusively with U.S. inputs (remember �gure 8). Incorporating the customs data

lowers the upper bound since it prescribes a high, but lower than one, share of U.S. inputs in terms of

overall foreign inputs. �e other bounds are less directly associated with U.S. intermediate inputs and thus

change li�le. In the second counterfactual, the lower bounds increase slightly because they correspond to

GVCs in which U.S. inputs are used in sales to countries other than the U.S. and Mexico. However, since

customs data requires these exports to have a certain share of other foreign inputs whenever U.S. inputs

are used, this ends up limiting the amount of U.S. inputs that can be shi�ed out of domestic sales and

exports to the U.S. �e net e�ect is to increase the lower bounds slightly.

Overall, table 1 shows that currently available information, such as that in customs data, can be used

straightforwardly in conjunction with input-output data to improve measurement without further assump-

tions. �e constraints in (33) are speci�c to this context, and can be immediately applied when customs

datasets for other countries are available, but are also easily adjusted depending on the type of available

data. For example, Conconi et al. (2018) showed that rules-of-origin − which incentivize Mexican ex-

porters to use a high share of U.S. inputs in exports to the U.S. − have important trade diverting e�ects

in the NAFTA region. Hence, if one did not have customs data, one could instead adapt the NAFTA rules-

of-origin criteria into additional linear constraints as in (33) in order to ensure that Mexico’s exports to

its NAFTA partners embody more NAFTA inputs than exports to other countries. �is would narrow the

specialized inputs bounds as in table 1 and deliver insights into how GVCs are linked in the NAFTA region.

5.3 Disentangling GVCs: Constructing New Point Estimates

Alternatively, measurement can be improved through a second approach in which additional information

is used to construct a speci�c set of GVCs delivering value-added and counterfactual point estimates. �is

approach is more stringent than the bounds approach since it requires imposing additional assumptions in

order to move from measuring bounds to point estimates, but, nonetheless improves measurement relative

to the roundabout estimates since it based on more data and less assumptions than the la�er. �is approach

is useful since both policy and academic debates o�en require having speci�c numbers in mind.

I measure new point estimates by exploiting additional information through the objective function of

a minimum-cost �ow problem. Speci�cally, I propose a new GVC measurement framework that exploits

43
�e restricted and unrestricted upper bounds are the same for coke and re�ned oil products, food and tobacco, and non-

metallic minerals since these industries rely mostly on agricultural and mining intermediate inputs. Since the share of U.S. inputs

from the la�er industries greatly exceeds the share of output sold to the U.S., there exist GVC �ows in which these exports are

built entirely with U.S. inputs. Further, since customs data only has manufacturing inputs, this information does not constrain

agricultural and mining input shares and thus the restricted bounds are unchanged.

38



this new information in conjunction with input-output data as follows

min h
({
aX
(
s ′′
∣∣s ′, s)}

s ′′∈S,s∈S ,

{
βX
(
s ′, s

)}
s∈S ,

{
aF
(
s ′′
∣∣s ′, j)}

s ′′∈S,j∈J ,

{
βF
(
s ′, j
)}
j∈J

)
,

subject to X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) , ∀s ′′,

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s)+ βX (s ′, s) = 1, ∀s, (34)∑

s ′′∈S
aF
(
s ′′
∣∣s ′, j)+ βF (s ′, j) = 1, ∀j,

aX
(
s ′′
∣∣s ′, s) ,aF

(
s ′′
∣∣s ′, j) ,βX

(
s ′, s

)
,βF

(
s ′, j
)
> 0, ∀s ′′, s, j.

�e objective function h (·) depends on the endogenous input and value-added expenditure shares and

(potentially) some exogenous parameters. For example, a simple and tractable objective function is given

by targeting exogenous values for each share and minimizing the weighted sum of squared deviations

h (·) =
∑
s ′′∈S

∑
s∈S
ω0

X

(
s ′′
∣∣s ′, s) [aX (s ′′ ∣∣s ′, s)−a0

X

(
s ′′
∣∣s ′, s)]2+∑

s∈S
ω0

X

(
s ′, s

) [
βX
(
s ′, s

)
−β0

X

(
s ′, s

)]
2

+
∑
s ′′∈S

∑
j∈J
ω0

F

(
s ′′
∣∣s ′, j) [aF (s ′′ ∣∣s ′, j)− a0

F

(
s ′′
∣∣s ′, j)]2+∑

j∈J
ω0

F

(
s ′, j
) [
βF
(
s ′, j
)
− β0

F

(
s ′, j
)]

2

.

In this case, a0

X (s ′′ |s ′, s), a0

F (s
′′ |s ′, j), β0

X (s ′, s), and β0

F (s
′
, j) are targets for the endogenous variables

andω0

X (s ′′ |s ′, s),ω0

F (s
′′ |s ′, j),ω0

X (s ′, s), andω0

F (s
′
, j) correspond to the weights on each target. While

other objective functions can be used, I focus on this quadratic form since it is the simplest nonlinear

function that can be solved in high dimensions (i.e., it has linear �rst-order conditions).
44

Both the targets and the weights in h (·) are chosen by the researcher and this is where the additional

information is used to discipline the GVC �ows. �e constraints on (34) restrict the search to GVC �ows

consistent with the input-output data and it is in this sense that the optimization exhausts the information

contained in the la�er. �e additional information is then used to pin down a speci�c set of GVC �ows,

out of this restricted set, through the objective function by ensuring that the constructed GVCs are the

closest to the researcher’s targets in the sense of minimizing the objective function.

Conceptually, this measurement framework can be thought of as a variant of a minimum-cost �ow

problem in which the �ow across two nodes is �xed and given by the bilateral �ows across any two country-

industries in the input-output data. �e optimization then �nds the specialized inputs GVC �ows crossing

through multiple nodes that are optimal in the sense of minimizing the deviation from the researcher’s

targets (i.e. the �ow cost is the penalty of deviating from these targets). �ese GVC �ows are be�er

measured as long as the researcher’s targets are closer to the true GVC �ows underlying input-output than

the roundabout GVCs. A graphical description conveying the intuition of this measurement framework is

described in Appendix section E.3 and is a useful companion to the main text.

�is measurement framework is useful whenever the additional information is insu�cient for mea-

44
�is approach follows a long tradition of exploiting linearity to solve for high-scale optimization problems in economics

and developed by such giants as Kantorovich (1939), Koopmans and Beckmann (1957), Dorfman et al. (1958), and Dantzig (1963).
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suring GVC �ows directly, as in the case of customs data described in section 5.1. �is procedure provides

a workaround by le�ing a researcher take a stand on how to map the customs data into the input shares

through the targets. For example, if one takes the stand that Mexico does only processing trade − i.e.

that imported inputs are only used to produce exports and that exports only use imported inputs − then

the foreign expenditure shares in (32) can easily be mapped into overall expenditure shares since the de-

nominator simply equals the aggregate input expenditure share. In general, though, researcher’s targets

will not aggregate up to the input-output data since they are based on additional information plus some

auxiliary assumptions. �is is where the optimization problem (34) comes in: it reallocates �ows in order

to deliver GVC �ows that aggregate up to the input-output data while also respecting the researcher’s

targets. In sum, while both the roundabout GVCs and the GVCs built through (34) ultimately depend on

some assumptions, the la�er are built by replacing some assumptions with additional information and thus

should be closer to the true GVCs underlying input-output data.

In terms of numerical implementation, careful inspection of (34) reveals the problem is de�ned for a

speci�c country-industry s ′. �at is, (34) delivers input shares from all sources s ′′ in the production of in-

termediates sold to all country-industries s and countries j. �is problem is larger than the multi-industry

counterfactual bounds in (31) since the la�er has more structure because the upper tier Cobb-Douglas pro-

duction function requires only searching for the input shares from suppliers within industry k ′′. However,

it is a smaller problem than the multi-industry value-added bounds in (15) which requires searching over

the full GVC network and thus for input shares across all country-industries s ′ simultaneously. While

the measurement problem (34) is also large and nonlinear, exact solutions can be computed (see appendix

section E.2 for implementation details). Overall, measuring a full GVC network when minimizing the

weighted sum of squared deviations requires choosing a set of weights and targets and solving S optimiza-

tion problems, one for each s ′ ∈ S, of size (S+ 1)× (S+ J) each.
45

Table 2 presents value-added and counterfactual point estimates based on GVCs constructed through

(34). Speci�cally, column I presents the roundabout point estimates while columns II and V correspond

to the GVC networks in which the customs data is mapped into the targets by assuming a full processing

trade assumption. For example, in the case of U.S. car parts used in Mexican car exports to the U.S. in (32),

the target becomes

a0

F ({USA, cars} |{MEX, cars} , USA) = 47%×
(
1 − β0 ({MEX, cars} , USA)

)
. (35)

�e GVCs underlying column II assume that the value-added share is common in all output so that the

value-added target equals β0 ({MEX, cars} , USA) = GDP({MEX, cars})/GO({MEX, cars}). Column V in-

stead assumes that exports have a 50% higher and domestic sales have a 50% lower value-added share than

the overall value-added share and thus β0 ({MEX, cars} , j) = 1.5 × GDP({MEX, cars})/GO({MEX, cars})

when j 6= MEX and with a multiple of 0.5 when j = MEX. To summarize, the value-added and welfare

numbers in columns II and V are those based on GVCs in which the Mexican expenditure shares are built

45
�e problem cannot be made smaller without further structure because the input shares across suppliers and destinations of

s ′ are interlinked through the constraints. �e problem can be generalized, though, by choosing an objective function featuring

complementarities across country-industries s ′ ∈ S and thus solving for the full GVC network in a single optimization problem.
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Roundabout Specialized Inputs Point Estimates

Point Common V.A. Share Low Export V.A. Share

Estimates 100% 75% DKWW 100% 75% DKWW

P.T. P.T. P.T. P.T. P.T. P.T.

U.S. Value-Added in

I II III IV V VI VII

Mexican Imports (%)

Total Manufactures 18 27 25 26 30 30 30

Basic Metals 9 5 5 5 6 4 4

Chemicals 17 33 29 24 37 34 27

Coke, Re�ned Oil Products 14 47 23 17 25 24 16

Computers, Electronics 23 13 15 13 16 18 16

Electrical 19 25 25 26 28 28 30

Food, Tobacco 9 37 31 29 38 36 36

Machinery 14 20 20 21 24 25 25

Metal Products 14 27 26 26 32 29 29

Motor Vehicles 17 37 33 37 39 39 40

Non-Metallic Minerals 8 24 22 21 17 18 20

Other Transport 16 24 24 24 30 30 30

Pharmaceuticals 9 15 15 12 24 22 23

Rubber, Plastics 19 34 32 31 41 38 39

Textiles 12 24 24 25 26 28 29

Wood, Paper 14 33 29 29 38 35 35

U.S. Increases Trade Barriers on

Mexican Final Goods by 100%

Mexico Welfare Loss 0.85 0.56 0.55 0.52 0.48 0.38 0.37

U.S. Welfare Loss 0.09 0.10 0.10 0.10 0.10 0.11 0.11

Mexico Increases Trade Barriers on

U.S. Intermediate Inputs by 100%

Mexico Welfare Loss 1.39 1.05 1.11 1.18 0.89 0.91 0.97

U.S. Welfare Loss 0.11 0.12 0.12 0.12 0.13 0.12 0.12

Table 2: Point Estimates for the U.S. Value-Added in U.S Imported Mexican Final Goods and the

Welfare Costs of a NAFTA Trade War: Column I is computed with the roundabout GVCs while

columns II-VII correspond to the GVCs obtained through (34) when disciplining the targets with

Mexican customs data. Columns II-IV assume common value-added shares in all Mexican output

while columns V-VII assume 50% lower value-added shares in exports than in domestically-sold

output. Columns II and V further impose a full processing trade assumption on exports, columns

III and VI impose a 75% processing trade assumption on exports, and columns IV and VII assume

the industry-level processing trade shares in De La Cruz et al. (2011) (see table 7 of that paper).

through (34) when de�ning the targets across all sources and destinations as in (35) and with column

II imposing common value-added shares and column V lower value-added shares in exports.
46

Finally,

since computing both value-added and general counterfactuals requires the full set of GVC �ows across all

46
I de�ne the objective function weights as ω0

X (s
′′ |s ′, s ) = a0

X (s
′′ |s ′, s )X (s ′, s), ω0

F (s
′′ |s ′, j ) = a0

F (s
′′ |s ′, j ) F (s ′, j),

ω0

X (s
′
, s) = β0

X (s
′
, s)X (s ′, s), and ω0

F (s
′
, j) = a0

F (s
′
, j) F (s ′, j). �ese are designed to put more weight on the targets corre-

sponding to bilateral trade �ows which are more important and to the most important input suppliers therein.
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countries, I proceed conservatively and keep the roundabout expenditure shares in all other countries.
47

�e main takeaway from columns II and V is that Mexican-American supply chains are more inte-

grated than as suggested by conventional estimates. For example, in motor vehicles − the largest im-

ported manufacturing industry − the U.S. imports back around 37-39% of its own domestic value whereas

the roundabout estimates predict a smaller share of only 17%. For overall manufacturing, the U.S. share

is about 27-30% and also substantially higher than the roundabout estimate of 18%. �ese di�erences are

in line with the input shares observed in �gure 2: while the customs data show that Mexico uses a high

share of American inputs to produce exports to the U.S., these estimates trace value across all stages of

production and con�rm that a large part of these exports is American value-added. While the roundabout

approach waters down the U.S. content in exports to the U.S. by assuming a common U.S. content share in

all exports, the specialized inputs point estimates increase the U.S. content in exports to the U.S. and lower

it in exports to other countries (with the exception of computers and electronics).

In terms of counterfactuals, incorporating the deep integration between the U.S and Mexico increases

the U.S. welfare loss of a NAFTA trade war and decreases Mexican losses. �ese opposing e�ects are due

to the asymmetric implications of Mexican customs data for each country: increasing the share of U.S.

inputs in U.S.-bound Mexican exports increases the exposure of U.S. consumers to a NAFTA trade war

while decreasing the exposure of Mexican consumers. However, note that I targeted the roundabout input

shares within the U.S. since I do not have U.S. customs data. �is suggests that incorporating the la�er

− which would likely reveal a high share of Mexican inputs in Mexican-bound exports − would further

adjust the welfare estimates. Relative to the narrowing bounds approach in table 1, table 2 shows that

improving the estimates for general counterfactuals depends crucially on both the GVC linkages observed

in customs data and also on taking a stand on the domestic links within the Mexican economy. While

improving value-added trade measures through the narrowing bounds approach yields important insights,

improving counterfactual estimates is be�er done through the procedure in (34).

�ese estimates are thus based on three building blocks: 1) input-output data, 2) customs data, and 3)

a full processing trade assumption. �e la�er is reasonable since Mexico is one of the two large countries

in which processing trade is widely prevalent (the other is China). For example, De La Cruz et al. (2011)

show that in 2003 about 96.6% of transportation equipment exports were processing trade of which 74% is

foreign value-added. More generally, that exports use a higher share of imported inputs than domestically-

sold goods is a fairly common feature across countries (see Kee and Tang 2016 for evidence on China and

Tintelnot et al. 2017 on Belgium). Furthermore, the low domestic value-added shares in exports in column

V is also supported by previous evidence such as De La Cruz et al. (2011) and Koopman et al. (2012). Finally,

note that table 2’s results are conservative since the underlying GVCs are only be�er measured for Mexico

− remember that the GVC �ows across all other countries are still given by the roundabout GVCs − and

would likely rise when also improving measurement elsewhere (especially in the U.S. and Canada).

�at said, one might still object to the full processing trade assumption as being reasonable. Table 2’s

other columns present the results when implementing the measurement framework (34) with alternative

47
�at is, when s ′ ∈ (J\MEX)×K I set aX (s

′′ |s ′, s ) = aF (s
′′ |s ′, j ) = X (s ′′, s ′) /GO (s ′) . To �x ideas, note that solving

(34) with the roundabout shares as targets in all countries delivers the roundabout GVCs.
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auxiliary assumptions. Columns III and VI relax the processing trade assumption and repeat the exercises

of columns II and V, but when assuming that 75% of Mexican exports correspond to a processing trade

regime and 25% correspond to a standard export regime.
48

Columns IV and VII instead assume that the

degree of processing trade varies across industries and is given by the shares found by De La Cruz et al.

(2011) for Mexico using 2003 data. As is clear, less pervasive processing trade tends to lower U.S. content

shares while but, overall, the U.S. content shares are still much higher than in the roundabout case.
49

More generally, (34) provides a common ground for a systematic conversation on the best practices for

GVC measurement − one based on a GVC theory of specialized inputs and for which explicit connections

to both the literatures on measures of globalization and quantitative trade models were drawn out above.

By delivering speci�c GVC �ows measured with the same input-output data as the standard roundabout

GVCs but disciplined with additional information and less stringent auxiliary assumptions, it provides

researchers with a tool for systematically understanding how these assumptions feed into value-added

trade and counterfactual estimates. Table 2 provides an empirically-based set of numbers exemplifying

how Mexican customs data and processing trade assumptions interact and thus gives grounds for a well-

informed discussion on how speci�c assumptions map into speci�c estimates. �is same approach can

easily be implemented with other datasets and assumptions − with customs data from many countries

being an ideal se�ing − and will hopefully be an useful tool for studying GVCs in future research.
50

6 Conclusion

In sum, this paper’s message is twofold. First, that conventional GVC �ow estimates are potentially mis-

measured and that this trickles down into the answers to both quantitative counterfactuals and the mea-

sures of globalization used to quantify the fragmentation of production across countries. Second, that

by incorporating more information and improving GVC measurement, researchers can then go back and

answer these questions more precisely. While this point is, perhaps, obvious, it has mostly been ignored.

In particular, Mexican customs data con�rms the anecdotal evidence that Mexican-American supply

chains are highly integrated and measuring GVCs while incorporating this information increases the U.S.

content of imported Mexican manufactures and the U.S. welfare cost of a NAFTA trade war. �ese facts

are in line with the intuition on how GVC linkages magnify the e�ects of economic shocks (Yi 2003) and

dampen a country’s incentive to manipulate its terms-of-trade: Import tari�s are more costly when imports

48
�ese targets are built as follows. In the case of U.S. car parts in Mexican car exports, the targeted share is

a0

F ({USA, cars} |{MEX, cars} , USA ) =

(
3

4

× 47% +
1

4

× X ({USA, cars} , {MEX, cars})∑
j′∈J,k′∈K X ({j ′,k ′} , {MEX, cars})

)
×
(
1 − β0 ({MEX, cars} , USA)

)
.

�at is, I assume that 75% of these car exports are built exclusively with foreign inputs, with the U.S. share given by the customs

data, and that 25% are built with both foreign and domestic inputs according to the roundabout shares.

49
In some cases the U.S. content increases when processing trade falls. Why this happens is best illustrated with computers

and electronics: While the overall industry purchases a lot of U.S. inputs, customs data shows that these inputs are rarely used in

exports to the U.S. Hence, full processing trade imposes the customs input expenditure shares and thus severely lowers the U.S.

content share to 13% in column II. Relaxing processing trade instead puts more weight on regular exports, which I assume are

built using the roundabout shares and thus have high U.S. input shares. �is increases the U.S. content to 15% in column III.

50
As in the narrowing bounds case, researcher’s can also incorporate more abstract forms of information − such as rules-of-

origin − as long as one takes a stand on how to map such information into the optimization targets.
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have more domestic content because they ripple back and hurt domestic suppliers (Blanchard et al. 2017).

�e avenue for future research is extraordinarily rich. First, section 5’s two measurement approaches

are quite versatile and can be used to conduct many new exercises. In particular, while I have restricted

a�ention to Mexican customs data, the exact same computations can be immediately implemented with

other countries’ customs data. Further, improving measurement with multiple customs datasets at the

same time would be an ideal se�ing for studying the global fragmentation of international trade more

precisely. Second, these new measurement frameworks may be a useful stepping-stone towards future

alternative and more e�ective frameworks that also incorporate new information. In this sense, this paper

is only a �rst step in a research line on the best methods and practices for conducting GVC measurement.

By abandoning the roundabout approach, the possibilities become endless.
51
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Antràs, P., D. Chor, T. Fally, and R. Hillberry (2012): “Measuring the Upstreamness of Production and

Trade Flows,” �e American Economic Review, 102, 412–416.
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A Additional Results

A.1 Evidence for Specialized Inputs from Domestic Input-Output Tables

Figure 9 summarizes the industry aggregation bias across all U.S. manufacturing as proxied by the coef-

�cient of variation−standard deviation relative to mean−of input shares from each source within each

3-digit code.
52

In the absence of aggregation bias, there is no heterogeneity in input shares at the 6-digit

level and the coe�cient of variation is zero. Alternatively, when the aggregation is done across industries

with substantial heterogeneity the coe�cient of variation is large. Each column in �gure 9 corresponds

to a given 3-digit manufacturing industry, with each circle corresponding to the coe�cient of variation

of input shares from some 6-digit input supplier across the 6-digit subindustries of the 3-digit industry;

the size of each circle is proportional to the importance of each input supplier. Figure 9 reveals one key

takeaway: �ere is substantial variation in input shares within each 3-digit industry. For example, the

�ve biggest circles for computers and electronics are those from the sources in �gure 3. �e largest circle

corresponds to other electronic components (the most important supplier) and, as �gure 3’s right panel

shows, since there is relatively li�le variation in input shares the coe�cient of variation is 0.8. In contrast,

the high variation in computer storage devices visible in �gure 3 yields a coe�cient of variation of 2.7.

Figure 9: Variation in Domestic Industry Input Shares in U.S. Manufacturing Sales Across Domes-

tic Industries: Each circle corresponds to the coe�cient of variation − standard deviation relative

to mean − of the input shares from a speci�c 6-digit input supplier across all 6-digit subindustries

within each 3-digit industry on the x-axis. Circle size is proportional to the share of aggregate input

purchases by the 3-digit industry from each source. In contrast to this chart, assuming the round-

about solution at the 3-digit industry-level implies zero variation across all 6-digit subindustries.

Data is from 2007 U.S. input-output tables from the Bureau of Economic Analysis.
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Speci�cally, for each 3-digit industry k3dig ∈ K3dig

I compute the coe�cient of variation of the input shares a (t |k ) from a

given source t ∈ K6dig
across all the 6-digit subindustries k bundled in k3dig

. For example, for the 3-digit industry computers and

electronics, �gure 9 plots one circle for the coe�cient of variation ofa (printed circuit assembly |k ) across all 6-digit subindustries

indexed by k, and another circle for a (computer storage devices |k ). Analogously, across all 6-digit suppliers t ∈ K6dig
.
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A.2 Comparing Approximate and Exact Value-Added Bounds

In order to feasibly compute the exact bounds on the value-added decomposition, I aggregate the 2014

WIOD data up to the single-industry dimension and include only the largest seven countries, plus Mexico,

plus a rest of world composite. �is smaller input-output dataset implies that the optimization problem

(15) is characterized by 1,458 endogenous variables and 273 linear constraints when imposing constant

value-added shares (i.e. β (j ′, j) = GDP (j ′) /GO (j ′) for all j).

Table 3 presents both the exact and approximate bounds on the share of value-added from each country

in the �nal good exports that Mexico sells to each country. In other words, it has the bounds on the share

VA (j |MEX, j) /F (MEX, j) for each j in the table. For example, the last row corresponds to the bounds

on the share of U.S. value-added returning home through Mexican �nal good exports while the second

row of numbers captures the share of Chinese value-added returning home through Mexican �nal good

exports. �e exact lower and upper bounds are the same across all countries (except Mexico) because it

turns out that the aggregate amount of inputs used in each country’s �nal good imports from Mexico are

lower than each country’s input exports to Mexico. �at is, X (j, MEX) > (1 − β (MEX)) F (MEX, j). Since

β (MEX) = 58%, this implies that up to 42% of these �nal good exports is foreign value-added. Further,

since each country exports more than enough inputs to cover these input requirements, the share of each

country’s value-added returning home is at most 42%. On the other hand, the lower bound is 0% because

Mexico’s �nal good exports can always be produced using inputs from countries di�erent to the importer

of the �nal goods.

As is clear, the approximate bounds are very close to the true bounds. While this exercise cannot be

repeated in larger datasets since the exact bounds cannot be computed, this exercise suggests that the

approximate bounds are probably close to the true bounds in most cases.

Roundabout

Approximate Bounds Exact Bounds

Lower Upper Lower Upper

Brazil 0.2 0.0 39.3 0.0 42.0

China 1.5 0.0 42.0 0.0 42.0

France 0.2 0.0 40.2 0.0 42.0

Germany 0.6 0.1 41.8 0.0 42.0

Japan 0.7 0.1 42.0 0.0 42.0

Mexico 83.0 75.9 92.2 75.8 92.6

U.K. 0.2 0.0 41.5 0.0 42.0

U.S. 8.6 0.0 39.5 0.0 42.0

Table 3: Approximate and Exact Bounds on the Share of Value-Added Returning Home �rough

Mexican Final Good Exports: �e approximate bounds correspond to either the second-order or

third-order bounds on the decomposition in (13) computed with (16) when N = 2 or N = 3,

whichever is more extreme, and with common value-added shares. �e exact bounds correspond

to the optimization problem in (15). Data is from the 2014 WIOD aggregated up to the level of nine

countries and a single industry per country.
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A.3 U.S.-China Value-Added Trade De�cit

Johnson and Noguera (2012) and Johnson (2014a) showed the trade de�cit looks less extreme if it is com-

puted as the di�erence between the U.S. value consumed in China and the Chinese value consumed in the

U.S. instead of the di�erence in gross exports between the two countries. But is it really true that the U.S.-

China trade de�cit is smaller when computed in value-added terms? Figure 10 plots the U.S.-China trade

balance both in gross and value-added terms between 2000-2014. �e di�erence between the gross trade

balance (circles) and the value-added trade balance based on the roundabout solution (diamonds) replicate

previous �ndings. However, specialized inputs tell a potentially di�erent story.
53

�e second-order bounds

show that the value-added balance might actually be a surplus or, alternatively, that the value-added de�cit

is larger than the gross de�cit. Intuitively, the bounds correspond to GVCs in which China exports back

to the U.S. much more (or much less) U.S. value than what the roundabout solution predicts. �e bounds

deliver a stark message: �e di�erence between the conventional estimates of value-added and gross trade

balances is dwarfed by the former’s potential mismeasurement.
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Figure 10: U.S.-China Trade Imbalances: �e series with circles corresponds to the gross trade

balance. �e other three series correspond to the value-added trade balance. Roundabout point

estimates (diamonds) are based on the input-output analysis decomposition in (14). Specialized in-

puts bounds (triangles) correspond to second-order bounds on the decomposition in (13) computed

with (16) when N = 2 and with common value-added shares. Data is from the 2000-2014 WIOD.
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�ese bounds are found by replacing the objective function in (15) with the di�erence between the Chinese consumption of

U.S. value-added and the U.S. consumption of Chinese value-added.
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A.4 Autarky Gains from Trade

Country

% of Aggregate Single-Industry Multi-Industry

World Domestic

ACR

Common Dest.-Spec.

ACR

Common

GDP Share Bounds Bounds Bounds

AUS 1.8 87.9 4.5 2.3 4.8 1.9 5.2 7.0 5.9 13.1

AUT 0.5 68.6 12.0 5.5 16.0 3.9 21.5 19.0 11.7 140.1

BEL 0.7 57.6 19.6 8.0 34.6 4.7 82.5 30.3 17.2 227.6

BGR 0.1 67.3 16.4 7.5 22.3 4.8 36.4 26.5 19.7 223.0

BRA 3.0 88.2 3.0 1.8 3.1 0.9 3.2 3.6 2.7 4.9

CAN 2.3 78.3 7.3 3.7 8.4 2.6 9.6 12.8 8.9 68.8

CHE 0.9 77.0 9.3 3.8 11.7 3.8 15.3 13.6 9.2 61.1

CHN 13.7 93.6 3.8 1.0 4.0 1.0 4.6 3.9 2.3 4.3

CYP 0.0 68.5 11.3 7.0 13.8 5.1 15.6 19.9 18.2 51.6

CZE 0.3 64.4 19.3 6.1 31.0 4.8 108.8 31.4 21.1 261.2

DEU 4.9 76.0 8.5 3.2 10.6 3.1 13.3 11.3 7.4 70.5

DNK 0.4 65.1 11.6 5.0 16.4 2.9 22.3 20.2 12.9 175.7

ESP 1.7 80.3 6.6 3.3 7.6 2.2 8.6 10.5 7.3 42.8

EST 0.0 60.3 19.6 8.6 31.6 6.1 66.2 55.9 37.9 287.9

FIN 0.3 74.1 9.3 4.3 11.4 2.5 14.1 12.3 8.0 70.5

FRA 3.5 79.0 6.6 3.5 7.6 2.2 8.4 9.1 6.2 44.7

GBR 3.7 82.1 6.1 3.3 6.8 2.5 7.4 9.5 6.9 33.7

GRC 0.3 75.1 7.5 5.1 8.4 3.2 8.9 10.5 8.4 39.7

HRV 0.1 69.7 10.8 5.6 13.7 3.9 16.8 24.9 20.5 121.6

HUN 0.2 48.6 25.4 10.1 73.9 4.8 817.3 39.9 22.7 474.5

IDN 1.2 81.8 5.1 2.6 5.8 1.2 6.4 6.9 5.0 20.5

IND 2.8 83.9 3.9 2.1 4.2 0.7 4.6 4.7 3.3 20.2

IRL 0.3 39.7 30.2 10.9 ∞ 5.7 ∞ 38.4 23.7 ∞
ITA 2.7 83.4 5.8 2.5 6.6 1.9 7.5 7.2 4.8 28.2

JPN 6.0 85.3 4.3 2.4 4.6 1.2 4.9 6.2 5.2 10.9

KOR 1.8 78.2 9.8 2.5 12.2 2.0 18.4 12.7 8.9 39.6

LTU 0.1 55.8 16.9 8.7 28.8 6.6 39.4 26.3 19.8 176.2

LUX 0.1 41.1 66.7 11.4 ∞ 7.5 ∞ 99.5 65.4 ∞
LVA 0.0 74.6 12.6 5.9 15.5 4.9 20.9 32.3 26.0 140.3

MEX 1.7 71.6 6.8 4.0 8.2 1.8 9.0 11.2 7.6 41.8

MLT 0.0 41.2 46.7 16.7 ∞ 5.2 ∞ 59.9 42.9 ∞
NLD 1.1 63.2 14.7 5.4 23.5 4.6 41.3 28.9 18.0 217.3

NOR 0.6 78.0 6.2 2.4 7.5 2.4 8.6 9.3 6.9 28.3

POL 0.7 74.6 11.0 4.5 13.7 3.7 18.4 17.8 11.1 111.2

PRT 0.3 74.3 9.0 4.9 10.6 3.2 12.3 14.3 9.9 104.0

ROU 0.3 75.4 9.7 4.5 11.8 3.0 14.8 14.0 11.6 51.8

RUS 2.3 90.6 5.0 3.0 5.4 3.0 5.8 6.6 5.8 8.7
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Country

% of Aggregate Single-Industry Multi-Industry

World Domestic

ACR

Common Dest.-Spec.

ACR

Common

GDP Share Bounds Bounds Bounds

SVK 0.1 59.5 20.8 7.7 36.6 5.4 123.7 40.9 28.4 318.5

SVN 0.1 65.1 15.3 6.9 21.9 5.8 33.1 24.4 16.3 185.1

SWE 0.7 74.5 9.2 4.1 11.4 3.5 13.9 12.4 8.0 60.8

TUR 1.0 78.7 7.0 3.2 8.2 2.1 9.5 11.4 7.8 77.1

TWN 0.7 66.5 14.4 4.3 21.9 3.0 44.5 18.4 12.2 129.4

USA 23.1 89.7 2.9 1.9 3.0 1.2 3.1 3.5 2.6 4.0

ROW 14.2 79.5 10.6 5.8 12.1 3.8 14.6 12.5 8.6 24.5

Mean 2.3 72.0 12.8 5.2 14.9 3.4 42.5 20.3 14.0 102.8

Weighted 10.6 83.8 6.3 3.0 7.3 2.1 10.6 8.4 5.8 30.0

Table 4: Welfare Gains from Trade Relative to Autarky: �e aggregate domestic share refers to the

aggregate share of inputs purchased domestically and is a good proxy for trade openness. Com-

mon bounds refers to common value-added shares across destinations in the single-industry case

and common value-added and industry-level expenditure shares across destinations in the multi-

industry case. �e weighted means use world GDP shares as weights. Data is from 2014 WIOD.
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A.5 Autarky Gains from Trade - Alternative Trade Elasticities

Computing the bounds on the autarky gains from trade does not depend on the elasticities of substitution,

but transforming the extremal GVC �ows into welfare numbers does. In particular, note from (28) that the

log gains from trade are proportional to 1/ (1 − σ). Hence, computing the bounds across di�erent levels

of σ only shi�s the log bounds on the autarky gains from trade as can be seen in the following two �gures.
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Figure 11: Single-Industry Autarky Welfare Gains from Trade: �ese bounds are constructed with

the same GVC �ows as �gure 6 but with a trade elasticity of 1 − σ = −2.5.

U
S

A
B

R
A

C
H

N
IN

D
JP

N
A

U
S

R
U

S
ID

N
IT

A
G

B
R

N
O

R
E

S
P

F
R

A
M

E
X

T
U

R
C

A
N

G
R

C
D

E
U

P
R

T
S

W
E

F
IN

C
H

E
R

O
U

K
O

R
R

O
W

H
R

V
P

O
L

C
Y

P
D

N
K

A
U

T
LV

A
T

W
N

N
LD

S
V

N
B

G
R

LT
U

C
Z

E
B

E
L

E
S

T
S

V
K

H
U

N
IR

L
M

LT
LU

X

0.5%

1%

2%

4%

8%

16%

32%

64%

128%

   

A
ut

ar
ky

 G
ai

ns
 fr

om
 T

ra
de

Figure 12: Single-Industry Autarky Welfare Gains from Trade: �ese bounds are constructed with

the same GVC �ows as �gure 6 but with a trade elasticity of 1 − σ = −10.
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A.6 Narrowing the Specialized Inputs Bounds
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Figure 13: Share of U.S. Value-Added in U.S. Imported Mexican Final Goods: Roundabout point

estimates, unrestricted bounds, and restricted bounds correspond to the values reported in table 1.
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Figure 14: Welfare Losses of a NAFTA Trade War: Roundabout point estimates and unrestricted

bounds are the same as in �gure 8. �e darker extremal values are computed exactly as the original

ones but when adding the additional constraints in (33). �e darker set is the convex hull of these

constrained extreme values and proxies the constrained approximate bounds on the welfare costs

of a NAFTA trade war.
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B WIOD Aggregation

�roughout the paper I aggregate the WIOD’s 56 industries slightly in order to eliminate some very small

industries and reduce the size of the numerical optimization problems. �e following table presents the

aggregation across industries.

Industries

Raw WIOD Aggregated WIOD

# % of GDP # % of GDP

Crop, animal production, hunting, related service activities 1 3.1 1 7.2

Forestry and logging 2 0.2 1 7.2

Fishing and aquaculture 3 0.3 1 7.2

Mining and quarrying 4 3.7 1 7.2

Manufacture of food products, beverages and tobacco 5 4.3 2 4.3

Manufacture of textiles, wearing apparel and leather 6 1.7 3 1.7

Manufacture of wood and of products of wood and cork 7 0.6 4 2.3

Manufacture of paper and paper products 8 0.6 4 2.3

Printing and reproduction of recorded media 9 0.3 4 2.3

Manufacture of coke and re�ned petroleum products 10 2.4 5 2.4

Manufacture of chemicals and chemical products 11 2.6 6 2.6

Manufacture of basic pharmaceutical products 12 0.8 7 0.8

Manufacture of rubber and plastic products 13 1.1 8 1.1

Manufacture of other non-metallic mineral products 14 1.2 9 1.2

Manufacture of basic metals 15 2.8 10 2.8

Manufacture of fabricated metal products 16 1.5 11 1.5

Manufacture of computer, electronic and optical products 17 2.5 12 2.5

Manufacture of electrical equipment 18 1.5 13 1.5

Manufacture of machinery and equipment n.e.c. 19 2.2 14 2.4

Manufacture of motor vehicles, trailers and semi-trailers 20 2.8 15 2.8

Manufacture of other transport equipment 21 0.9 16 0.9

Manufacture of furniture; other manufacturing 22 0.8 4 2.3

Repair and installation of machinery and equipment 23 0.2 14 2.4

Electricity, gas, steam and air conditioning supply 24 3.3 17 3.9

Water collection, treatment and supply 25 0.2 17 3.9

Sewerage; waste collection, treatment and disposal 26 0.3 17 3.9

Construction 27 7.5 18 7.5

Wholesale and retail trade and repair of motor vehicles 28 0.9 19 8.9

Wholesale trade, except of motor vehicles and motorcycles 29 4.9 19 8.9

Retail trade, except of motor vehicles and motorcycles 30 3.1 19 8.9

Land transport and transport via pipelines 31 2.6 20 4.5

Water transport 32 0.4 20 4.5

Air transport 33 0.5 20 4.5

Warehousing and support activities for transportation 34 1.0 20 4.5

Postal and courier activities 35 0.2 21 7.1
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Industries

Raw WIOD Aggregated WIOD

# % of GDP # % of GDP

Accommodation and food service activities 36 2.4 21 7.1

Publishing activities 37 0.4 22 8.1

Motion picture, video, television, sound recording, music 38 0.4 22 8.1

Telecommunications 39 1.5 22 8.1

Computer programming, consultancy, information service 40 1.3 22 8.1

Financial service, except insurance and pension funding 41 2.9 23 4.7

Insurance, reinsurance and pension funding 42 1.3 23 4.7

Activities auxiliary to �nancial services and insurance 43 0.5 23 4.7

Real estate activities 44 5.4 24 5.4

Legal, accounting; head o�ces; management consultancy 45 2.2 22 8.1

Architectural and engineering; technical testing and analysis 46 0.7 22 8.1

Scienti�c research and development 47 0.5 22 8.1

Advertising and market research 48 0.3 22 8.1

Other professional, scienti�c and technical; veterinary 49 0.7 22 8.1

Administrative and support service 50 2.3 21 7.1

Public administration, defense, compulsory social security 51 5.4 25 11.8

Education 52 2.3 25 11.8

Human health and social work activities 53 4.0 25 11.8

Other service activities 54 2.1 21 7.1

Activities of households as employers 55 0.1 21 7.1

Activities of extraterritorial organizations and bodies 56 0.0 21 7.1

Table 5: WIOD Industrial Classi�cation: �e shares refer to percent of world GDP.
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C �e Import Demand System is Not CES

For the sake of clarity, I restrict a�ention to a single industry world (the multi-industry extension is im-

mediate). To begin, de�ne the dollar value of inputs from source j ′′ used by country j ′ to produce exports

for market j as

X
(
j ′′
∣∣j ′, j) = a (j ′′ ∣∣j ′, j) (X (j ′, j)+ F (j ′, j)) ,

and note that X (j ′′, j ′) =
∑
j∈JX (j ′′ |j ′, j) . Take j ′′ 6= j ′ and i ′′ 6= j ′. Start with the identity X (j ′′, j ′) =∑

j∈JX (j ′′ |j ′, j) and di�erentiate with respect to trade costs with a third country to obtain

∂ lnX (j ′′, j ′)

∂ ln τ (i ′′, j ′)
=
∑
j∈J

X (j ′′ |j ′, j)

X (j ′′, j ′)

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
.

From the de�nition of X (j ′′ |j ′, j) , di�erentiate and obtain

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
=
∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
+
∂ ln (X (j ′, j) + F (j ′, j))

∂ ln τ (i ′′, j ′)
,

=
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
+
∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
−
∂ lna (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
.

From the de�nition of input expenditures in (18), di�erentiate and obtain

∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
= (1 − σ)

(
1[j ′′=i ′′] − a

(
i ′′
∣∣j ′, j)) .

Substituting these two equations into the ratio of bilateral imports yields

∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)

=
∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
−

X (j ′ |j ′, j)

X (j ′, j ′)

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)

)
,

=
∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)

(
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
+ (1 − σ) 1[j ′′=i ′′]

)
−

X (j ′ |j ′, j)

X (j ′, j ′)

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)

)
.

Hence, the partial elasticity of imports in j ′ from source j ′′ 6= j ′ relative to domestic purchases with respect

to changes in trade costs with a third country i ′′ 6= j ′ equals

∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)
= (1 − σ) 1[j ′′=i ′′] +

∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)
−

X (j ′ |j ′, j)

X (j ′, j ′)

)
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
. (36)

�e �rst term captures the direct e�ect on relative imports present when j ′′ = i ′′; this is the only

e�ect in roundabout models. More generally, however, GVC linkages play a role. �e partial elasticity

∂ lnX (j ′ |j ′, j) /∂ ln τ (i ′′, j ′) captures the change in domestic input purchases due to both a substitution

from domestic inputs towards more imports from i ′′ and a supply chain e�ect derived from the change in

downstream production as proxied by the change in exports to each j. �at is

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
= − (1 − σ)a

(
i ′′
∣∣j ′, j)+ ∂ ln (X (j ′, j) + F (j ′, j))

∂ ln τ (i ′′, j ′)
.
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Further, the term in parenthesis in (36) ampli�es/dampens the e�ect on relative imports depending on the

di�erential importance of each export market j for inputs from j ′′ relative to j ′.
In words, if Mexican exports to Germany use mostly Japanese inputs, then a reduction in Mexico-

Germany shipping costs reduces both imports from Japan and domestic input sales following the substi-

tution towards more German inputs. However, imports from Japan fall relatively more since exports to

Germany use Japanese inputs intensively. On net, the supply chain e�ect exerts an opposing force and

increases Japanese imports relatively more than domestic sales following the rise in exports to Germany.

�e supply chain e�ect thus illustrates how changes in third-country trade barriers a�ect imports

asymmetrically depending on the depth of supply chain integration. �e knife-edge roundabout model,

however, is the one case in which the e�ect is symmetric since all exports get built with the same inputs.

In other words, the roundabout model satis�es the ACR condition “the import demand system is CES”

if a
(
j ′′
∣∣j ′, j) = a (j ′′ ∣∣j ′ ) ∀j ′′, ⇒ ∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)
= (1 − σ) 1[j ′′=i ′′].

C.1 Gravity Regressions in Specialized Inputs Models

I illustrate the e�ects of running gravity regressions on data generated by specialized inputs models

through simulations. Assume that there are J = 25 countries and a single industry per country. In

each simulation I sample parameters from random distributions. Speci�cally, I take draws β (j ′, j) ∼

Uniform(0, 1), α (j ′′ |j ′, j) ∼ Lognormal(0, 1), ϕ (j ′ |j) ∼ Lognormal (0, 1). I normalize the la�er two

shares so that

∑
j ′′∈J α (j ′′ |j ′, j) = 1 and

∑
j ′∈Jϕ (j ′ |j) = 1. To obtain symmetric trade costs I take

ρ (j ′, j) ∼ Uniform (0, 1/2) and de�ne τ (j ′, j) = 1 + ρ (j ′, j) ρ (j, j ′) for j ′ 6= j and τ (j, j) = 1. For the

roundabout model I run similar simulations while imposing common input shares α (j ′′ |j ′ ).
�e only missing parameter is the elasticity of substitution that I set to σ = 6 so that the roundabout

trade elasticity is 1 − σ = −5. In each simulation I construct the input-output table and run the following

regression

lnX
(
j ′, j
)
= δ0 + δexp

(
j ′
)
+ δimp (j) + θ ln τ

(
j ′, j
)

,

where δ0 is the intercept, and δexp (j
′) and δimp (j) are exporter and importer �xed e�ects. �e coe�cient

θ equals the trade elasticity in the roundabout model if input shares are driven entirely by trade costs, i.e.

if α (j ′ |j) = 1/J for all pairs. More generally, the coe�cient θ will di�er from the trade elasticity since

these parameters do vary.

Figure 15 presents the range of estimates for θ across 10, 000 simulations of the roundabout and spe-

cialized inputs models. As discussed, θ di�ers from the trade elasticity because of the exogenous input

share parameters but note that on average it exactly equals the trade elasticity. In contrast, in specialized

inputs models structural gravity does not hold and thus the recovered value for the trade elasticity θ does

not match its structural interpretation. �at is, on average, θ 6= 1 − σ. While the average estimate in the

roundabout model hits precisely the structural trade elasticity value of 1−σ = −5, the average estimate in

specialized inputs is lower at −4.47 re�ecting the fact that trade costs with third countries a�ect bilateral

trade �ows through supply chain linkages. �is a�enuation can be understood as introducing classical

measurement error by consequence of model misspeci�cation.
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Figure 15: Gravity Regressions: �e histograms correspond to trade elasticity estimates across

10, 000 simulations of roundabout and specialized inputs models. All simulations use 1 − σ = −5.
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D Computing Counterfactuals for Arbitrary Changes in Trade Barriers

D.1 Specialized Inputs Hat Algebra

Suppose, for now, that we have an observed GVC network described by the input shares a (s ′′ |s ′, j) and

πF (s
′ |j). Remember that the input-output �owsX (s ′, s) and F (s ′, j) are known, that the elasticities σ (k)

are given, and that we seek to solve for the change in all endogenous variables following an arbitrary

change to trade barriers τ̂ (s ′, j). �is can be done in six steps. First, the Cobb-Douglas expenditure shares

can be recovered from the GVC network as follows

β
(
s ′, j
)
= 1 −

∑
s ′′∈J×K

a
(
s ′′
∣∣s ′, j) ,

γ
(
k ′′
∣∣s ′, j) = ∑

s ′′∈J×k ′′
a
(
s ′′
∣∣s ′, j) ,

ζ
(
k ′ |j

)
=
∑

s ′∈J×k ′
πF
(
s ′ |j

)
.

Clearly, the Cobb-Douglas shares add up to one

β
(
s ′, j
)
+
∑
k ′′∈K

γ
(
k ′′
∣∣s ′, j) = 1,∑

k ′∈K
ζ
(
k ′ |j

)
= 1.

Second, conditional on a change in wages ŵ (j), the change in unit prices p̂ (s ′, j) is found through the

following �xed point

p̂
(
s ′, j
)
=
∏

s ′′∈j×K

ŵ (j)β(s
′′

,j) ×
∏

s ′′′∈j×K
â
(
s ′′′
∣∣s ′′, j)−γ(k ′′′|s ′′ ,j )

1−σ(k ′′′)

δ(k ′′|s ′,j ) ,

â
(
s ′′
∣∣s ′, j) = (p̂ (s ′′, j ′) τ̂ (s ′′, j ′))1−σ(k ′′)∑

t ′′∈J×k ′′ a (t
′′ |s ′, j)× (p̂ (t ′′, s ′) τ̂ (t ′′, j ′))1−σ(k ′′)

× γ
(
k ′′
∣∣s ′, j) .

�ird, this delivers the change in �nal good shares and �nal good �ows

π̂F
(
s ′ |j

)
=

(p̂ (s ′, j) τ̂ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ πF (t

′ |j)× (p̂ (t ′, j) τ̂ (t ′, j))1−σ(k ′)
× ζ

(
k ′ |j

)
,

ˆF
(
s ′, j
)
=
π̂F (s

′ |j)πF (s
′ |j)× ŵ (j)GDP (j)

F (s ′, j)
.

Fourth, the change in bilateral intermediate input �ows can be found with the �xed point

ˆX
(
s ′′, s ′

)
=

1

X (s ′′, s ′)

∑
j∈J

â
(
s ′′
∣∣s ′, j)a (s ′′ ∣∣s ′, j)

 ∑
s∈j×K

ˆX
(
s ′, s

)
X
(
s ′, s

)
+ ˆF

(
s ′, j
)
F
(
s ′, j
) .
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Fi�h, the change in unit wages can be updated through

ŵ (j) =
1

GDP (j)

∑
s ′∈j×K

 ∑
s∈J×K

ˆX
(
s ′, s

)
X
(
s ′, s

)
+
∑
j∈J

ˆF
(
s ′, j
)
F
(
s ′, j
)
−
∑

s ′′∈J×K

ˆX
(
s ′′, s ′

)
X
(
s ′′, s ′

).

Sixth, and �nally, repeat steps two to �ve using the new guess for the change in unit wages until a �xed

point is found. �is delivers a new equilibrium in which the endogenous variables for any country can be

found as the product of the benchmark variable times the hat variable. �e change in welfare can be found

by substituting the change in the shares of the GVC network into the welfare formula (27).

D.2 Solving for the Exact GVC Bounds

�e previous subsection showed how to compute the change in welfare following an arbitrary change to

trade barriers for a given benchmark GVC network. Computing the bounds requires, in addition, searching

across all GVC networks consistent with a given input-output dataset and �nding the ones that minimize

or maximize these gains. In other words, the bounds are found by solving

min/max the welfare formula in (27),

subject to X
(
s ′′, s ′

)
=
∑
j∈J

a
(
s ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) ,∀s ′′, s ′,

∑
s ′′∈J×k ′′

a
(
s ′′
∣∣s ′, j) = γ (k ′′, ∣∣s ′ ) ,∀k ′′, s ′, j

a
(
s ′′
∣∣s ′, j) > 0,∀s ′′, s ′, j,

the specialized inputs hat algebra holds.

�e optimization problem solves jointly for a GVC network that �ts the input-output data in the bench-

mark equilibrium and the counterfactual equilibrium following the exogenous change to trade barriers.

�e solution is given by the combination of benchmark and counterfactual equilibria that minimize or

maximize the gains from trade for some country j. Solving this problem is very hard numerically because

the objective function is highly nonlinear, the constraints are highly nonlinear, and the problem is very

large because it depends on solving for the full GVC network across all country-industries in the world.

D.3 Solving for Approximate GVC Bounds

Approximate bounds on the welfare change following an arbitrary change to trade barriers is done by

focusing on the extremal GVC networks relevant to the question at hand. To illustrate this, let us use

the slightly more general model in which expenditure shares vary across inputs and �nal goods, i.e. with

aX (s ′′ |s ′, s) and aF (s
′′ |s ′, j), to study two counterfactuals. �is approach takes four steps. First, for a

given change in trade barriers, �nding the extremal GVC �ows that minimize/maximize a shock’s propa-

gation to speci�c countries is found intuitively (this is usually straightforward). Second, the expenditure

shares associated to these networks is computed through linear programming problems. �ird, the associ-

ated change in welfare is computed using the specialized inputs hat algebra. Fourth, approximate bounds

are built using linear combinations of these benchmark extremal GVC networks. I exemplify this through

the two counterfactual exercises in �gure 8.

First, if the U.S. increases trade barriers on Mexican �nal good manufacturing imports then this will

have a minimal/maximal e�ect on Mexican/U.S. welfare depending on whether these �nal goods are built
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with Mexican/U.S. value-added or intermediate inputs. �us, careful inspection of this problem reveals

that the GVC �ows that minimize/maximize welfare in this counterfactual are those associated with very

li�le/highly integrated Mexican/U.S. supply chains. Speci�cally, the three benchmark networks used in

the le� panel of �gure 8 correspond to:

1. Find the GVCs with maximal Mexican value added directly to �nal good exports to the U.S. �at is,

for each manufacturing industry k ′, solve

max

1 −
∑
j ′′∈J

∑
k ′′∈K

aF
({
j ′′,k ′′

} ∣∣{
MEX,k ′

}
, USA

) F ({MEX,k ′
}

, USA

)
.

�ese GVCs maximize Mexican welfare losses.

2. Find the GVCs with maximal U.S. inputs used in �nal good exports to the U.S. �at is, for each

manufacturing industry k ′, solve

max

∑
k ′′∈K

aF
({

USA,k ′′
} ∣∣{

MEX,k ′
}

, USA

)
F
({

MEX, k ′
}

, USA

)
.

�ese GVCs maximize U.S. welfare losses.

3. Find the GVCs with maximal non-Mexican and non-U.S. inputs used in �nal good exports to the U.S.

�at is, for each manufacturing industry k ′, solve

max

∑
j ′′∈J\{MEX,USA}

∑
k ′′∈K

aF
({
j ′′,k ′′

} ∣∣{
MEX,k ′

}
, USA

)
F
({

MEX, k ′
}

, USA

)
.

�ese GVCs minimize both Mexican and U.S. welfare losses.

�e extremal GVC networks correspond to these three cases−when solving them across all manufacturing

industries k ′ and when imposing the constraints that these expenditure shares aggregate up to the input-

output data (as in (15)). For each of these extremal GVC networks, I proceed conservatively and assume that

the GVC �ows crossing through all other countries are given by the roundabout GVCs. Having computed

these extremal GVC networks, I then compute the associated change in welfare using the specialized inputs

hat algebra described above. Finally, I compute the intermediate dots depicted in �gure 8 by taking linear

combinations of these three benchmark GVCs− and which also satisfy the restrictions in (15) since they are

linear − and computing the associated welfare losses through the specialized inputs hat algebra. Repeating

this 10,000 times deliver 10,000 numbers for the joint Mexican and U.S. welfare losses associated to 10,000

GVC �ows that perfectly replicate every single entry of the 2014 WIOD.

Second, the bounds on the welfare losses when Mexico increases trade barriers on U.S. intermediate in-

put imports are computed analogously but with di�erent extremal GVC networks. In this case, this change

in trade policy will have a minimal/maximal e�ect on Mexican/U.S. welfare depending on whether these

inputs are used to produce goods sold to Mexican/U.S. buyers. �us, careful inspection of this problem re-

veals again that the GVC �ows that minimize/maximize welfare in this counterfactual are those associated

with very li�le/highly integrated Mexican/U.S. supply chains. Speci�cally, the three benchmark networks

used in the right panel of �gure 8 correspond to:

1. Find the GVCs with maximal U.S. inputs used in goods sold domestically. �at is, for each manufac-
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turing industry k ′, solve

max

∑
k ′′∈K

∑
k∈K

aX
({

USA,k ′′
} ∣∣{

MEX,k ′
}

, {MEX, k}
)
X
({

MEX,k ′
}

, {MEX,k}
)

+
∑
k ′′∈K

aF
({

USA,k ′′
} ∣∣{

MEX,k ′
}

, MEX

)
F
({

MEX,k ′
}

, MEX

)
.

�ese GVCs maximize Mexican welfare losses.

2. Find the GVCs with maximal U.S. inputs used in goods sold to the U.S. �at is, for each manufacturing

industry k ′, solve

max

∑
k ′′∈K

∑
k∈K

aX
({

USA,k ′′
} ∣∣{

MEX, k ′
}

, {USA,k}
)
X
({

MEX,k ′
}

, {USA,k}
)

+
∑
k ′′∈K

aF
({

USA,k ′′
} ∣∣{

MEX,k ′
}

, USA

)
F
({

MEX,k ′
}

, USA

)
.

�ese GVCs maximize U.S. welfare losses.

3. Find the GVCs with maximal U.S. inputs used in goods sold to countries other than Mexico and the

U.S. �at is, for each manufacturing industry k ′, solve

max

∑
j∈J\{MEX,USA}

∑
k ′′∈K

∑
k∈K

aX
({

USA,k ′′
} ∣∣{

MEX,k ′
}

, {j, k}
)
X
({

MEX,k ′
}

, {j, k}
)

+
∑

j∈J\{MEX,USA}

∑
k ′′∈K

aF
({

USA,k ′′
} ∣∣{

MEX, k ′
}

, j
)
F
({

MEX,k ′
}

, j
)

.

�ese GVCs minimize both Mexican and U.S. welfare losses.

�e bounds on welfare are then computed exactly as in the �rst counterfactual, but when using these three

GVC networks as the benchmark extremal networks.
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E GVCs and Measurement

E.1 Disentangling GVCs: Narrowing the Bounds

�e restricted bounds on the U.S. value-added in Mexican �nal good imports and on the welfare losses of

a NAFTA trade war are computed exactly as in the unrestricted case, but when imposing additional linear

inequality constraints. Within each manufacturing industry k ′, I impose these constraints for �nal good

production across all combinations of source country-industries {j ′′,k ′′} and destination countries j

aF ({j
′′

,k ′′} |{MEX,k ′} , j) 6 (χF ({j
′′

,k ′′} |{MEX,k ′} , j) + ∆)
∑

i ′′∈J\MEX

∑
l ′′∈K

aF ({i
′′

, l ′′} |{MEX,k ′} , j) ,

aF ({j
′′

,k ′′} |{MEX,k ′} , j) > (χF ({j
′′

,k ′′} |{MEX,k ′} , j) − ∆)
∑

i ′′∈J\MEX

∑
l ′′∈K

aF ({i
′′

, l ′′} |{MEX,k ′} , j) ,

where χF ({j
′′

,k ′′} |{MEX,k ′} , j) is a relative foreign input expenditure share measured in customs data.

I also impose analogous conditions for the case of intermediate input production − while also assuming

that these shares vary only depending on the purchasing country and not purchasing industry since the

customs data does not reveal which foreign industry buys Mexican exports. �at is

aX
({
j ′′,k ′′

} ∣∣{
MEX, k ′

}
, {j, k}

)
6
(
χX
({
j ′′,k ′′

} ∣∣{
MEX,k ′

}
, j
)
+ ∆

) ∑
i ′′∈J\MEX

∑
l ′′∈K

aX
({
i ′′, l ′′

} ∣∣{
MEX, k ′

}
, {j, k}

)
,

aX
({
j ′′,k ′′

} ∣∣{
MEX, k ′

}
, {j, k}

)
>
(
χX
({
j ′′,k ′′

} ∣∣{
MEX,k ′

}
, j
)
− ∆

) ∑
i ′′∈J\MEX

∑
l ′′∈K

aX
({
i ′′, l ′′

} ∣∣{
MEX, k ′

}
, {j, k}

)
.

E.2 Disentangling GVCs: Constructing New Point Estimates

I write the optimization problem in (34), when minimizing the weighted sum of squared deviations, in

terms of linear algebra. I proceed in �ve steps. First, since the optimization is done separately within each

country-industry s ′ ∈ S, �x s ′. Second, use the input-output data to de�ne the vectors X1 = [X (s ′, s)],
X2 = [X (s ′′, s ′)], and F1 = [F (s ′, j)] of size 1 × JK, JK × 1, and 1 × J. �ird, de�ne the endogenous

variables as vectors

aX =



aX (1 |s ′, 1)
.
.
.

aX (1 |s ′, S)

aX (2 |s ′, 1)
.
.
.

aX (S |s ′, S)


, βX =

 βX (s ′, 1)
.
.
.

βX (s ′, S)

 , aF =



aF (1 |s
′
, 1)

.

.

.

aF (1 |s
′
, J)

aF (2 |s
′
, 1)

.

.

.

aF (S |s
′
, J)


, βF =

 βF (s
′
, 1)

.

.

.

βF (s
′
, J)

 ,

of sizes JKJK × 1, JK × 1, JKJ × 1, and J×1. Fourth, stack the targets and weights into analogous

vectors and call them a0

X, β0

X, a0

F, β0

F,ω0

aX
,ω0

βX
,ω0

aF
, andω0

βF
. �e optimization problem in (34) can
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be wri�en as a quadratic program as follows

min


aX − a0

X

βX − β0

X

aF − a
0

F

βF − β
0

F


T

diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF



aX − a0

X

βX − β0

X

aF − a
0

F

βF − β
0

F

 ,

subject to

 IJK×JK ⊗ X1 0JK×JK IJK×JK ⊗ F1 0JK×J
11×JK ⊗ IJK×JK IJK×JK 0JK×JKJ 0JK×J

0J×JKJK 0J×JK 11×JK ⊗ IJ×J IJ×J



aX
βX
aF
βF

 =

 X2

1JK×1

1J×1

 ,


aX
βX
aF
βF

 > 0,

where diag{·} is a diagonal matrix, ⊗ is the Kronecker product, I is the identity matrix, and 0 and 1 are

matrices of zeros and ones. O�en, numerical quadratic programming solvers de�ne the objective function

as
1

2
xTQx+cTx, in which case the above objective function can be rewri�en in these terms as

x =


aX
βX
aF
βF

 , Q = diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF

 , c = −diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF



a0

X

β0

X

a0

F

β0

F

 .

E.3 Disciplining GVCs: Graphical Intuition

Concretely, the paper’s message is simple and the intuition can be conveyed through the graphical repre-

sentation in �gure 16. �e large cloud in �gure 16a represents the highly-dimensional space of all GVC

�ows consistent with some aggregate input-output dataset, with the yellow star representing the true

(unobserved) GVCs. Figure 16b shows that the roundabout GVCs are mismeasured and let the distance be-

tween them and the true ones proxy how close they are (for example, as given by the Euclidean distance).

Figure 16c depicts the set of specialized inputs GVCs that are consistent with the input-output data and

with the roundabout GVCs contained as a speci�c set of �ows. In general, it is likely that the true GVCs

are not consistent with specialized inputs (the world is a complicated place) and so the true GVCs are out-

side of this set. Still, �gure 16d shows that the goal of the measurement framework is not necessarily to

measure the true GVC �ows (this is an impossible task), but rather to improve upon the roundabout GVC

�ows. �e key identi�cation assumption can be described as using additional information in order to shi�

the GVC estimates into the shaded region. A researcher can use additional data or her own priors over the

data generating process to discipline the GVC estimates as she considers reasonably. If done correctly, this

improves the GVC estimates relative to roundabout GVCs.
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General space of 
GVCs: !

True GVCs
→ unobserved !∗

(a) GVCs live in a high dimensional space of which the

true GVCs are a single point.

!∗

!#$%&'()$%*

(b) �e roundabout GVCs are only one of many pos-

sible data generating processes. �e distance between

two points proxies how similar they are.

!"#$%&'(#$)

!∗Specialized inputs 
feasible set

(c) Relaxing the proportionality assumptions as in the

specialized inputs measurement framework increases

the size of the set of GVCs that can be estimated. �e

specialized inputs measurement framework can back

out any �ows within this set as long as the objective

function is de�ned appropriately.

!∗
Many GVCs
dominate       
roundabout

!#$%&'()$%*

(d) Even if the true GVC �ows cannot be recovered,

there exist a whole set of specialized inputs GVCs that

are be�er measured than the roundabout GVCs.

Figure 16: �e Specialized Inputs Measurement Framework.
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