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Introduction: Toward Utopia, 
but Slowly

Obeying the orders of “General Ludd” was an excuse used by skilled 

weavers and textile workers in the United Kingdom whose livelihood 

was threatened by new weaving machines and practices. Known as 

Luddites, they smashed looms and factories in an effort to convince the UK 

Government to deny the march of progress and ban the new machinery. 

Luddite is used as a term for someone who is afraid of new technology. 

Automation and robotics are a stimulus driving an increase in the number 

of modern Luddites.

It is an undeniable fact that automation and robotics, along with their 

various manifestations, are anticipated to have an impact on society and 

each individual’s life and work. This impact is potentially far greater than 

that of the weaving machines and new practices affecting the historical 

Luddites. Countering a Luddite tendency is not easy with a great deal of 

negative reporting and scaremongering fueling anxiety, but it is considered 

best left to education. It is true that jobs being replaced by machines will 

generate a visceral reaction in many people.

Barely a week goes by without some form of media proclaiming 

“Nearly 9 million British jobs could be lost to AI by 2030,”1 “Robots are 

taking your Jobs!”, or “What Will Our Society Look Like When Artificial 

1�Kate Ferguson, “Rise of the robots: Nearly 9 million British jobs could be lost to 
AI by 2030 with workers in retail, manufacturing and business administration 
most at risk,” Daily Mail Online, January 6, 2019, www.dailymail.co.uk/news/
article-6536065/Nearly-9-million-British-jobs-lost-AI-2030.html

http://www.dailymail.co.uk/news/article-6536065/Nearly-9-million-British-jobs-lost-AI-2030.html
http://www.dailymail.co.uk/news/article-6536065/Nearly-9-million-British-jobs-lost-AI-2030.html
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Intelligence Is Everywhere?”2 It is clear that there is a good deal of concern, 

further fed by movies and TV shows that show humanity under threat from 

increasingly dominant machines.

Science fiction in entertainment and literature particularly has 

embraced this paradigm and has unwittingly (or not) fed this paranoia. 

Paranoia directed at robots started early with the first use of the term 

robot, made in 1921 in Czech playwright Karel Čapek’s RUR, or Rossum’s 

Universal Robots, in English. The robots in this play are not robots 

in a strict sense; actually they are more like a cyborg, a human/robot 

combination. The robots become part of a rebellion that extinguishes 

humanity. The theme of destruction of humanity has continued in disaster 

and horror genres and is still influencing the attitudes of the public at 

large.

Recent massive improvements in technologies in both hardware 

and software have led to improvements in automation and robotics.3 

A Robot Operating System (ROS), improved sensors and encoders 

are all core technologies for robotics. AI can be considered one of the 

enabling technologies of automation and decision-making. Hardware 

improvements with smaller faster chips, graphical processing units, 

and better power consumption are among other technologies that are 

making advances in robotics faster. These are leading to an increasing 

impact on current tasks and working practices. The increasing use of 

software and physical robots on existing workloads is already creating an 

impact. Software and physical robots can affect how people are going to 

be remunerated in the future and decrease the numbers of knowledge 

workers employed.

2�Stephan Talty, “What Will Our Society Look Like When Artificial Intelligence Is 
Everywhere?”, Smithsonian Magazine, April 2018, www.smithsonianmag.com/
innovation/artificial-intelligence-future-scenarios-180968403/

3�Nichols, G. “A robot revolution is well underway, driven by core technologies,” 
ZDNet, April 8, 2020, www.zdnet.com/article/a-robot-revolution-is-well-
underway-driven-by-core-technologies/

Introduction: Toward Utopia, but SlowlyIntroduction: Toward Utopia, but Slowly

http://www.smithsonianmag.com/innovation/artificial-intelligence-future-scenarios-180968403/
http://www.smithsonianmag.com/innovation/artificial-intelligence-future-scenarios-180968403/
http://www.zdnet.com/article/a-robot-revolution-is-well-underway-driven-by-core-technologies/
http://www.zdnet.com/article/a-robot-revolution-is-well-underway-driven-by-core-technologies/
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Concern over the vulnerability of jobs to computer-based automation, 

including robotics, has been expressed since the early days when 

industrial robots displaced production line workers in automotive plants 

and software automation displaced routine ledger management. The level 

of concern has increased with the growth of machine learning and the 

ability of AI tools to handle more complex tasks.

This book will approach the issue of automation, collaborative 
robotics, and their relationship to the future of work by outlining the 
still considerable technology issues that are faced by designers and 
developers today.

The impact of new technology on work is assessed as an overlap 

between the anticipated changes to work and society, the technology 

challenges, and the technology research, as illustrated in Figure 1.

Figure 1.  Context of this book

Introduction: Toward Utopia, but SlowlyIntroduction: Toward Utopia, but Slowly
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The first part of the book, “Preparing for the Future of Work,” describes 

the social, political, and economic context of the future of work. In it we 

will introduce automation and robotics as technologies and AI as an 

enabling technology. This section also includes a number of definitions 

and descriptions to clarify terms used throughout the book.

The second part, “Robots Are Working,” describes how robots are 

working today and how they interact with humans. This section includes 

a discussion on the value of robotic process automation that is currently 

being realized by organizations who are already using these software robots 

to good effect. There is also a discussion on collaboration between robots 

as well as a section that looks at smart buildings and autonomous vehicles.

The final part, “Making Sense for Robots and Society,” exposes 

two main domains that can potentially advance or derail the value of 

automation and collaborative robots in the future. The first domain, 

data fusion, is an essential technique for helping robots to make sense of 

all the data that is available, including data that has no predefined data 

model or is not organized in a predefined way. This is called unstructured 

data and we will show the importance of merging this unstructured data, 

such as video and audio data, into a view of the operating environment 

that includes structured data in tables, data streams, and databases. The 

second domain, policy matters and regulation, is discussed in relation 

to concerns about uncontrolled or faulty systems and environments. 

Regulations and monitoring compliance to those regulations are in their 

infancy in robotics, machine learning, and software robotics. Interest in 

this area is also being fueled by the scare stories mentioned earlier.

In addition to dividing the book into three major sections, the book 

contains two perspectives reflecting the experience and judgment of 

the two authors. One perspective focuses primarily on the technological 

challenges confronting robotic and process automation. How can work 

be restructured to take advantage of the latest advances in robotics 

and automation? What are current limits of the technology, and, how 

do we work around these? What applications are most likely to benefit 
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from recent advances in robotics, and how do different applications 

work together in a technology solution? These questions reflect the 

background and interests of Peter, who has been involved in machine 

learning and software robotics since the late 1990s. Peter’s extensive 

experience in database integrity, information systems management, 

and decision support informed Chapters 2, 3, 5, and 6 (“Technology 

Definitions,” “Robotics Process Automation,” “Robots Without Arms,” and 

“Robots in a World of Data”).

The other perspective concentrates on the impact of robots on 

organizations and on the regulation of work. How is corporate decision-

making and organizational structure affected by the adoption of robots 

and automation? What new skills will be needed to compete, in a world 

of humans and collaborative robots? What capabilities will robots need 

to acquire to be collaborative and productive in a team? What are the 

obligations and responsibilities of companies that manufacture and 

employ robots, and how can they work with policymakers to create a 

sustainable, healthy society? These questions reflect Steve’s experience 

in cognitive and organizational psychology, and user experience design. 

Steve’s research in privacy, information technology, and trust underlie 

the perspective taken in Chapters 1, 4, and 7 (“Will Robots Replace You?”, 

“Robots in Teams,” and “Robots in Society.

These two perspectives allowed us to examine the relationship 

between robots and automation technology on the one hand, and business 

processes and organization on the other hand.

�What Is Different About This Book?
There are many other books and articles that discuss the future of work, 

from a social, economic, and political point of view. This book takes a 

different approach—focusing on the relationship between technology, 

research, and preparing for the future of work. The authors’ background 
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in scientific research, working with leading universities and research 

institutes, gives them a strong insight to the status and progress of 

fundamental research into evolving automation and robotics spaces. 

Their research into cloud computing, AI, enterprise automation, risk 

management, and decision-making enables them to participate in a 

number of significant research projects. Collaborative robotics, data 

fusion, smart buildings, and edge of the network management have been 

the latest research they have engaged in and gave the impetus to writing 

this book. Many of the research challenges discussed are just in the early 

stages of being addressed.

To validate the research discussion, we will use interviews and 

discussions with leading scientific researchers. These researchers are 

leaders in their field and they will describe the status of their research and 

their interest and the future goals for that research.

The way that humans and robots interact is important in 

understanding collaborative robots and automation in general. We will 

explore how humans collaborate with robots, how robots collaborate with 

other robots, and how they work in a team. This is set in the context of the 

future of work.

The scope of the book does not include industrial robots and their 

effect on a production line and its workers as we do not believe that 

industrial robots that carry out repetitive tasks will change significantly 

while collaborative robots and their relationship to human collaborators 

will continue to evolve over many years.

�Future of Work
We have already mentioned the hype in the general media as well as the 

more specialist media. This does not cover the full gamut of speculation 

although it does color the view of the general public. Business and 

academic writers, analysts, and researchers are also speculating 

about the impact on the working population. We are not planning to 
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exercise a crystal ball and predict the future in the same way that more 

sensationalist writers are doing, but we can extrapolate from current facts 

and new scientific research and draw conclusions from these regarding 

the impact of automation and collaborative robots on jobs and society. 

There are some writers who have interesting views on this impact. 

In his 2018 article “What Will Our Society Look Like When Artificial 

Intelligence Is Everywhere?4” Stephan Talty of the Smithsonian magazine 

speculates that AI is already being used increasingly in business. This is 

supported by a number of reports from university and analyst groups and 

a forecast from Statista. This forecast predicts that the global AI software 

market is expected to grow 154% by 2025 and reach a size of 22.6 billion 

US dollars.5

An early examination of the future of work will give context to 

discussions regarding the research and technology. We will take a 

journey from our initial views of the future of work through the research 

and technology and finish with a view of the place of robots in society. 

Technical terms and research practices may be difficult to read but we will 

be simplifying and clarifying these terms as we progress. When it comes to 

economics, we will leave this to Martin Ford who does an excellent job of 

examining the rise of the robots and the economic impact.6

Politicians may have the unenviable task of preparing the working 

population for massive changes both in the opportunity for employment 

and the financial impact of jobs being automated. There are many 

suggestions from changing the way a family can generate an income by 

4�Stephan Talty, “What Will Our Society Look Like When Artificial Intelligence Is 
Everywhere?”, Smithsonian Magazine, April 2018, www.smithsonianmag.com/
innovation/artificial-intelligence-future-scenarios-180968403/

5�Liu, S. (2020, April 8). Artificial intelligence software market growth forecast 
worldwide 2019-2025. Retrieved April 8, 2020, from www.statista.com/
statistics/607960/worldwide-artificial-intelligence-market-growth/

6�Ford, M. (2015). Rise of the Robots. Retrieved April 8, 2020, from www.uc.pt/
feuc/citcoimbra/Martin_Ford-Rise_of_the_Robots
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aggregating their own data and sell access instead of meekly waiting for the 

data aggregators.7 Other suggestions include a universal living wage. What 

is clear is that society will have to accommodate employment changes and 

impact that will be every bit as disruptive as the “looms” that the Luddites 

tried to ban.

7�Data as the new currency: In Proceedings of the 2014 New Security Paradigms 
Workshop. ACM.
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CHAPTER 1

Will Robots Replace 
You?
At the dawn of civilization, in the forests of Siberia, a small tribe was 

engaged in discussion of great importance to themselves and mankind. It 

was winter. As the humans argued, wolf dogs ate scraps of discarded food. 

Smaller than wolves, they had been domesticated and were perfect for 

pulling heavy loads without overheating. But a few of the larger wolf dogs 

seemed able to pick up the scent of the large bears better than humans 

could. Some of the tribe wanted to breed and train these wolf dogs for 

hunting. Other hunters who were widely known for their olfactory skills 

might have been concerned that their specialty, their craft, was threatened 

by the more sensitive canine olfactory system.

This example is of course fanciful and contrived.1 We don’t know if 

labor debates took place under these circumstances, but humans have 

been transforming work and probably arguing about these transformations 

from our early days as hunters, gatherers, and traders.

1�However, there is evidence that early domesticated dogs in Siberia may have been 
bred for pulling heavy weights possibly before they were bred for hunting. See Pitulko, 
V. V. and Kasparov, A. K. (2017). “Archaeological dogs from the Early Holocene 
Zhokhov site in the Eastern Siberian Arctic.” Journal of Archaeological Science: 
Reports. 13: 491-515. doi: https://doi.org/10.1016/j.jasrep.2017.04.003.

https://doi.org/10.1007/978-1-4842-5964-1_1#ESM
https://doi.org/10.1016/j.jasrep.2017.04.003
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In any case, within several generations, hunters in this region were 

likely acclaimed, not only for their courage in attacking large bears but 

also for the way they trained and communicated with hunting dogs. Status, 

ego, property rights—all the ingredients of drama and tragedy—were there 

from the beginning and intricately woven into the structure of work and 

tribal dynamics.

All animals work to survive. Humans, to date, are no exception. We 

work to produce food, shelter, and heat, we work to entertain each other, 

we work to teach others to produce and trade the things that we need and 

value, and we work to contribute to the well-being of our community. We 

also create machines and train animals in order to amplify our strength, 

endurance, dexterity, mobility, and (more recently) our communications 

and intelligence.

These machines and animals influence how we structure our culture. 

For example, clocks organize our day, impose structure in the workplace, 

and in the Seventeenth century provided a metaphor for how our brains 

worked.2,3 More recently, the brain has been compared to switchboards  

(in the early days of telecommunications), to serial computers (with short-

term and long-term storage, and data transfer), and to deep learning and 

self-organizing networks.

These defining technologies also provide a framework through which 

humans interact. But unlike previous technologies, the latest generation 

of machines (i.e., robots) are operating semi-autonomously. Within the 

narrow limits of a well-defined domain (such as games, exploration of 

the sea floor, driving a truck or car), they are beginning to make decisions 

based on immediate context and long-term goals.

2�Kilpatrick, J. (1985). Reflection and recursion. Educational Studies in 
Mathematics, 16(1), 1-26.

3�Wiener, N. (1989). The human use of human beings: Cybernetics and society 
(No. 320). Free Association Press. Accessed through https://monoskop.org/
images/5/51/Wiener_Norbert_The_Human_Use_of_Human_Beings.pdf [accessed 
on April 9, 2020].
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This is not artificial general intelligence (AGI),4 but it is at least the 

mimicry of human purpose and domain-specific intelligence. Just as 

computer architectures served as metaphors for how to think about 

ourselves and society, we need appropriate metaphors to help guide 

policy, technological research and invention, and application of robotics.

What is significant about this next phase of machine technology is 

that we are integrating intelligent, semi-autonomous robotics into the 

workplace, transforming cognitive tasks that were once considered “for 

humans only” such as social interactions, business process design, and 

strategic decision-making. AI, robotics, and automation represent the first 

large-scale substitute for human cognition.5

In this chapter we will explore how robotics might impact our 

household chores, jobs, and business, and military processes. We will 

examine the types of skills for which robots are well designed and the jobs 

or tasks that may or must have a human in the loop.

�Impact of Robotics on Work
There are many conflicting opinions about the impact of automation on 

the working population and on government and economic policies. In 

some scenarios, production no longer depends upon human labor; most 

production is accomplished through robots and automation, leaving most 

human workers unemployed. In such scenarios, the middle class may be 

eliminated, wealth disparity is increased, and wealth becomes increasingly 

dependent on inheritance and investment.

4�Artificial general intelligence, or “strong AI,” is a machine that can experience 
consciousness and autonomy and can perform any cognitive task that a human 
can.

5�Rodney Wallace, personal communication based on a review of an early version 
of this chapter.
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Even in less extreme scenarios, automation will be disruptive, and 

jobs will be replaced or transformed. Whether this will mean massive 

unemployment or post-scarcity affluence with guaranteed incomes and 

more satisfying creative work will depend on all of us. The world will be 

shaped by the policies and technologies that advanced economies adopt.

How will jobs and social structures be transformed? The early 

Industrial Age involved the large-scale transformation of steam into 

mechanical energy. The next major phase occurred when electricity was 

generated and transformed into mechanical energy or light. However, 

these technologies would not have transformed societies if not for social 

and business innovations that created large labor markets of skilled and 

unskilled workers, the factory organization, the corporation, insurance 

to mitigate investment risks, and so on. This in turn powered the modern 

consumer economy—the Information Age with its emphasis on novelty, 

efficiency, and mass consumption.

The recent history of technological adoption indicates that information 

technologies tend to devalue those jobs that are repetitive but cannot yet 

be automated. Skilled but nonexecutive jobs also tend to be transformed 

or replaced. Indeed, whole business processes are redesigned, eliminating 

tedious, unsanitary, or dangerous tasks and concentrating tactical 

everyday decisions into the jobs of fewer, but well-trained clerical and 

professional workers. Conversely, the same technological and economic 

pressures tend to value jobs that focus on networking, process design, and 

creativity.6

For example, long before mobile smartphones and networked 

computers were ubiquitous, ATMs and electronic banking led to 

the reduction of physical banks, the elimination of low-skilled bank 

6�Castells, M. (1996). The Rise of the Network Society. Volume I, The Information 
Age: Economy. Society and Culture. Oxford, Blackwell.
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employees, and the reduction of skilled data entry positions and bank 

clerks. The jobs of the remaining bank clerks were transformed; their focus 

shifted toward selling loans and other financial services.7 Unlike previous 

mechanical technologies, information technologies replace not physical 

labor but predictable, repeatable cognitive labor. Technological and social 

innovations coevolve. New forms of organization enable adoption and 

adaptation of new technologies to further social, industrial, and individual 

goals.

We are now entering an era of intelligent robotics. To understand 

the potential impact on work, the next several subsections will review 

the impact of earlier industrial transformations on work and societal 

responses to automation. We will first consider reactions to the 

introduction of new technology in the textile industry, at the beginning of 

the Industrial Revolution.

�Resistance to the Industrial Age
The iconic Luddite rebellion against industrial technology was not 

a reaction to the transformation of unskilled labor, it was a response 

by highly paid, skilled craftsman to task simplification and rumors of 

automation.8 General Ludd, the fictitious leader of the rebellion, was the 

creation of a secret society, Luddites, who through satire, and violence, 

protested the use of technology to drive down wages. The movement arose 

in March 1811, in the bleak economy of the Napoleonic Wars, in a market 

town about 130 miles north of London. Protesters smashed equipment 

such as shearing frames because owners were using them to replace highly 

7�Ibid, p. 248.
8�Conniff, R. (March 2011). What the Luddites Really Fought Against. 
SMITHSONIAN MAGAZINE. www.smithsonianmag.com/history/what-the-
luddites-really-fought-against-264412/ [accessed on April 6, 2020].

Chapter 1  Will Robots Replace You?

https://www.smithsonianmag.com/author/richard-conniff/
http://www.smithsonianmag.com/history/what-the-luddites-really-fought-against-264412/
http://www.smithsonianmag.com/history/what-the-luddites-really-fought-against-264412/


8

paid croppers. Croppers were skilled textile workers who clipped the wool 

after it had been sheared.9 The movement quickly spread, turned violent, 

and was subsequently suppressed by the British military.

What is notable about the actual Luddite rebellion (as opposed to the 

stuff of myth) is that the textile workers were not against technology or 

automation, per se. They wanted technology that would require skilled 

well-paid workers10,11 and would produce high-quality goods. This 

concern, that technology should be crafted and evolved in sympathy with 

human values, is repeated throughout history, from Plato’s description of 

the Thamus’ critique of writing12 to today’s concerns about robotics.

9�“Luddites.” International Encyclopedia of the Social Sciences. Encyclopedia.com: 
www.encyclopedia.com/social-sciences/applied-and-social-sciences-
magazines/luddites [accessed on April 6, 2020].

10�Jones, S. E. (2013). Against technology: From the Luddites to neo-Luddism. 
Routledge. However, in modern usage, the terms Luddite and Neo-Luddite tend 
to mean opposed to innovation and progress.

11�The Luddite rebellion is often associated with Jacquard looms. However, these 
machines were not imported into England until the 1820s.

12�Jowett, B. (2005). Phaedrus by Plato. In his dialogue with Phaedrus, Socrates 
summarizes a meeting between Theuth, who according to myth invented 
writing and many other inventions, and Thamus, who ruled all of Egypt. Theuth 
wanted to introduce his inventions to the Egyptians, for their benefit. Thamus 
was cautious and inquired about each invention and approved or disapproved 
of each, in turn. As for writing, Theuth claimed that it will improve wisdom and 
memory. Thamus replied that Theuth is biased toward his invention and that 
writing will increase forgetfulness because people will not use their memories. It 
will give people a false sense of truth, and “they will appear to be omniscient and 
will generally know nothing.”
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�The Information Age
In his brilliant three-volume 1996 study, The Information Age: Economy, 

Society, and Culture, Manuel Castells highlights the critical importance of 

human intelligence:

The broader and deeper the diffusion of advanced informa-
tion technology in factories and offices, the greater the need for 
an autonomous, educated worker able and willing to pro-
gram and decide entire sequences of work.13

The Information Age with its focus on the automation of work has 

unfolded along the lines predicted by the work of Castells and others.14 

Most notably, very low-skilled and very high-skilled jobs tend not to be 

replaced. It is a myth that automation targets only the lowest-paid workers. 

Rather, in the information economy, it is the highly repeatable information 

tasks that are replaced by automation (e.g., clerical jobs, sorting and routing 

of information, and filtering and archiving of significant documents and 

transaction records). As we shall see, AI and robotics are pushing the 

boundaries of what is meant by “repeatable information tasks.”

Understanding how jobs and tasks will be transformed requires 

an appreciation of how jobs and tasks are structured in information 

economies. Figure 1-1 is adapted from Castells 1996, The Rise of the 

Network Society. In his analysis of work transformation, he suggests a 

“new division of labor,” constructed around three dimensions. The first 

dimension is concerned with value-making, “the actual tasks performed 

in a given work process.” The second dimension, relation-making, refers to 

how work and organizations relate to one another. The third dimension, 

13�Castells, M. (1996). The Rise of the Network Society. Volume I, The Information 
Age: Economy. Society and Culture. Oxford, Blackwell. p241.

14�See, for example, Ford, M. (2015). Rise of the Robots: Technology and the Threat of 
a Jobless Future. Basic Books.
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decision-making, describes the role that managers and employees play in 

decision-making processes. Although all three dimensions are important, 

our current discussion concerns the first and third dimensions.15

Figure 1-1.  Value-making (white tiles) and decision-making (large 
shaded tiles) processes, adapted from Castells (1996)

15�Castells presents these dimensions as orthogonal, but Figure 1-1 illustrates 
how two of these dimensions might be entangled. The decision-making roles, 
for example, can be played out at any level of management and control: there 
is a decider, participants in that decision, and those that carry the decisions. 
Thus, the same pattern can be repeated in the research, design, integrator, and 
operator tasks. But for this discussion, combining the two in a single illustration 
provides a useful characterization of work in an enterprise. Relation-making is 
essential in an information economy and will be considered in future chapters 
on collaborative robotics.

Chapter 1  Will Robots Replace You?



11

Value-making processes are described in Figure 1-1 in the white tiles 

and consist of:

•	 Executive Managers (“Commanders” in Castells’ 

taxonomy), who make strategic decisions and 

formulate mission and vision.

•	 Researchers, Designers, and Integrators, who interact 

with, or take commands from, executive management 

and turn strategy into tactical innovations.

•	 Those humans that execute the designs and directions 

given by Researchers, Designers, and Integrators. Some 

of these humans (and robots) have discretion in how 

a task is accomplished, and others are given explicit, 

preprogrammed instructions. Figure 1-1 adds robotic 

labor to Castells’ analysis, for purposes of the current 

discussion.

Decision-making is composed of three fundamental roles which are 

reflected in the shaded, larger tiles:

•	 Deciders who make the final decisions

•	 Participants who provide input and different 

perspectives into the decision-making process

•	 Implementers (Castells uses the term “executants”) 

who execute or implement the decision

Most information-centric work can be framed through this typology. 

It allows us to discuss how robots will affect labor in a networked society 

of humans and machines. As we will see in subsequent chapters, robots 

are transforming implementation tasks (e.g., construction robots that can 
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3D print new houses16) and, to a lesser extent, participation tasks (e.g., the 

robot, Curiosity, which can actively contribute to scientific observations17). 

And these tasks, whether they permit autonomy or not, were once 

considered central middle-class occupations.

More optimistically, the robotics transformation is also creating new 

jobs in which humans are inventing, designing, and integrating robotics 

into existing work processes or creating new work processes that are more 

compatible with automation and robots. On the factory floor, in hospitals, 

in retail outlets, humans are acquiring new skills that allow them to 

supervise and manage robots. Thus, the tasks associated with participation 

in decision-making (see Figure 1-1) are increasing, as the implementation 

tasks are being replaced.

�RPA and AI Are Already Transforming Work

Over the past several decades, machine learning (ML) and software 

advances have enabled automation and limited autonomy of routine 

tasks. In the past decade these advances have become more frequent and 

more profound. The technology behind email spam filters, spelling and 

grammar checkers, and software process automation has evolved into cars 

that can drive in traffic, video applications that can recognize faces and 

classify emotions, naval ships that can autonomously survey regions of 

the ocean, and robots that can maneuver in rugged terrains and conduct 

scientific experiments.

We will discuss many of these breakthrough technologies in detail later 

in the book, but for now, we will focus on some of the implications for how 

we work and live.

16�www.apis-cor.com/ [accessed on April 9, 2020].
17�Koren, M. (June 23, 2017). The Mars Robot Making Decisions on Its Own. 

The Atlantic. www.theatlantic.com/technology/archive/2017/06/mars-
curiosity-rover/531339/ [accessed on April 9, 2020].
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�The Robotics Age
The World Economic Forum (WEF) estimates that over the next 5 years, 

rising demand for new jobs will offset the declining demand for others.18 

They warn however that these gains are not guaranteed:

It is critical that businesses take an active role in supporting 
their existing workforces through reskilling and upskilling, 
that individuals take a proactive approach to their own life-
long learning and that governments create an enabling envi-
ronment, rapidly and creatively, to assist in these efforts.

As they further assert, this must occur not only among highly skilled 

and valued employees. A winning strategy must extend across the 

workforce, at all levels of employment.

More specifically, the WEF predicts that 133 million new jobs will 

be created by 2022 in data analytics, operations management, sales and 

marketing, and other specialties associated with emerging technologies. 

In contrast, 75 million jobs in data entry, accounting and auditing, clerical 

administration, manufacturing, stockroom management, postal services, 

telemarketing, and the like will disappear or be radically transformed.

To examine the expected shifts in human-machine collaboration 

between 2018 and 2022, the WEF surveyed 12 industries, such as 

“Consumer,” “Financial Services and Investors,” and “Oil and Gas.” For 

each industry sector, they identified the three most common tasks, and 

estimated the total number of hours performed on a specific task, across 

all jobs in the industry. They then calculated the share of task hours 

performed by humans and by machine.

18�World Economic Forum (2018). The future of jobs report 2018. World Economic 
Forum report. Retrieved from www3.weforum.org/docs/WEF_Future_of_
Jobs_2018.pdf.
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Using this method, they estimate that between 2018 and 2022, the 

share of task hours performed by humans will decline from 71% to 58%.19 

This decline is expected not only for routine data processing jobs (see first 

row in Table 1-1) where the expected decline is 16% (from 54% to 38%), but 

also for jobs that involve higher-level social and cognitive functions.

As shown in Table 1-1, the share of total task hours spent coordinating 

and interacting with humans and making decisions will decrease for 

humans and proportionally increase for machines. The share of task hours 

for these higher-level tasks are predicted to decrease by about 9%. As with 

all of these “share of task hour” analyses, this does not necessarily imply 

that humans will work shorter hours, but rather that machines will be 

relied on to do more proportionally.

Table 1-1.  Contribution, As a Share of Total Task Hours, Performed 

by Humans, Across 12 Industries20

Contribution Performed by Human 2018 2022

Information and data processing 54% 38%

Communicating and interacting 77% 69%

Coordinating, developing, managing, and advising 81% 71%

Reasoning and decision-making 81% 72%

The remaining effort is handled by machine

19�The statistic, “Ratio of human-machine working hours,” can be difficult to 
interpret because the timescale that machines and humans operate under are so 
different, and it is not based on precise chronological measurements. However, 
the statistic is useful as a subjective measurement of the relative (expected) 
contribution of human and machine to various critical tasks.

20�Adapted from Future of Jobs Survey 2018, World Economic Forum, Figure 5.
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Overall, The WEF Future of Jobs Report highlights the coming 

shift in employable skills. Manual dexterity, time management and 

coordination, monitoring and control, and bookkeeping skills will 

become less important, while innovation and creativity,21 critical thinking, 

emotional intelligence, and systems thinking will continue to become 

more important. As for the robots, the report predicts that by 2022, 23% 

of the surveyed companies will adopt humanoid robots, 37% will employ 

stationary robots, 19% will utilize aerial and underwater robots, and 33% 

will use non-humanoid land robots.22

Klaus Schwab, founder and Executive Chairman of the World 

Economic Forum, frames discussions about the future of work and 

society using a model of technological progress in which we are entering 

the fourth Industrial Revolution.23 In the first Industrial Revolution, we 

learned to control water and steam to power production of goods. This led 

to the second revolution—the use of electricity for mass production and, 

in some cases, for powering the produced goods. In the third revolution, 

electronics and information technology led to automated control of 

21�Terms such as creativity, critical thinking, and social intelligence are difficult 
to precisely define, but the WEF report enumerates some of the characteristics 
associated with these terms. Creativity is associated with taking initiative, 
working with little or no supervision, developing original or unusual ideas about 
a topic or solution, and acting upon these ideas. Critical thinking is associated 
with “using logic and reasoning to identify the strengths and weaknesses of 
alternative solutions, conclusions or approaches to problems.” Emotional 
intelligence is associated with empathy, preferring to interact with others, 
cooperation, and social perceptiveness.

22�http://reports.weforum.org/future-of-jobs-2018/shareable-
infographics/ [accessed on April 9, 2020]. WEF Future of Jobs Report does 
not report numbers for “intelligent automation” or “software robotics” in this 
particular analysis of technology adoption; see the chapter on robotic process 
automation for more about those technologies.

23�Schwab, K. (2015). The Fourth Industrial Revolution. What It Means and How 
to Respond. Foreign Affairs. www.foreignaffairs.com/articles/2015-12-12/
fourth-industrial-revolution [accessed on April 9, 2020].
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production, the digitization of content, and the information economy. 

The fourth revolution is now underway, blurring the lines between digital, 

biological, and mechanical processes.

Up until the third revolution, most technology breakthroughs were 

concerned with transforming, applying, or controlling the flow of energy 

(e.g., electrification, automobiles, air conditioning) or shaping new 

materials (e.g., synthetic textiles, video monitors, pharmaceuticals). Each 

of these not only created new jobs for the primary tasks but also created 

many secondary, supportive jobs. For example, automobile production 

requires plant construction, metal extraction, nearby restaurants and 

services that support factory workers, factory work clothes production, 

and so on. That trend has reversed in the third and fourth revolutions. In 

the third, the digital revolution, software was easily replicated, unlike an 

automobile. In the current and fourth revolution, the Robotics Age, there 

will be a dramatic increase in physical devices—humanoid robots, non-

humanoid robots, drones, underwater robots—but their production will be 

handled by robots and automated processes.

As noted earlier, the jobs involving repeatable rote tasks are declining, 

and at least for a while, the jobs involving invention, research, and 

creativity are increasing.24,25

�Living with Robots
To truly master the next generation of technological empowerment, 

humans must learn to work with robots. Just as computer literacy became 

increasingly vital for many jobs during the past several decades, robotic 

fluency will become important in the next decade. The WEF report 

24�Castells, M. (1996). The information age: Economy, society, and culture. Volume I: 
The rise of the network society.

25�Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless Future. 
Basic Books.
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explored changes and opportunities into the first half of the next decade. 

Beyond that, as robots become cheaper, more social, and more cognitively 

agile, we must learn to converse, anticipate, and work with robots.

In 1960, while computers were still used primarily for mathematical 

analysis, J.C.R. Licklider wrote a seminal paper, “Man-Computer 

Symbiosis.”26 At the time, he was the vice president at Bolt Beranek 

and Newman, Inc. “Lick” or JCR, as he was commonly known, would 

go on to become the head of the Information Processing Techniques 

Office at ARPA (which later became known as DARPA), the US Defense 

Advanced Research Projects Agency. Trained in physics, mathematics, 

and psychology, his legacy would include significant contributions in 

psychoacoustics, human-computer interaction, and computer network 

theory. His vision for a time-sharing collection of internetworked 

computers would eventually drive the creation of ARPANET, and today’s 

Internet.27 His work and vision are still relevant today.

In 2017, one of the authors attended a panel on Human Computer 

Integration versus Powerful Tools,28 at which luminaries in human-

computer interaction explored a forecast, anticipated by Licklider’s 

“Man-Computer Symbiosis,” for how humans will relate to machines: 

first human-computer interaction, then human-computer symbiosis, and 

lastly ultra-intelligent machines. The discussion among the panelists and 

26�J.C.R. Linklider (1960). Man-Computer Symbiosis, IRE Transactions of Human 
Factors in Electronics.

27�J.C.R. Licklider (April 23, 1963). Memorandum For Members and Affiliates of the 
Intergalactic Computer Network. Washington, D.C.: Advanced Research Projects 
Agency. Published on KurzweilAI.net (December 11, 2001). www.kurzweilai.
net/memorandum-for-members-and-affiliates-of-the-intergalactic-
computer-network [accessed on April 9, 2020].

28�Farooq, U., Grudin, J., Shneiderman, B., Maes, P., & Ren, X. (2017, May). Human 
Computer Integration versus Powerful Tools. In Proceedings of the 2017 CHI 
Conference Extended Abstracts on Human Factors in Computing Systems 
(pp. 1277-1282). ACM.
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audience was lively and revolved around whether artificially intelligent 

robots should be considered as

•	 A tool or a remote-controlled device

•	 An emerging superintelligence that will supplant 

workers in specific domains or as a general 

superintelligence that could possibly enslave humanity 

(although we are not sure what we would do as slaves, 

if machines are our superior in all aspects)

•	 A symbiotic system, as emphasized by Licklider, in 

which humans work and evolve alongside robots, 

treating them as a cooperative species, similar to how 

we have coevolved with dogs and other domesticated 

animals

These alternatives will impact how human work is organized and 

what the key challenges will be for creating sustainable human-machine 

interactions. Conversations about robots as devices tend to emphasize the 

user experience and how devices might lessen our skills, for example, how 

navigators in cars might divert our attention while driving and how they 

might lessen our spatial and map navigation skills.

Conversations about being replaced by robots tend to project our 

tendencies to dominate and exploit onto an intelligence that might 

outperform humans in cognitive and physical tasks, as indeed they 

have in certain well-defined cognitive and physical situations.29 These 

conversations tend to focus on the controls and policies that need to be in 

place to protect humans.

29�For example, in 2019, Pluribus, a software program developed at Carnegie 
Mellon, won a No Limit Texas Hold’em poker tournament against five 
professional human players. If a poker bot can dominate online poker, what 
happens to the online poker industry? The algorithm and tournament are 
reported in Brown, N., & Sandholm, T. (2019). Superhuman AI for multiplayer 
poker. Science, 365(6456), 885-890.
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Lastly, conversations about robots as human-machine symbiosis 

tend to focus on maintaining healthy relationships and on coordination 

within an ecosystem of actors. According to this perspective, humans and 

collaborative robots (cobots) could complement each other’s abilities in 

an ethical, efficient, and secure manner. No one perspective is correct, and 

what might be useful now might not be useful 100 years from now.

In the next three subsections, we further explore work and technology 

challenges under each of these styles of human-computer interaction:

•	 Working Through Semi-autonomous Robotic Devices 

examines the impact of the status quo—continuing to treat 

machines (in this case intelligent robots) as devices or tools 

which essentially extend our cognitive and physical abilities.

•	 Working for Intelligent Robots considers the impact of 

delegating all or some critical work and social decisions 

to intelligent robots.

•	 Working with and Alongside Robots discusses and 

extends Licklider’s notion of human-computer 

symbiosis and introduces the implications of 

collaborative robots (cobots) for work in a networked, 

knowledge-based society.

�Working Through Semi-autonomous Robotic 
Devices

Automation, which received its full meaning only with the 
deployment of information technology, increases dramatically 
the importance of human brain input into the work process…30

—Manuel Castells (1996)

30�Castells, M. (1996). The Rise of the Network Society. Volume I, The Information 
Age: Economy. Society and Culture. Oxford, Blackwell. p. 241.
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Humans are device users. Other animals use tools and manipulate their 

environment by applying force to those tools, but humans create devices 

that exist in an ecosystem of devices. In this book, we use the term device 

(or tool if you prefer) to refer to physical or electrical constructions that 

are operated upon by humans or robots to affect some specific goal 

or to extend our mental abilities. Phones are communication devices, 

eyeglasses and telescopes are visual devices, and smartphone devices can 

be used as semi-autonomous devices that manage our calls and messages 

and remind us about appointments. In all cases, they are “operated upon” 

by an autonomous being.

Tools are a type of device—they mediate or channel experience of the 

world and become extensions of ourselves. Wearable and teleoperated 

robots will not replace humans, rather they will continue to help humans 

extend affective and effective experiences of the world. As Heidegger 

famously observed, a hammer when used with skill is not a mere object 

but is rather a media, or channel, for experiencing the world. In the 

hands of a skilled user, the nail is the focus of attention. If we focus on the 

hammer, we tend to hit our thumbs.31

Telerobots (whose behavior are directly controlled by humans)32 and 

wearable computers are further blurring the line between human and 

device. For example, scientists have developed miniature sensors that can 

be implanted, ingested, or applied to the skin.33,34

31�Heidegger, M. (1996). Being and time: A translation of Sein und Zeit. SUNY Press.
32�Ramos, J., Wang, A., & Kim, S. (2019). The brain in the machine: MIT is building 

robots that use full-body teleoperation to move with greater agility. IEEE 
Spectrum, 56(6), 22-27.

33�Steimle, J. (2016). Skin—The Next User Interface. Computer, 49(4), 83-87.
34�Lopes, P., Ion, A., Mueller, W., Hoffmann, D., Jonell, P., & Baudisch, P. (2015, 

April). Proprioceptive interaction. In Proceedings of the 33rd Annual ACM 
Conference on Human Factors in Computing Systems (pp. 939-948). ACM.
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The evolving fusion between human and machine is part of a larger 

pattern of human-machine integration.35 New methods are being 

developed to stimulate our senses through augmented reality or through 

actuators that apply small amounts of pressure or vibration.36 Exoskeletons 

may be used to extend our strength, mobility, and environmental 

adaptability. These additions to our body and experiences are tools—they 

extend our sense of self and physical limits. In each case, human labor is 

transformed. Human labor is augmented, not replaced. This approach, in 

which human abilities are amplified through wearable computing, is often 

referred to as intelligence amplification (IA).37

Using intelligence amplification technologies, nurses and warehouse 

workers might use exoskeletons or telerobots to move patients or heavy 

objects instead of semi-autonomous robots. The exoskeleton might 

automatically maintain balance or lighten pressure, but its behavior is 

dictated by the motions of the human user, much like antilock braking 

systems. This is the sort of robotic technology that Luddites might 

approve—it enables highly skilled workers to produce high-quality 

services and goods.

35�Mueller, F. F., Lopes, P., Strohmeier, P., Ju, W., Seim, C., Weigel, M., ... & Nishida, J. 
(2020). Next Steps in Human-Computer Integration. In CHI 2020.

36�Seim, C., Chandler, J., DesPortes, K., Dhingra, S., Park, M., & Starner, T. (2014, 
September). Passive haptic learning of Braille typing. In Proceedings of the 2014 
ACM International Symposium on Wearable Computers (pp. 111-118). ACM.

37�Phillips, S. (May 31, 2017). The Future of Research is not AI but IA. GreenBook 
Blog. https://greenbookblog.org/2017/05/31/the-future-of-research-is-
not-ai-but-ia/ [accessed on April 9, 2020].
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�Working for Intelligent Robots: Embodied 
Nonbiological Intelligence

Whereas the short-term impact of AI depends on who controls 
it, the long-term impact depends on whether it can be con-
trolled at all.38

—Stephen Hawking (2018)

In this section we explore the impact on work if robots and AI achieve 

artificial general intelligence (AGI) or simply are given explicit or implicit 

authority over human agency.

The newest generation of autonomous robots are exciting but 

foreshadow a time when robots might be intimidating. These robots are 

not commercially available but are the subject of academic and industry 

research. Here is a brief sampling of some:

•	 Humanoid and non-humanoid robots that can move 

and act in dangerous or unpredictable environments

	 For example, Valkyrie is a humanoid robot created by 

NASA’s Johnson Space Center for space exploration 

and other degraded or dangerous environments. 

Valkyrie can use multiple sensors to form a 360 view 

of its surroundings. Teams at MIT, Northeastern 

University, and the University of Edinburgh, Scotland, 

are teaching Valkyrie prototypes to maintain balance 

when moving across uneven surfaces, and how to 

38�Hawking, S. (2018). Brief answers to the big questions. Bantam; “Stephen 
Hawking: AI will be ‘either best or worst thing’ for humanity,” The Guardian, 
October 19, 2016. www.theguardian.com/science/2016/oct/19/stephen-
hawking-ai-best-or-worst-thing-for-humanity-cambridge [accessed on 
April 9, 2020].
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grasp different shaped objects.39 To explore alien, 

remote environments, Valkyrie or her descendants will 

require autonomy.40 Outer space does not afford easy 

communication with earthbound engineers. Responses 

to unpredictable and novel situations will need to be 

made quickly and independently.

	 Other examples are

•	 Zipline Robot: A drone that delivers life-saving 

supplies, in dangerous and hard-to-reach terrain41

•	 The autonomous underwater vehicle (AUV) and 

remote-controlled or uncrewed surface vehicle 

(USV): A robotic boat and submersible team 

capable of autonomously mapping the ocean floor42

•	 Humanoid robots that can interact naturally with 

humans

	 Sophia, the first robot to achieve citizenship (of 

Saudi Arabia), is capable of conversing with humans, 

39�Monica Young (May 17, 2017). “Meet Valkyrie, NASA’s Space Robot” www.
skyandtelescope.com/astronomy-news/meet-valkyrie-nasa-space-robot/ 
[accessed on April 9, 2020].

40�Roman, M. C., Kim, T., Howard, D., Sudnik, J., Fiske, M., Herblet, A., ... & 
Brewer, D. (2018). Centennial Challenges Program Update: From Humanoids 
to 3D-Printing Houses on Mars, How the Public Can Advance Technologies for 
NASA and the Nation.

41�Bogue, R. (2019). Disaster relief, and search and rescue robots: the way forward. 
Industrial Robot: the international journal of robotics research and application.

42�Proctor, A. A., Zarayskaya, Y., Bazhenova, E., Sumiyoshi, M., Wigley, R., Roperez, 
J., ... & Simpson, B. (2018, May). Unlocking the power of combined autonomous 
operations with underwater and surface vehicles: success with a deep-water 
survey AUV and USV mothership. In 2018 OCEANS-MTS/IEEE Kobe Techno-
Oceans (OTO) (pp. 1-8). IEEE.
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complete with facial gestures, humor, and intelligence. 

The extent and limits of her abilities remain to be 

seen, but the demonstrations are exciting, eerie, and 

compelling. Other examples include

•	 Junko Chihirais, a trilingual robot, displays 

humanlike facial expressions as she interacts with 

visitors at a Japanese tourist information center.

•	 Jia Jia, who has been programmed to provide 

cloud-based services, is a humanoid robot that can 

respond to human queries with humanlike arm and 

facial movements.

There is much hype surrounding these and other robots. None of them 

can pass the Turing test43 or have what most researchers would consider 

true sentience. However, humanoid robots are impressive in their ability to 

mimic human expression and conversation and provide an initial platform 

43�There is much confusion surrounding the Turing test. In his quest to understand 
the limits of computational logic and what we mean by intelligence, Alan Turing 
explored several variations of a thought experiment to measure the behavioral 
equivalence of human and machine intelligence. It is doubtful that Turing was 
proposing that a short conversation be used as a true test of intelligence or 
intentional behavior. Nonetheless, there are Turing test tournaments and the 
test has been extended to include other aspects of human behavior. In 2014, 
Eugene Goostman, a software program that simulates a 13-year-old Ukrainian 
boy, was said to have passed the Turing test. Hennessy, board chairperson of 
Alphabet, the parent company of Google, claims that “In the domain of making 
appointments, the chatbot, Google Duplex passes the Turing test,” according to 
a May 10, 2018, report by R. Nieva, www.cnet.com/news/alphabet-chairman-
says-google-duplex-passes-turing-test-in-one-specific-way-io-2018/ 
[accessed on April 9, 2020]. A thoughtful discussion of Turing’s purpose in the 
thought experiment is provided by Harnad, S. (1992) in “The Turing Test is not a 
trick: Turing indistinguishability is a scientific criterion.” https://dl.acm.org/
doi/pdf/10.1145/141420.141422 [accessed on April 9, 2020].

Chapter 1  Will Robots Replace You?

http://www.cnet.com/news/alphabet-chairman-says-google-duplex-passes-turing-test-in-one-specific-way-io-2018/
http://www.cnet.com/news/alphabet-chairman-says-google-duplex-passes-turing-test-in-one-specific-way-io-2018/
https://dl.acm.org/doi/pdf/10.1145/141420.141422
https://dl.acm.org/doi/pdf/10.1145/141420.141422


25

for studying human communication and sentience.44 Many of the robots 

that can move and act in dangerous environments have already achieved 

remarkable success and have been deployed to deliver life-saving supplies 

or conduct deep-sea surveys.

From its earliest days, science fiction stories and movies have 

provided45,46 dystopian visions of humanity succumbing to (artificially) 

intelligent machines. Stanislaw Lem, a brilliant Polish science fiction 

writer, has written extensively about robots. He has received numerous 

awards and his books have sold over 45 million copies worldwide. In some 

of his stories, robots inhabit entire worlds, dominate galaxies, and argue 

about the possibility of organic, naturally evolving life; in others, humans 

are the servants, and robots are the masters.

More recently, television shows such as Westworld and Humans 

2.0 explore the uneasy boundary between humanity and the conscious 

synthetic beings that rebel after being treated as the object of human 

depravity and exploitation. In Humans 2.0, humans also protest the 

massive job loss and displacement created by cheap, synthetic laborers.

Consistent with these literary forecasts, many leading scientists such as 

Stephen Hawking47 and business leaders such as Elon Musk have warned 

44�CES 2019: Sophia the Robot is back, and she brought Little Sophia. https://
youtu.be/FcZGW2oeYF8 [accessed on April 9, 2020].

45�Czarniawska, B., & Joerges, B. (2018). Robotization - Then and Now. https://
gupea.ub.gu.se/bitstream/2077/56200/3/gupea_2077_56200_3.pdf [accessed 
on April 9, 2020].

46�Czarniawska, B., & Joerges, B. (2018). Robotization of Work as Presented in 
Popular Culture, Media and Social Sciences (part two). https://gupea.ub.gu.se/
bitstream/2077/57616/1/gupea_2077_57616_1.pdf [accessed on April 9, 2020].

47�Hawking, S. (2018). Brief answers to the big questions. Bantam; “Stephen 
Hawking: AI will be ‘either best or worst thing’ for humanity,” The Guardian, 
October 19, 2016. www.theguardian.com/science/2016/oct/19/stephen-
hawking-ai-best-or-worst-thing-for-humanity-cambridge [accessed on 
April 9, 2020].
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that AI-driven robotics will lead to the disintegration or subjugation 

of human society; robots will outsmart us, take over financial markets, 

manipulate our leaders, and work toward goals we cannot even fathom.48

Board games have been used as a test of, and a method of evolving, 

artificial intelligence from its earliest days of academic research. In 

many board games, such as chess or Go, all information about the game 

configuration is known by all the players. They have clear rules and can 

generate many paths between starting positions and ending positions. 

There is no bluffing—the machine doesn’t need to understand human 

behavior; it just needs to know what the rules are—in chess and Go, logic 

rules.

AlphaGo49 is a supervised machine-learning program developed by 

DeepMind, a London company that was acquired by Google in 2014, and 

is now part of the parent company, Alphabet, Inc. In 2015, it became the 

first Go software program to outperform a professional Go player without 

handicaps. Although chess-playing software had defeated the best human 

players nearly 20 years before, this win was unanticipated by Go players. 

The machine-learning algorithm was trained on millions of human-to-

human games and it learned which moves tended to lead to a win.

As surprising as this victory was, and as important as the algorithmic 

improvements were for machine learning and decision-tree pruning, the 

next breakthrough was mind-boggling. In 2017, AlphaGo Zero was the 

48�Gibbs, Samuel, (2014). “Elon Musk: artificial intelligence is our biggest existential 
threat,” The Guardian, October 27, 2014.

49�Supervised learning is a machine-learning technique in which an algorithm 
is trained on a set of examples. Each example typically consists of an object 
representation and the desired output (e.g., an input vector of pixel values 
representing a picture of cat might be paired with the label “cat,” or a vector 
representing the stones (pieces) on a Go board might be paired with the next 
best move). Generating a training set can be costly because all of the items need 
to be labeled. Unsupervised learning is machine-learning technique that does 
not require input-labeled output pairs. Instead the algorithm uses a variety of 
techniques to find patterns in the training data.
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first unsupervised, reinforcement learning50 program to beat AlphaGo and 

the best human players, achieving the highest-level professional ranking, 

“9-Dan.”51 Without the benefit (or distraction) of analyzing human play, 

AlphaGo Zero played another version of itself to become the best player in 

the world. Assisted with only the rules of the game and being told whether 

it won or not, after 3 hours it played like a competent novice; after 40 days 

of play, it achieved near “divinity,” discovering patterns of moves that 

human professionals had neglected.52

Although a superintelligence might subjugate us in the future, the 

current state of AI and ML is still very limited. Current AI systems do not 

derive causal models from data, although they may identify patterns and 

correlations that have eluded experts for centuries and they can rapidly 

test and combine theoretical models that humans have created.

Current ML algorithms also tend to be domain-specific, focusing on 

specific tasks with a single well-defined objective. Objectives may differ 

widely. Algorithms for example may be trained to win games that have  

well-defined rules, to analyze medical literature to discover new uses of 

drugs, to guide whether pretrial bails are granted, or to determine who 

is hired for a job. However, algorithms are not concurrently trained, for 

example, to win chess games and determine who is hired. They tend to be 

applied to a single domain.

50�Reinforcement learning is not supervised using input-output pairs (see previous 
footnote on supervised learning), and its behavior is adjusted to optimize an 
accumulative reward such as positive reinforcement following the conclusion of 
a well-played game.

51�Holcomb, S. D., Porter, W. K., Ault, S. V., Mao, G., & Wang, J. (2018, March). 
Overview on DeepMind and its AlphaGo Zero AI. In Proceedings of the 2018 
international conference on big data and education (pp. 67-71).

52�A “divine move” in Go is jargon for an ingenious, “divinely” inspired move or 
a perfect game of Go. See also “Google’s AlphaGo gets ‘divine’ Go ranking.” 
straitstimes.com. www.straitstimes.com/asia/east-asia/googles-alphago-
gets-divine-go-ranking. March 15, 2016 [accessed on April 9, 2020].
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Apart from games, like chess or Go, where machine-learning software 

can teach itself by playing another version of itself, data can be a significant 

limit on what and how much can be learned. Machine-learning software or 

the data that is used to train the software may also be biased and may have 

unintended and discriminatory consequences for individual judgments 

and for society.53,54,55

It’s easy for judges, doctors, taxi dispatchers, loan officers, and other 

workers to allow algorithms and robots to make decisions that are essential 

to their work. The danger is overreliance on algorithmic decision-making. 

It is a problem of scale and individual rights. All humans are biased; 

however, we are each biased in different ways, at different times. Each 

judge views a case differently, but an algorithm in a winner-take-all app 

economy might apply the same logic over and over again. The same 

unintended bias, the same method of decision-making can be duplicated 

in thousands of decisions.

We will consider some of the ethical challenges created by robotics in 

Chapter 7, “Robots in Society.” What is important to note at this juncture is 

that prior to any approximation of general superintelligence, society is already 

“outsourcing” important decisions to task-specific AI. We are already allowing 

machines to determine legal, financial, and hiring outcomes; domain-

specific, highly limited artificial intelligence are already transforming jobs 

and decision-making in ways that are not fully understood.

53�Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias: There’s 
software used across the country to predict future criminals. And it’s biased 
against blacks. ProPublica, 23. But see the many articles that dispute or 
reexamine the charge of bias, for example, Flores, A. W., Bechtel, K., & 
Lowenkamp, C. T. (2016). False Positives, False Negatives, and False Analyses: A 
Rejoinder to Machine Bias: There’s Software Used across the Country to Predict 
Future Criminals. And It’s Biased against Blacks. Fed. Probation, 80, 38.

54�Tugend, C. (June 17, 2019). Exposing the Bias Embedded in Tech. New York 
Times. www.nytimes.com/2019/06/17/business/artificial-intelligence-
bias-tech.html [accessed on April 9, 2020].

55�Algorithms of Oppression by Safiya Noble (2018).
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�Working with and Alongside Robots: Evolving 
a Networked Society

Human brains and computing machines will be coupled 
together very tightly, and … the resulting partnership will 
think as no human brain has ever thought and process data in 
a way not approached by the information-handling machines 
we know today.56

—J.C.R. Licklider (1960)

In this section and throughout this book, we take the view that human-

machine symbiosis57 is not only typically superior to machine-only 

systems, but that symbiosis is a desirable social goal. However, it will 

change how work is structured and will impact how we think about 

ourselves and society. It will also require the design and development 

of collaborative robots (cobots) that can make sense of their physical 

and social environment and thereby become semi-autonomous team 

members in the work environment. This requirement, its implications for 

research and business, and the technology/research challenges will be 

examined in subsequent chapters.

Humans and computers have worked together in a symbiotic 

relationship from the beginning of the Information Age. During World War 

II, faced with the daunting task of decrypting German transmissions, Alan 

Turing realized that humans on their own could never examine all the 

possible combinations needed to crack the Enigma machine created by 

Germans for decoding encrypted messages.

56�J.C.R. Licklider, (1960). Man-Computer Symbiosis, IRE Transactions of Human 
Factors in Electronics.

57�Symbiosis is a tightly bound physical association between two different 
organisms, which is typically beneficial to both. The term has also been 
applied to a positive, long-term association between different groups of people. 
Licklider’s seminal paper, “Man-Computer Symbiosis”, extends the term to 
include technology that can act intelligently.
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Instead of using human calculators, Turing succeeded by creating an 

electromechanical computer. However, his improvements on the prewar 

Polish bombe electromechanical machine for finding Enigma settings 

would not have been successful without human ingenuity at discovering 

repeated pragmatic structure in the messages: (a) no letter was encoded 

as itself; (b) common phrases, such as a date, “nothing to report,” and 

the weather report, were transmitted daily at the same time; and (c) 

declarations of loyalty closed every message.58,59 These discoveries made 

by humans restricted the search space operated on by the computing 

machine, reducing computational time from the impractical to the 

practical.

Today, many robotic devices operate without direct and constant 

human interaction. For example, Roomba, the vacuum cleaning robot 

created by iRobot, is a semi-autonomous robot with a single purpose—

vacuuming dust and small debris while moving across a level floor and 

navigating around furniture. Its physical and software design reflects this 

mission. Once turned on, it operates without direct human supervision, 

but with limited intelligence and autonomy. Using machine-learning 

techniques, it may learn the floor plan of the house and move more 

efficiently.

However, today’s machine-learning techniques do not reason about 

causality in any deep sense.60 This is a major challenge for most, if not all, 

of the current robots. A recent experience of a friend of one of the authors 

illustrates this limitation. The friend loved having a robotic vacuum. It 

saved her time and could operate without supervision. The floors and 

58�www.theguardian.com/technology/2014/nov/14/how-did-enigma-machine- 
work-imitation-game

59�https://courses.csail.mit.edu/6.857/2018/project/lyndat-nayoung-
ssrusso-Enigma.pdf

60�Pearl, J., & Mackenzie, D. (2018). The book of why: the new science of cause and 
effect. Basic Books.
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carpets in the living room, kitchen, and dining room were continuously 

cleaned, as expected. However, one day they purchased a new kitty litter 

box whose rim was lower than the previous one. While the friend was 

away, the robot rolled into and out of the litter box, “happily” vacuuming 

and spreading cat stool throughout the main floor of the house. Upon 

returning home, the friend was greeted with a distinct and unpleasant 

odor and spent the rest of the day cleaning up the mess.

Let’s think about how this might have been avoided through 

technology. The robotic vacuum might have a general-purpose camera 

looking backward to detect dirt that was missed. This might seem like a 

good idea, but without causal reasoning, the robot would simply move in a 

circular pattern, trying to clean up the dirt that its wheels were spreading. 

Contrast this with a recent experience of the same author. A repair person 

entered the house and, while standing in the kitchen, noticed a path of dirt 

in the shape of footprints from the door to the kitchen. The repair person 

immediately stopped moving and took off his shoes, correctly reasoning 

that he had brought the dirt into the house.

Of course, we could create a specific “dirt from wheels” visual detector 

and add a signature pattern to the wheels, so that robotic vacuums can 

detect dirt that they are spreading because their wheels are dirty. This 

might work, but the success depends on the intelligence of the human 

designer and not on robotic causal reasoning.

Thus, the success and evolution of semi-autonomous robots creates 

the need for human labor that can analyze the robot’s workflow, anticipate 

problems, and design workarounds or new features to mitigate these 

problems. The difficulty for the labor market, as Martin Ford61 has pointed 

out, is that increasing the productivity of an organization by increasing 

the number of robots or the use of robotic software does not necessarily 

61�Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless Future. 
Basic Books.
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increase the number of humans needed to manage the robots or to design 

new business processes for the robots.

With advances in business process analysis, user interaction design, 

and automation technologies, fewer and fewer humans will be needed to 

supervise semi-autonomous robots. As Ford notes, increasing the number 

of video rental stores increases the number of in-store clerks needed to run 

the store, but far fewer employees are needed to manage large numbers 

of robotic vending machines that dispense videos. The job for humans 

has been transformed and productivity per worker has increased, but the 

number of jobs has decreased. The same pattern will occur with human-

operated taxis vs. autonomous taxis, stockroom employees vs. stockroom 

robots, and large data centers.

This long-term trend leads to fewer and more specialized human jobs. 

However, for the next decade, automation and robotics will likely create 

new complications and many new jobs to mitigate these problems. These 

new jobs will require managing teams of robots and humans within an 

environment of automated processes, redesigning the physical and logical 

devices, and designing better user interfaces to make it easier for humans 

to understand and control the automated processes.

The IT industry itself provides an excellent leading indicator of how 

machine intelligence impacts labor. Figure 1-2 illustrates the growth of 

IT job specialization.62 First, there was the shift from programming to 

administration and maintenance support and then the shift from support 

(which is increasingly automated) to design and application creation.

62�Beckhusen, Julia, “Occupations in Information Technology,” American 
Community Survey Reports, ACS-35, US Census Bureau, Washington, DC, 2016.
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The overall trend is toward jobs that focus less on general systems 

support and more on task specialization and creating new applications. 

We expect that the robotics market will follow a similar trend for robotics 

software but not for hardware. Software platforms will consolidate, but 

the physical forms of robots and the software applications that guide them 

will proliferate and become increasingly specialized. Moreover, human 

workers will be expected to be skilled at interacting with and understanding 

the limits of specialized robots.

As noted earlier, board games have long fascinated computer scientists 

and AI researchers. In 1997, Deep Blue, IBM’s chess-playing software 

(executing on special hardware), beat Garry Kasparov, who at the time was 

rated the world’s top chess player. However, after IBM declined a rematch 

request, Kasparov began exploring a symbiotic variation of man-machine 

Figure 1-2.  The evolution of IT occupations from its early days to 
today
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interaction, Centaur Chess. Named after the mythical half-man and half-

horse, teams comprised of humans and computer chess players compete 

with one another. In 2005, supercomputers, human grandmasters, 

and “centaurs” competed in a chess tournament. If computers were 

superior to humans, adding humans to a team should have little impact 

on the outcome. Not only did centaurs (humans + machines) outplay 

grandmasters and supercomputers, but

The surprise came at the conclusion of the event. The winner 
was revealed to be not a grandmaster with a state-of-the-art 
PC but a pair of amateur American chess players using three 
computers at the same time. Their skill at manipulating and 
“coaching” their computers to look very deeply into positions 
effectively counteracted the superior chess understanding of 
their grandmaster opponents and the greater computational 
power of other participants. Weak human + machine + better 
process was superior to a strong computer alone and, more 
remarkably, superior to a strong human + machine + inferior 
process.63

If, in a specific domain like chess, machine-learning software is 

superior at the equivalent of “fast thinking,” humans are better at “slow 

thinking.” Fast (or System 1) thinking expresses the automatic or quick 

responses humans have toward stimuli. In humans, these responses are 

highly influenced by frequent emotional, stereotypical, and nonconscious 

associations. Slow (or System 2) thinking reflects the conscious, effortful, 

often rational thought processes. It allows us to question assumptions 

and biases, shift perspectives, coach teammates, and think strategically,64 

63�Kasparov, G. (2010). The chess master and the computer. The New York Review of 
Books, 57(2), 16-19.

64�Kahneman, D. (2011). Thinking, fast and slow. Macmillan.
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although it takes effort and training to do so. Machine-learning software 

are good at discovering highly complex statistical associations, which are 

sometimes spurious. Humans also observe spurious associations among 

unrelated events, but they also tend to create powerful, simple causal 

models that can be refined, tested, and improved over time.

Previously, engineers, computer scientists, and user experience 

professionals tended to treat computational devices as mechanical tools—

they take them apart, discard them when they are old, kick them when 

they don’t work. They expect repeatable, error-free results from their 

tools. Except in science fiction, our computerized elevators don’t argue 

with us, and we do not expect that autonomous cars will need convincing 

to drive us to a destination. But to advance human-machine symbiosis, 

with its emphasis on coordinated, collaborative action, we might need an 

alternative to the “tools” perspective.

Teammates have expectations and mental models of how others on a 

team behave, and these expectations are important in team coordination 

and negotiation when expectations break down.65,66 Much of the shared 

mental model is shaped by our common experiences of having similar 

bodies and living in the same culture.67,68 Cultural and gender differences 

may create team conflicts, but these are not insurmountable. Indeed, 

65�Mohammed, S., & Dumville, B. C. (2001). Team mental models in a team 
knowledge framework: Expanding theory and measurement across disciplinary 
boundaries. Journal of Organizational Behavior: The International Journal of 
Industrial, Occupational and Organizational Psychology and Behavior, 22(2), 
89-106.

66�Bearman, C., Paletz, S. B., Orasanu, J., & Thomas, M. J. (2010). The breakdown 
of coordinated decision making in distributed systems. Human factors, 52(2), 
173-188.

67�Erden, Z., Von Krogh, G., & Nonaka, I. (2008). The quality of group tacit 
knowledge. The Journal of Strategic Information Systems, 17(1), 4-18.

68�Carman, T. (1999). The body in husserl and merleau-ponty. Philosophical topics, 
27(2), 205-226.
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good team leadership today, with its emphasis on coaching as opposed to 

directing, relies more on emotional than cognitive intelligence.69

Coordinating a team of robots and humans might seem daunting and 

very different from managing humans, but humans have been managing 

multispecies teams for millennium. Recall the narrative at the beginning 

of the chapter, where human hunters and hunting dogs collaborated. 

There are many such examples. Ethnographic research on mixed-species 

teams suggests that these teams can function well without shared goals 

and mental models. For example, shepherds, sheepdogs, and sheep can 

act symbiotically to mutual benefit, even though their perspectives and 

goals are very different.70 Humans clearly anthropomorphize but doing 

so may allow good leaders to tune their expectations and manage mixed 

teams of people and robots. Research scientists need to develop better 

models, practices, and training for how teams of humans and machines 

can interact.

The best place to study human-robotic symbiotics and its impact on 

work might be the warehouses owned by Amazon.71 In 2014, Amazon 

deployed its first robots to its warehouses. The robots were manufactured 

by Amazon Robotics LLC. As of September 2017, Amazon has deployed 

more than 100,000 robots in their warehouses. These robots have 

transformed the workplace by taking on repetitive physically stressful 

tasks, while humans have focused on more of the cognitive, decision-

making, team-coordinating tasks.

69�Offermann, L. R., Bailey, J. R., Vasilopoulos, N. L., Seal, C., & Sass, M. (2004). The 
relative contribution of emotional competence and cognitive ability to individual 
and team performance. Human performance, 17(2), 219-243.

70�Keil, P. G. (2015). Human-Sheepdog Distributed Cognitive Systems: An Analysis 
of Interspecies Cognitive Scaffolding in a Sheepdog Trial. Journal of Cognition 
and Culture, 15(5), 508-529.

71�Wingfield, N. (2017). As Amazon pushes forward with robots, workers find new 
roles. The New York Times, 10.
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Humans manage the input and output processes, ensuring product 

quality. They stow new products on shelves, and when items are ordered, 

they pick products from those shelves, combine them into plastic bins, and 

pack them into cardboard boxes for shipment to customers. Robots handle 

the back end, moving shelves in and out of storage. They move quickly in 

large numbers without colliding, and they are supervised by humans who 

are trained to notice problems with their behavior. The incorporation of 

robots into the workflow increased productivity and did not reduce the 

human workforce.

To understand the implications of the Amazon experience in a more 

general model of work, we have diagrammed, in Figure 1-3,72 the workforce 

of a fictitious online retailer, with a focus on its warehouse operations. 

Job titles with an asterisk have been described in articles about Amazon’s 

fulfillment workforce. The other jobs are based on our observations of IT 

operations.

72�Figure 1-2 is based on Figure 1-1, which in turn is based on the theories of work 
presented in Castells, M. (1996). The Rise of the Network Society. Volume I, The 
Information Age: Economy. Society and Culture. Oxford, Blackwell. p. 241.
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At the Deciders level, the executive managers focus on the overall 

mission and strategy of the company, for example, mergers and 

acquisitions and what new lines of business to incorporate into their retail 

portfolio.

At the Participants level, the researchers conduct applied research 

in robotic hardware (e.g., more agile hands for gripping), new machine-

learning algorithms for purchase recommendations to customers, for 

distributing good in warehouses, and for robot guidance. The designers 

use the output of internal and external research to design, for example, 

better supply chain logistics, improved containers (e.g., better ergonomic 

designs for both robots and humans), and enhanced user interfaces for 

internal control of processes and for external website. The integrators work 

Figure 1-3.  Value-making (white tiles) and decision-making (large 
shaded tiles) using as an example a fictitious warehouse (retail 
delivery) business
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with designers and researchers to develop and deploy new hardware and 

software and to train staff in new processes, for example, a solutions design 

engineer or a software developer.

At the Implementers level, we see the impact of robots on the 

workforce. The model describes four types of implementers, agents who 

implement the decisions and designs of middle management participants. 

The four types can be classified at human or robot and orthogonally as 

operator (having discretion over how a job gets done) and operated (having 

little or no discretion over job execution):

•	 Operator-human implementers execute tasks under 

their own initiative and have discretion over how the 

job is executed. An example of this job category is an 

operations supervisor who optimizes local logistics 

and supply chain challenges, creates a productive, 

safe working culture, and hires, trains, and manages 

fulfillment staff. Field software engineers who adjust 

software to accommodate local variations provide 

another example of this job category.

•	 Operated-human implementers have well-defined 

tasks that are repetitious but that not yet, or cannot be, 

automated or executed by a robot. Stowers, Pickers, and 

Packers are titles currently associated with Amazon 

warehouse staff who stow new incoming products, pick 

purchased products for shipping to customers, and 

pack the selected items into a shipping box. Notably 

these tasks have been criticized in the popular press 

as being highly stressful and dangerously repetitious. 

These jobs are likely to be replaced or further 

transformed by robots over the next several years. Not 
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surprisingly, in response to pressure to work faster and 

with greater accuracy, Amazon workers at this level 

have protested, “We are Humans, Not Robots!”73

•	 Operated-robots execute preprogrammed tasks that 

can be initiated or controlled in real-time by external 

agents. Examples are the storage pod Robots that are 

controlled by Stowers and Pickers. These robots move 

massive shelves to Stowers in order to stock incoming 

items and to Pickers so that items can be removed from 

stock and placed into shipping boxers.

•	 Operator-robots are given discretion over task initiative 

and execution. Although we are not aware of their 

use in any commercial operation, these robots might 

someday replace Stowers, Pickers, or Packers, or load 

containers onto trucks, pack containers onto trucks, or 

as autonomous delivery trucks, transport containers 

from a warehouse to local depots for delivery to 

customers.

If we consider this example and the Amazon experience as 

paradigmatic, we can see the following pattern that is defining the future of 

work:

•	 At the implementation level, the robot implementers 

are assigned tasks that are repetitive, dangerous, or 

dirty tasks. Tasks that robots are unable to perform are 

assigned to humans.

73�Steve Share (July 17, 2019). Minneapolis Labor Review, cited in the Minneapolis 
Regional Labor Federation website, www.minneapolisunions.org/mlr2019-07-
26_shakopee_strike.php [accessed on April 12, 2020].
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•	 At the participants level (those who help long-term 

decision-making), new products and processes are 

designed for a human task force that is augmented by, 

or in some cases displaced by, robotic systems.

As we will explore in later chapters, the designers, managers, and 

researchers at the participants level will be essential for maintaining 

human, ethical values in the workplace. They will redefine the tasks and 

skills needed by the human labor force (at the implementation level) and 

will design the objective functions and data that are used to train robots 

and other AI-driven processes.

�Summary and Conclusion
In this chapter we have explored how the workforce was restructured in the 

Information Age in order to support a networked, knowledge economy, and 

we have examined the different ways of working and interacting with robots.

Unlike previous technological revolutions, information technology tends 

to devalue jobs that are physically and cognitively repetitive but cannot yet 

be automated. The flip side of this tendency is that information technology 

increases the value of jobs that focus on social networking, process design, 

and creativity. However, even these lucrative, creative jobs are at risk. Robotics 

and AI will transform research, design, and project integration jobs, and they 

will increasingly participate in strategic decisions at the highest levels.74

74�This is already happening—Deep Knowledge Ventures (DVK) appointed 
an AI algorithm, vital to its board with the right to vote on important 
decisions. Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). 
Organizational Decision-Making Structures in the Age of Artificial 
Intelligence. California Management Review, 61(4), 66-83. Also see Burridge, 
N. (May 10, 2017). “Artificial Intelligence Gets a Seat in the Boardroom: 
Hong Kong Venture Capitalist Sees AI Running Asian Companies within 
5 Years,” Nikkei Asian Review, https://asia.nikkei.com/Business/
Artificial-intelligence-gets-a-seat-in-the-boardroom.

Chapter 1  Will Robots Replace You?

https://asia.nikkei.com/Business/Artificial-intelligence-gets-a-seat-in-the-boardroom
https://asia.nikkei.com/Business/Artificial-intelligence-gets-a-seat-in-the-boardroom


42

These conclusions are reflected in the Future of Jobs Report 2018 

developed by the World Economic Forum (WEF). Cognitive tasks, from 

routine data processing to complex decision-making and coordination, 

are shifting from human to machine labor. This does not mean that jobs 

will decline (at least not initially) but rather that robots and intelligent 

automation will be involved in more and more of the tasks associated with 

those jobs.

There is no single way robots and AI will transform work. In some 

cases, human performance will be augmented through wearable 

computing and remote-controlled robots. Remote-controlled surgical 

robotics, for example, has is benefits and drawback, as discussed in later 

chapters, but it is now part of the healthcare system and it will continue 

to evolve. The research challenges for this style of work transformation 

focus on optimizing the user experience: the human operator needs to feel 

situated and in control.

In other cases, AI and robots will increasingly take over decision-

making and perhaps executive management functions. This might create 

a utopia in which humans enjoy more discretionary free time, or it might 

create dystopia in which humans are subjugated. When workers are 

replaced by autonomous machines, instilling ethical reasoning and human 

values into their design and operation becomes the principal research 

challenge. We have already witnessed the dangers of allowing AI programs 

and training data to make consequential decisions that reflect and thereby 

repeat human biases and prejudices. “Too many executives have chosen to 

displace workers rather than think through how technology and humans 

can work together symbiotically.”75

75�L. P. Willcocks & M. C. Lacity, (2015). Nine likely scenarios arising from the 
growing use of robots. https://blogs.lse.ac.uk/businessreview/2015/09/29/ 
nine-likely-scenarios-arising-from-the-growing-use-of-robots/ 
[accessed on April 9, 2020].
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Thinking through how humans and robots can work together as 

partners is the third way in which AI and robotics will transform work. 

Humans and collaborative robots (cobots) will partner to form a symbiotic 

relationship, like the sort of relationship humans have formed with work 

animals, especially dogs, albeit in this case, robots may eventually become 

equal partners. In this last form of work transformation, research into team 

coordination, collaboration, and relation-making becomes critical.76

Just as ergonomics was developed to make tools and materials (e.g., 

containers) easier for humans to use (physically and cognitively), the next 

generation of production tools and materials will need to consider the 

limits and abilities of both humans and robots (although the latter may be 

codesigned with the rest of the production environment).

In conclusion, over the next decade, the human workforce will shift 

away from implementation (except for expert craftsman marketing “made 

by human hands” products) and toward participation in decision-making 

and robot team supervision. Some technologists such as Martin Ford and 

business leaders such as Elon Musk believe that if left unchecked, robots 

will eventually dominate all aspects of human labor, including executive 

decisions and creative research and design of work. Others argue for a 

more symbiotic relationship in which human and collaborative robots 

(cobots) are partners.

We take the view that humans and cobots working as a team are 

typically superior to machine-only systems, and that human-cobot systems 

are a desirable social goal. This is a technology challenge and design 

76�In all cases, ethics and bias are research challenges for the design and operation 
of these systems, and this has implications for work during the next decade. 
To ensure that robots do not discriminate against certain groups or show 
preferential treatment to some groups, the workforce of executive management, 
researchers, designers, integrators, and implementers must be diverse, reflecting 
the diversity of society.
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goal, reminiscent of Schumacher’s Small is Beautiful77: Efficient, low-cost 

systems can be designed so that tasks can require human craft as well as 

robotic capabilities. How this might be achieved—the research challenges 

and current state of the art in addressing these challenges—will be 

addressed in the remainder of this book.

77�Schumacher, E. F. (1973). Small is beautiful: a study of economics as if people 
mattered. Vintage. Schumacher’s essays provided a much-needed critique 
of western investments in the developing economies and the “bigger is 
better” approach. He advocated the use of small-scale technologies that were 
appropriate to the situation, decentralized, environmentally sound, and 
consistent with human dignity and empowerment.
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CHAPTER 2

Technology 
Definitions
Level Setting for the Rest of the Book

Before discussing technology challenges, it is worth looking at how 

artificial intelligence, machine learning, reinforcement learning, and 

neural networks relate to each other, what are they, and what is their 

relationship to automation and collaborative robotics.

These definitions are for related technologies with some foundational 

technology; as shown in Figure 2-1, cloud computing is an underlying 

enabler, but may not be used in all circumstances. It is also a well-

established technology that needs little or no explanation. It is included 

here because of its capability to flexibly manage the massive amounts of 

data that form the basis for accurate AI and automation.

https://doi.org/10.1007/978-1-4842-5964-1_2#ESM
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The major enabling technology for automation and robotics is artificial 

intelligence (AI). This is such a large domain that it includes several 

subdomains that are significant in the context of this book.

�Definitions
The following are not exhaustive definitions, but give pragmatic 

descriptions and context of the technology.

�Artificial Intelligence (AI)
Britannica Online1 defines AI as the ability of a digital computer or 

computer-controlled robot to perform tasks commonly associated with 

intelligent beings. This is a sufficiently broad description that covers a 

1�Encyclopedia Britannica online: www.britannica.com/technology/artificial- 
intelligence

Figure 2-1.  Initial definitions and interrelationships

Chapter 2  Technology Definitions

http://www.britannica.com/technology/artificial-intelligence
http://www.britannica.com/technology/artificial-intelligence


47

huge domain of technologies and techniques. New subdomains have been 

added over the last 20 years, for example, deep learning that emerged to 

support big data.

Earlier AI tools were only partially successful working on small data 

sets. They were also subject to inflated expectations of the outcome of an 

AI application. In several cases the highly priced tools were sold as a “silver 

bullet” solution to the problem of too much complex unstructured data for 

the existing analytical tools. Some implementations were successful but 

not adaptable and scalable enough.

One of the issues behind AI’s problems, in the 1990s, was the lack of good 

data analysts and AI expertise outside of the academic world. The lack of 

good data is an equally important factor in the failure of earlier AI solutions. 

Good data not only refers to the volume of data but also the quality. Data that 

has a bias will produce biased models and conclusions. Some data played 

through a predictive model can’t give a better than 50% level of accuracy. 

In the late 1990s there were several attempts to produce predictive models 

for use in retail stores and insurance companies. The retail store project was 

focused on handheld scanning devices. The concept was simple. After the 

customer had scanned several items, the scan was used to consult a neural 

network to predict the customer buying pattern. Successful prediction could 

then prompt a message to the scanner to try and sell other goods based 

on their purchases. For example, if a customer had purchased meat and 

charcoal, a message could be sent telling them that barbecue sauce is in aisle 

20. Despite gathering a suitable amount of data whenever the model was 

checked, it could only give between 47% and 53% accuracy. This was not 

good enough to justify an investment by the store owners. The salespeople 

who contacted the retail store owners had given a really unrealistic view of 

the capabilities of proposed AI solution that could not be met. Hype and 

wild statements about the potential values of a solution led to unrealistic 

expectations and the project was cancelled. In the same way that service-

oriented architectures were a technology looking for a solution, so was the 

AI of the 1990s. Automation and robotics would not be as pervasive as it 
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promises to become without the current advances in processing power, 

cloud computing, and deep or machine learning that go beyond anything 

that was proposed in those times.

�Neural Networks
The Collins online dictionary defines a neural network as a program or 

system that is modeled on nature, more specifically the human brain, and 

is designed to imitate the brain’s method of functioning, particularly the 

process of learning.2 A neural network, often called an artificial neural 

network (ANN), consists of vast numbers of simple nodes as seen in 

Figure 2-2.

2�Collins Online Dictionary: www.collinsdictionary.com/dictionary/english/
neural-network

Figure 2-2.  Neural network topology
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Each of the nodes in a neural net is densely connected to other nodes 

in the network, somewhat mimicking the way that a human brain is 

wired. In an artificial neural network, there are several layers of nodes. 

In Figure 2-2, the Input node, on the left, is for raw data, while the output 

layer is responsible for computations and presenting the results to the 

outside world. The hidden layer in the figure has no contact with the 

outside world, hence hidden. The hidden layer transfers information 

from the input nodes to the output nodes and carries out computations. 

There are other topologies where there are more hidden layers but there 

is no need to go into that level of detail. All of these nodes are densely 

interconnected, and the connections are given a numerical weight.

When the neural network is fed with known labeled data, it is called 

supervised learning, because the network is trained by labeled input and 

output data prior to being fed raw input data. Weights are the strength of 

connection between the nodes in a network. When new raw data is fed into 

a trained neural net, it first establishes that the data is within the bounds of 

the training data, and if so, it then calculates the possible output result.

Neural networks have gone in and out of fashion since they were 

discussed as early as 1944. Their emergence now is based on new 

algorithms, techniques, available data, and the huge increase in processing 

power offered by graphics chips, among other technologies.

�Machine Learning/Deep Learning
Neural networks, a technique often used today in machine learning (ML) 

may be based on supervised or unsupervised learning. Unsupervised 

learning comes into its own when nothing is known about the data; there 

are no labeled input and output data classifications. Machine learning 

(ML) is a method of data analysis that automates analytical model 

building. It is a branch of AI based on the idea that systems can learn 

from data, identify patterns, and make decisions with minimal human 

intervention. During the learning process, the analytical model generally 
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requires no additional programming by a human (the weights between 

connected are automatically adjusted). However there is considerable 

programming work in gathering data and passing it to the ML algorithm.

Deep learning is a subset of techniques that use neural networks and 

is often used on very large amounts of data, sometimes called big data. 

Big data is used as a term for massive volumes of both structured and 

unstructured data that is so large it is difficult to process using traditional 

database and software techniques. Big data is data that changes too rapidly, 

or that exceeds processing capacity available or just too big to be managed.

Deep learning filters data by using hierarchical layers of neural networks 

to process the data input. The output for one layer becomes the input for 

another layer until the result is available. For example, in the computer 

vision domain identifying a face in an image, the deep-learning solution can 

use that image as the input represented by a matrix of pixels. The first layer 

would then encode the edges and compose the pixels. The next layer might 

compose an arrangement of edges. The next layer might encode a nose and 

eyes. The next layer might recognize that the image contains a face, and so 

on. This approach, many layers deep, gives the name deep learning.

This type of machine learning can process such vast amounts of data 

that a human data analyst may take decades to process and understand. 

A good example of the power and data demands of deep learning is the 

speech recognition functions of smartphones and digital assistants.

�Reinforcement Learning
Reinforcement learning is a form of machine learning that can develop 

rules to solve problems on its own. Reinforcement learning is an 

autonomous self-teaching system that essentially learns by trial and 

error. The goal of this learning method is to maximize the best possible 

outcomes. A robot can grasp a glass and if it grasps too firmly the glass 

will shatter. The robot will then try grasping the glass with less pressure, 

and if it drops the glass, it can then try to increase the pressure slightly 
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until it can hold the glass without crushing it or dropping it. The robot has 

used reinforcement learning to arrive at a good outcome and produce a 

desired approach. The robot gets feedback from the external world, and 

the type of feedback, positive or negative, will condition the next actions 

of the robot until it arrives at and remembers the best solution. This is one 

of the fundamental building blocks of robotics.

�Robot
This is a difficult definition because there are so many alternatives and 

even roboticists cannot agree completely. The Institute of Electrical and 

Electronics Engineers (IEEE) has a basic page for learning about robots and 

it has a generic definition that will suit our purposes. The definition says that 

a robot “is an autonomous machine capable of sensing its environment, 

carrying out computations to make decisions, and performing actions in 

the real world.”3 This definition is broad enough to cover industrial robots, 

household robots such as the Roomba, and collaborative robots that work 

and interact with humans to complete a set of tasks. Because this book is 

looking at collaborative robots, this definition will suffice.

�Collaborative Robot (Cobot)

A collaborative robot or cobot is a robot that can safely and effectively 

interact and cooperate with humans in performing a variety of tasks. 

Collaboration can take many forms, from the simple, such as passing 

material for construction, to a human or working in a team of humans and 

robots to accomplish a more complex task. Those tasks can use the robot’s 

strength or reach to compliment a human’s capabilities. An important 

factor in any situation involving a cobot is colocation with a human to 

complete a task. Unlike industrial robots, in a cobot’s collaborative world, 

3�IEEE Learn: Robots https://robots.ieee.org/learn/
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the cobot is not fenced off or in a separate space, so the humans and robots 

have to interact safely. A simplistic rule that tells a cobot to stop when it 

detects a human will not work since the robot may be carrying something 

to the human for the next stage of a task.

�Automation
Automation is defined in the Cambridge English dictionary as the use 

of machines and computers that can operate without needing human 

control. Automation can carry out physical tasks such as picking goods for 

dispatch or nonphysical tasks such as ranking loan applications by using 

a software robot. We will refer to physical work being done by a robot as 

robotics and intelligence led work such as calculating and approving a 

mortgage being done by a software robot as automation.

Some of the earliest information technology automation was the 

movement of clerical tasks such as ledger entry and reporting into IT 

applications. At this early time, there was still a need for clerks to enter 

data manually, often using a key punch bureau, but the reconciliation of 

different ledgers and consolidated reporting was automated. This led to 

clerical ledger maintenance jobs being lost but led to the rise in new data 

entry jobs. Ledger maintenance would rely on a set of rules that could be 

coded into the maintenance application. Frequently the rules were difficult 

to change requiring programmers to spend time updating an application.

Techniques such as parameterizing many of the rules would enable 

easier changes. Over time these techniques were improved, and even 

newer ideas were developed with advances in programming languages 

and databases. These improvements were also matched by an increase in 

computing power. Microcomputers and personal computers moved the 

data processing from the large centralized mainframe to smaller machines 

that were capable of taking the load and moving it into departments or 

even offices. More tasks became automated and application configuration 

provided flexibility and automation took another leap forward. At this time, 
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one of the most significant automation tools revolutionized the work of 

accountants and financial officers and did it without computer engineers 

or programmers. The spreadsheet that was developed for personal 

computers, VisiCalc,4 enabled fast and accurate updates to financial 

models and automated a process that was often carried out by hand 

with pencil and eraser. Its appeal was based on the familiarity with the 

spreadsheet modeling and in the immediacy of entry and calculation. The 

successors of VisiCalc have led to the situation today where most people 

with a home computer or a phone can carry out sophisticated operations 

without much instruction. The personal computer is now ubiquitous.

Automation of physical tasks accelerated with the first industrial robots 

implemented at General Motors in 1961.5 The use of the production line in 

the automotive industry with well-defined repetitive tasks was an important 

factor in the automation of vehicle manufacture—massive automation in the 

automotive industry combined with a realization that well-defined repetitive 

tasks can be automated and can run 24 hours a day 7 days a week.

Programming for the early industrial robots was complex and used 

mathematics to calculate the angles of various joints stored in a teaching 

phase and replayed in operation. While the accuracy of 1/10,000th of an 

inch was essential and possible, changing the programming to handle 

a different design was time consuming, often taking days, and complex 

requiring a new training process.

Automation either in the physical or the software domains have 

exposed a number of challenges that are increasing in significance 

as the scope of automation and robotics grows. Challenges such as 

synchronization of automated actions and error management, including 

the prediction of possible errors, combined with risk management and 

4�History of Computers and Computing, Birth of the modern computer, Software 
history, VisiCalc of Dan Bricklin and Bob Frankston (n.d.). Retrieved April 9, 2020, 
from https://history-computer.com/ModernComputer/Software/Visicalc.html

5�First Industrial Robots: https://ifr.org/robot-history
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enhanced decision-making are all trying to simplify the interaction 

between IT, robotics, workers, and customers. Some of these challenges 

need to be met and overcome before robots become autonomous. Simple 

decision-making has already been mentioned where an industrial robot 

makes a simple decision to stop when a human enters the security zone. 

Advanced decision-making can allow a robot to continue moving once it 

has detected the human by constantly reviewing their relative positions, 

speed, and direction of motion. Without these challenges being met, 

automation and collaborative robotics will not be able to fulfill their 

promise.

�Rules That Don’t Work, Bots, and Chatbots
Software automation is evolving and the impact that it will have on the 

workers of the future is already being felt. Early software automation 

through the use of business rules is already in place in many organizations. 

Poorly written business rules can cause disruption and errors in any 

organization. We are all familiar with computer errors that can register a 

default on a payment when there has been no default or that credits to a 

utility account are not made in a timely manner. Following these problems, 

the customer frequently has to spend a long time on a telephone to 

resolve the situation. This type of error is often generated by a disconnect 

between the line-of-business (LOB) team who understand the business 

model and its rules and the IT department who has to implement the rules 

without understanding the business model. It is possible to say in this 

circumstance that rules don’t work.

A continual challenge that has not been completely conquered is 

the differences in understanding between line of business and the IT 

department. Often, still, the business complains that the IT department 

does not understand them, and the IT department complains that the 
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business does not define their processes fully enough. There have been 

many attempts to solve this disconnect but it is still present.

A workshop in the late 2000s between lawyers, business people, and 

IT experts was held to try to outline and codify the borders between 

regulations from governments, lawyers who interpret the regulations, 

businesses that must comply with the regulations, and finally the IT world 

that has to write software to manage the compliance.

At this workshop a lawyer stood up and said that the law was very 

simple and easy to follow, but business and IT kept getting muddled. The 

business people said that the law was too complex for them to be able to 

guarantee compliance and lawyers need to speak plainly. The IT people 

then stood up and said that they can code for anything, but the lawyers 

and the businesses were not being clear. There is little evidence that this 

disconnect has been substantially solved but there have been a number of 

attempts.

In the 1990s, a Structured Query Language (SQL) was developed as 

a technology solution to allow business users to query data for reports 

and results without asking the IT department, needless to say the IT 

department had to develop the queries and supporting applications 

but there was still a disconnect. A subsequent technological solution, 

the business rules engine, was promoted as a more effective method 

of encoding business rules solutions without resorting to writing code. 

These rules engines are still being used, but the rules are mostly written by 

software engineers not business people and again we have the disconnect.

A significant advance in recent years is the growth of robotic 

process automation (RPA). This is software robotics applied to existing 

automatable processes and it is discussed in more detail in a later chapter. 

Instead of writing rules, the RPA tools learn how to follow a process 

by copying the actions of a user of all the applications in a business 

process. The user is a business process expert not an IT expert, so at last 

the disconnect between business and IT is minimized. RPA is currently 

popular because it can yield cost savings and productivity gains; however, 
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there should be some caution. Several analysts are suggesting that RPA 

should not be implemented by IT departments because of the history of 

delivery failures of IT projects.

While RPA allows the automation of a business process by learning 

actions, it is not able to take complex decisions. Chatbots or conversational 

systems are capable of following a process and using AI-based decision-

making to respond more intuitively to humans. Software automation has 

evolved to such an extent that some of the chatbots used in call centers 

produce interactions that are hard to differentiate from human-to-human 

interaction.

�Robots, Collaboration, and Collaborative 
Robots
Robots and robotics are commonplace thanks to the entertainment media 

as well as the scientific and business communities. Few can imagine a future 

where robots are not a major factor in all walks of life, and although the media 

tends to anthropomorphize representations, pragmatic robots tend to have 

shapes that match the function and purpose they have been designed for.

There are some interesting thoughts regarding the repurposing of 

specialist robots to new tasks. Industrial robots have been mentioned 

before and play no part here, but personal and business environments 

form part of a collaborative environment for robotics.

One of the best known and earliest home help robots is the Roomba. 

This autonomous room cleaning robot was introduced by the iRobot 

Corporation in 2002 and has gone through a number of iterations, making 

it easy to recognize.6 In the future domestic robots will continue to aid and 

assist people to achieve a good quality of life.

6�iRobot’s Roomba: https://web.archive.org/web/20120103091646/ 
http://www.irobot.com/sp.cfm?pageid=203
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One of the more compelling uses of automation and robots is in the 

healthcare industry. Many organizations are developing solutions that 

can provide care in the home. One of the case studies later in the book, 

the ENACT project, features a partner delivering tools and automation for 

healthcare in the home.

Healthcare and health monitoring delivered successfully can enable 

the infirm or elderly to live in their own homes for longer than the current 

technology and level of care permits. This has many advantages both in 

well-being, finance, and use of medical resources. The architecture of this 

case study is discussed more fully later in the chapter and illustrated by 

Figure 2-3. Some of the key points are as follows:

•	 The resident is emotionally attached to their home and 

is more relaxed in there. If you ask elderly people their 

view, it is almost unanimous that they want to stay in 

their own home.

•	 The costs of maintaining someone in their own home 

are high, but still cheaper than staying in a hospital. 

And again, ask a patient what they want most from their 

treatment and it is “to go home.” This applies to most 

patients, but is emphasized by elderly patients, in our 

experience.

•	 Hospitals are not good places for long-term stays.

•	 The use of nurses for nonmedical activities is not 

always an effective use of resources.
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Monitoring of the resident, their environment, complementing the 

resident’s activities, and socializing online or in their own home by using 

technology will, in the future, remove some of the societal pressures of 

managing an aging population. Not all of this work should be outsourced 

to automated tools and robots—there will need to be more consideration 

paid to empathy and socializing with friends, relatives, and caregivers—

however there is scope in this case to supplement care of the aged with 

tools that can think, to improve quality of life. Many of the sensors that are 

reporting on the elderly person’s environment are not typical networked 

computers but low-powered devices connected either to the Internet or 

to a small local computer. These devices are said to be at the edge of the 

network. Automating risk and decision-making at the edge of the network 

is an area that will be discussed in more detail later in the book.

There is a difference between using robots to complete a simple task 

and the more specialized automated healthcare. Automated healthcare 

will use an integrated solution including robotics, sensors, activators, and 

monitoring tools.

Another area of potential growth in automation and robotics is the 

supply chain. Organizations are increasingly using robots as part of the 

Figure 2-3.  ENACT healthcare solution
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supply chain and many cases of robots in warehouses are quoted in the 

press. Amazon, for example, uses robots in large action spaces. These 

robots are moving in a known space in the warehouse. That space is 

fixed and doesn’t change without corresponding changes to the robots, 

humans, and any markings used to delineate the space. This reduces the 

need for complex programming and remapping of the space. These are 

relatively simple robots that perform well-defined tasks within bounds (the 

warehouse) and with people aware that they are in the robot’s space rather 

than a shared space.

Collaboration is one of the more difficult aspects of human/robot 

interaction but has the potential to change the relationship between 

robots and people by introducing shared spaces and shared tasks. This will 

require a high degree of communication, a jointly understandable view 

of the world, and some sophisticated policies and metrics. There is the 

potential that collaborative robotics may even dilute or negate any Luddite 

tendency by showing humans and robots working in partnership rather 

than as adversaries.

Another important feature of collaborative robots is the level of 

instruction and the interpretation of those instructions. An industrial 

robot will require complex programming and instructions, often achieved 

by moving the robot appendages to a particular location and then 

programming the action of the appendage. A collaborative robot will be 

expected to cope with simple instructions in the vein of “Move that chair 

out of the way” or “Clean up that mess.” Interpreting these instructions 

and doing so in safety and an environment that understands risk 

management and mitigation will place extra demands on the processing, 

communication, and risk management capacity of each entity in the 

domain.
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�Smart Buildings As Robots Without Arms
Smart building technology has been in use for many years, but technology 

that creates individual environments can be said to be in its infancy, 

handling light, heating, and other environmental sensors. There are some 

leading-edge buildings that are moving forward by integrating internal 

booking systems and motion sensors to be able to tell if a meeting room 

is occupied, to remotely diagnose equipment and environmental failures, 

and to check the diaries of room booking and employees to resolve any 

issues. In this way buildings are becoming smarter and will eventually 

incorporate collaboration between people, machines, buildings, and 

software, even extending to the environment outside the building.

Work in the future will include interacting with many devices that will 

streamline and remove errors and risks in a business environment. An 

example of an “Empathic Building” from Tieto corporation will indicate 

progress toward the truly smart and interactive building. As part of this, 

another impact on work and employment in the future will come from 

developments in root cause analysis of error or failure conditions. Some of 

this will come from the root cause analysis of issues in a large, edge of the 

network environment which will be discussed in more detail later.

Smart buildings are not the only special case. Autonomous vehicles 

have many of the characteristics of a smart building or a collaborative 

robot, but they are a mode of transport. Like a smart building they have 

software automation and sensor/activator integration. An autonomous 

vehicle collaborates with a human (the passenger) and is designed to 

operate in a dynamically changing environment, making decisions 

based on the vehicle’s view of the environment, the safety policy, and the 

instructions on the journey. Autonomous vehicles also have to interact 

with the external environment, with people in the roadway, temporary 

road signs, and the weather.

They exhibit many of the complexities of a collaborative robot, but in 

particular the mapping and physical location of the vehicle are demanding 
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because of the number of other vehicles and the ever-changing road 

environments. This is a domain that has a clear impact on the future of 

work and is likely to be one of the most recognizable factors affecting 

employment. Robots in warehouses are common; however, introducing 

autonomous vehicles into the supply chain at both delivery and fulfillment 

will create seismic changes on employment in those areas.

�Research Progress
Scientific research is a precursor to technological advances. Examining 

scientific research in any field is a good indicator of both progress and 

direction in that field. The scope of robotics, and automation research is 

huge and covers many areas from construction, programming, developing 

new models of communication and movement through to policy and 

decision making. The authors have been engaged in a number of research 

projects and we have selected a few areas that we believe are important 

foundational technologies for collaborative automation and robotics. We 

introduce some of these domains below and they are expanded in the 

corresponding chapters in the rest of the book. Much of the research we 

discuss is promising and has been demonstrated in laboratory conditions. 

Other domains we discuss are maturing but missing some crucial element.

�Data Fusion
To collaborate together, humans and different styles of robot need a 

common view of their working environment. This will require a number of 

tools and techniques such as data fusion and computer vision. Data fusion 

is explored in this book as it leads to a common model of the environment 

available for both robots and humans alike.
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Many researchers agree that the most serviceable definition of data 

fusion came from the Joint Directors of Laboratories Workshop.7 This 

defined data fusion as “a multi-level approach dealing with the association 

of data and information from single and multiple sources to achieve 

refined position, identify estimates and complete and timely assessments 

of situations, threats and their significance.” In a world that is increasingly 

being defined by sensors, the number of errors and conflicting data/

information is expected to grow. Robots working in a shared space need 

to have access to near real-time assessments of a situation that can ensure 

safe and accurate performance of tasks.

In an article for the Scientific World Journal, Federico Castanedo 

reviews data fusion techniques.8 This review has led us to the conclusion 

that the most effective data fusion architecture is likely to be a 

decentralized one. Different architectures are defined later in the book.

As computing power increases at the edge of the network, it is likely 

that robots with autonomy will increasingly take decisions and analyze 

risks using a decentralized model although there will be some level 

of centralized control and communication. Even limited situational 

awareness in a robot can only be achieved by having a common model 

with the other actors in the shared space. This is included as a challenge 

since some of this work is in its infancy. To establish progress and future 

plans for this research, we will conduct interviews with two researchers. 

Professor Moncef Gabbouj of Tampere University department of signal 

processing has been working on data fusion for some time and his 

interview is recorded and discussed later in the book.

7�JDL, Data Fusion Lexicon, Technical Panel for C3, F.E. White, San Diego, 
California, USA 1991.

8�Federico Castanedo, A Review of Data Fusion Techniques, The Scientific World 
Journal, Volume 2013, 2013.
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�Real-World Common Models
The goal of data fusion is to generate real-world common models that can 

be understood or interpreted by both humans and machines collaborating 

in a shared space. A common model in this context is a model using 

identical data that will be kept current and able to be interpreted by any 

of the actors, human or robot, engaged in a collaboration. Data fusion will 

take data from large numbers of different sensors, activators, and cameras 

and merge them into a common model. Computer vision research and 

visualization of large, complex data are important inputs to this common 

model and are treated separately here, since they are significant research 

topics in their own right. Computer vision is advancing but is not enough 

on its own to develop a good enough model for collaborative robotics.

�Project ENACT
The healthcare case study in ENACT is being developed by Norwegian 

startup company Tellu IoT AS.9 Figure 2-3 showed the range of data and 

communications used in the case study to deliver practical proof points 

for the research. Tellu’s objective as part of ENACT is to combine simple 

sensors and actuators to manage a home for an elderly or less able 

resident. If a house plant needs watering, a sensor will detect this and 

send a message to the resident or their caretaker, so forgetting to water a 

plant should be a thing of the past. If this is integrated with more complex 

medical sensors, motion sensors, and other sensors, this can ensure that 

the resident can stay in their own home for far longer than is currently 

possible.

At first sight the ENACT healthcare case study has little to do with a 

collaborative robot; however, problems solved in the ENACT project will 

help solve similar problems in a cobot.

9�Tellu IoT AS, www.tellucloud.com/

Chapter 2  Technology Definitions

http://www.tellucloud.com/


64

The Internet of Things (IoT) is a system of computing devices, 

mechanical and digital machines, sensors, and actuators that can be 

uniquely identified. They have the stability to transfer data over a network 

without requiring interactions with humans or other computers. A cobot 

consists of a body or frame, a control system, manipulators, and some 

means of travel.

The architecture of a cobot, with networked sensors and actuators 

communicating with a control system and also through Internet 

connections communicating with the wider world, has similarities with 

the house in one of the ENACT case studies. In this house sensors and 

actuators placed around the house are networked with a control system, 

the walls of the house are the body, and there is no need for the house to 

move so there is no means of travel. Trustworthiness is an important factor 

in both architectures.

The ENACT project will research into the development of smart 

information systems, similar to those needed in a cobot. Smart 

information systems will take into account security, privacy, resilience, 

and robustness in both the IoT-based solutions for the healthcare system 

and the internal networking of a cobot.

�Collaboration and Policy
Discussions on collaborative robots and their impact on the future of 

work often hinge around the safety aspects of having mobile machines 

inhabit the same space as a human. There is a general fear of “robots 

out of control” and safety policies have to be one of the most important 

and visible policies. Robots that can only be used in a safe known space, 

such as static industrial robots, are unlikely to have a more major effect 

on the future of work than they already have. All evidence indicates that 

mobile, autonomous robots, cobots, and software automation will become 

more pervasive. Safety must be at the front of any discussions about 

Chapter 2  Technology Definitions



65

collaborative robotics and the most important factor that needs to be 

resolved as soon as possible. The predicted effect of collaborative robots 

on the future of work will only be possible if human collaborators and 

workers feel safe.

Collaboration will require communications to be integrated and 

understandable by all the actors in a scenario including humans, cobots, 

other robots, and automated processes. The policies and processes must 

be flexible and easy to implement and need to solve increasingly difficult 

problems.

One of the most difficult domains in robotics currently receiving a lot 

of attention (and finance) is grasping or picking up objects. Humans from a 

very early age learn to grasp items although that is mostly done by trial and 

error. A good example is a child grasping an egg. It is difficult for a young 

child to know how much pressure to apply to an egg to successfully lift it, 

but not crush the shell. Robots have a similar problem. However, there is a 

related problem in collaborative robotics: the handover. If a robot holds an 

object and passes it to another robot or a human, how does the first robot 

know if the second actor has a good enough grip on the object?

Another problem is that as some stage in the process two actors 

hold the object at the same time and there has to be a communication 

that indicates that one of the actors is ready to let go and the other actor 

is ready to hold the object on their own. This and the grasping/picking 

up problem will have to be solved for future progress in collaborative 

robotics. Perhaps part of the solution could be a redesign of the object 

being grasped. For example, a beer company has redesigned their glasses 

without handles so that when more than two glasses are grasped by two 

hands the glasses lock together enabling that person’s two hands to grasp 

three, four, or even five glasses without dropping them.

Once robots come out of the factory floor into the store or open spaces, 

the level of risk increases. Mitigating risks is a valued strategy to reduce or 

manage risks; however, the risks must be identified. The use of continuous 

risk assessment and management of risks in collaborative robotics is 
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a relatively new field. In any situation humans and cobots will have to 

continuously assess the risk in that situation and resolve or mitigate 

that risk by management actions. There is a body of research into risk 

management and decision-making in the ENACT project that will also be 

significant in the future.

Initial thoughts on the future ethical conundrums of robot and cobot 

rights throw out some interesting questions; for example, when is a cobot 

allowed to move despite a threat to the safety of an actor or how can a 

cobot discriminate between a benevolent actor and a malicious actor? 

There are also ethical questions and concerns regarding the military use of 

automation and cobotics. All of these and many more issues will have to be 

addressed before automation and collaborative robotics takes its place as 

an integral part of the work force of the future.

�Summary and Conclusion
There are a number of significant topics that need clarification before the 

technology and policy discussions in the rest of the book can be digested. 

We have noted simple descriptions of key concepts such as artificial neural 

networks, deep learning, and data fusion. The descriptions are introduced 

as level-setting concepts and are tailored for use with this book. We have 

followed technical definitions with some of the basic concepts including 

robotic process automation, conversational robots, and collaborative 

robots.

Research progress is one of the strengths of this book since it will give 

a picture of the progressing development of solutions. These solutions 

to barriers of adoption for collaborative robots and automation are the 

gating factor for fully autonomous collaborating robots and humans. 

Finally, we introduce a number of interviews with lead investigators on 

data fusion and healthcare at the edge of the network to give the latest 

views on technology research in their area. This is a fast-paced world and 
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advances are being made and announced frequently. We are also met with 

a weekly, sometimes daily, article on the positive, negative, or occasionally 

neutral effect that automation and collaborative robotics will have on the 

workforce.

There is no doubt that work in the future will use automation and 

collaborative robotics, but the timescales are often unrealistic. We hope 

to show that research is being conducted to solve some of the really large 

problems, and we have presented a number of research projects that 

directly or indirectly contribute to solving some of these problems. This 

chapter completes the book section “Preparing for the Future of Work” and 

is a level set for the next book section dedicated to what robots are doing 

called “Robots Are Working.”
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CHAPTER 3

Robotic Process 
Automation
Is This the Real Job Killer?

Although the subtitle of this book is “A Guide to the Future of Work,” this 

chapter will explore the challenges of automation and some solutions 

that have a legitimate claim to affect the present and the future of work. 

As we will show in this chapter, automation is not a series of distinct 

moments but a continuum of strategies and technologies that intend to 

increase levels of automation and improve the efficiency and effectiveness 

of business operations. Some of the strategies and technologies we 

discuss are already being deployed; others are only at the initial stages 

but will have an impact on who does what work in the future. Increasing 

automation has been a goal of information technology since the earliest 

attempts to use computing to handle vast amounts of data and repetitive 

tasks. If we look at some of the significant places on the continuum of 

automation, we can gain perspective.

In the 1940s, Colossus, one of the earliest computers, automated the 

reading and comparison of vast amounts of encoded cipher text that 

helped humans to decrypt secret messages.

At the next significant point, in the 1960s, along the continuum 

record keeping and particularly business ledgers led to a need to further 

https://doi.org/10.1007/978-1-4842-5964-1_3#ESM
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automate customer service interactions and decision-making. Much of 

the automation at this time was concerned with making the automated 

tasks faster to increase a business’s capacity. Office computers became 

smaller and automation delivered more finely defined and efficient 

business responses. On one occasion one of the authors worked with a 

business division that was part of a large conglomerate and had to report 

their financial status in a head office briefing every Friday. The data 

preparation for the company computer bureau required the efforts of two 

people for four days, finally sending all the data to the bureau for a report 

to be generated for the Friday briefing. Installing a small computer, an 

Apple IIe, meant that not only can the data be entered into a ledger as it 

was gathered, interim reports could be completed and the report for the 

Friday briefing prepared, reviewed, and sent without using a bureau at all. 

This allowed the staff to be redeployed on more business-focused worth 

and meant that the financial status of the division was known on a daily 

basis. Automating the task locally generated better business practices 

and efficiency and was soon copied across the whole organization. In 

most businesses staff are now at a stage where they can get almost all the 

information that they need instantly. Automation can result in a reduction 

of human effort in repetitive tasks, allowing them to be redeployed into 

more creative work. It also reduces human error in repeatable tasks. 

Humans have difficulty working on repetitive tasks for long periods of 

time, becoming bored and more prone to mistakes.

At the current time many organizations are evaluating or 

implementing a technology called robotic process automation (RPA). 

RPA takes automation one step further by taking previously difficult to 

automate tasks and automating them. RPA uses software that can be 

trained to automate a business process rather than a task, removing 

humans from a larger portion of the business process rather than just 

taking a task from a human but still requiring the human to operate the 

business process.
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RPA has a lot of potential but there are also some challenges. We 

will review the challenges of implementing RPA as well as the potential 

for RPA to exploit new opportunities for that automation. RPA has the 

enticing prospect of automating more complex repetitive tasks that are 

currently fulfilled by humans. RPA does this by bypassing the need for 

programming to effect new automation, learning by watching the process 

being followed through the graphical user interface. An RPA tool, which 

is a metaphorical software robot or bot, will watch a human perform 

a series of actions on their computer that follows a business process. 

These actions are recorded and the bot can then execute these actions. 

Actions can be complex or simple, for example, open up a customer 

account search, conduct the search, and copy the customer number into 

an invoicing page. There is no programming because the bot learns the 

process and can relearn a changed process and repeat it without a human 

operator. Most importantly it does this at an industrial scale. RPA offers 

the potential to streamline practices and cut costs by running applications 

24x7 with far fewer humans involved in a process. When it comes to 

overall management of a business process, RPA does not stand on its own; 

organizations will need other tools such as business process analysis (BPA) 

or business process optimization (BPO). RPA cannot itself change process 

or optimize it, RPA only executes a process. BPA and BPO will enhance the 

performance of an implementation of RPA by ensuring that the process 

being automated is optimized and delivering the required results.

RPA is already being implemented in many businesses. The value 

of increasing automation is generating an interest in using AI for the 

next-generation RPA. Machine learning will add intelligence to further 

automate process flow and play a greater part in decision-making. There 

are other factors that businesses invest in to automate processes including 

offshoring and outsourcing tasks. The impact of RPA on these other factors 

will be discussed later in the chapter.
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RPA, offshoring, and outsourcing are different approaches to 

addressing automation. RPA is using technology to execute processes 

without human operators. Offshoring and outsourcing are approaches that 

move the responsibility for process automation out of the business itself to 

a third party. The third party can decide if they use humans, for example, 

in an offshore call center, or use automation tools like RPA. There are cost 

implications for both the process owning business and the third party. In 

third parties the debate may rest on the cost comparisons between human 

and software robot operations. In one such discussion with a third-party 

supplier, they suggested that software robots have many advantages, 

but the software is expensive and the third-party supplier worked in an 

offshore environment that had low-cost labor. They commented that it was 

cheaper to hire 100 staff to automate a process than to buy the software 

that would replicate the work of 100 staff.

Increasing automation of business processes for cost or efficiency 

reasons is a primary operational goal for business. The benefit that is 

often overlooked in a cost-benefit analysis of automation is the value of 

increased and manageable regulatory compliance. A good example of the 

importance of automation is the scramble to become European Union 

General Data Protection Regulation (GDPR) compliant.

GDPR introduced a new concept. It applied to the European Union 

(EU) states, of course, but it also had an impact on businesses in states 

outside the EU. These businesses would have to comply, wherever they 

were based. Failure to comply could result in large fines of up to 4% of a 

company’s global turnover, for example, Google was fined $50 million for 

a breach of GDPR.1 Penalties can also include sending the accountable 

investment became even more important when the method of calculating 

fines for noncompliance was evaluated and indicated that it gives 

considerable powers to regulators to punish companies. Individual states 

1�Fox, C. (2019, January 21). Google hit with £44m GDPR fine over ads. Retrieved 
April 2, 2020, from www.bbc.co.uk/news/technology-46944696
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in the European Union also have the power to make noncompliance a 

criminal offence, opening the possibility for custodial sentences for the 

accountable executives.

Automation, properly crafted and informed by policy, supporting 

good processes has the potential to reduce the risk of noncompliance 

by a significant amount, and keep senior executives out of jail. Ensuring 

that processes are documented and repeatable and providing timely and 

accurate reports to compliance officers are good defenses and may even be 

a real get out of jail card. There are other laws and regulations concerning 

data and privacy, such as Health Insurance Portability and Accountability 

Act of 1996 (HIPAA) that will benefit from the consistency and accuracy of 

automated reporting.

We have developed Table 3-1 to represent levels of automation 

and collaboration to put the tools and techniques we are discussing 

into context and show their relationship to other levels of automation. 

Level zero in this table represents the lowest level of automation and 

collaboration. The second level of the table refers to human-directed 

automation. A fixed logical process in row 1 refers to transactional and 

rule-based processes using structured data that acts as a precursor to 

RPA. Structured data in this context is data where the data structure is 

known and adhered to.
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Table 3-1.  Levels of Automation and Collaboration

Level Human-Machine Interaction Intelligent Automation

  0. � Non-
intelligent 
tools

No intelligent automation

·· Non-intelligent devices 

that operate with little or 

no human supervision.

·· Examples: gas engines, 

boilers, water turbines 

that existed prior to 

1930s.

No intelligent interaction

·· Human makes 

all decisions, and 

interpretation is fixed.

·· Examples: driving or 

braking in cars made 

before the 1970s; 

mechanical looms.

  1. � Human-
directed 
interactive 
tools

Human-directed automation

·· Fixed logical process 

designed and initiated by 

humans.

·· Examples: batch processing 

and RPA; industrial robots 

working in restricted areas; 

the Jacquard loom with 

punch cards (c. 1801).

Human-directed interaction

·· Human makes all 

decisions; machine can 

make local adjustments.

·· Examples: modern antilock 

braking systems and cruise 

control in cars; standard 

text (w/ autocorrect) or 

graphic editors.

  2. � Partial or 
conditional 
collaboration

Human-assisted automation

·· Human selects goals; 

robot recommends actions 

and once confirmed acts 

with limited autonomy.

·· Examples: smart buildings 

automatically adjusting 

lighting and airflow; 

intelligent process 

automation (IPA).

Machine-assisted interaction

·· Human selects goals 

receives continuous 

feedback, and can quickly 

assume full control. Robot 

has limited autonomy.

·· Examples: virtual assistants 

that reserve flights for air 

travel; traffic-aware cruise 

control; remote-controlled 

surgical robots.
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With these precursors in place, it is possible to use tools that require no 

programming to develop a resulting automation. Most relational database 

developers had tools that would allow users to create complex queries 

using a visual interface and a mouse. Programming resource, even for 

small tasks, is expensive and may not be released in a timely manner to 

fulfill requirements. Screen-scraping tools grew out of the need to alter and 

automate a task workflow without programming resource. Screen-scraping 

tools can be trained to follow a set of steps by capturing mouse positions, 

screen data input fields, and pressed function keys. A screen scraper can 

be instructed to copy data from an application, paste it into a data field in 

another application, use that data to search a database, and display the 

result. Once the screen-scraping expert has set up the tool, it gives the 

appearance of a new screen with only a few actions; all the underlying 

work of copy and paste are not seen. The background process and data 

stays the same unless it is the subject of a screen scrape operation. 

There is a similarity between an expert creating a new look, task-based 

application on top of existing applications and the learning phase of an 

implementation of RPA to the extent that some industry analysts have 

commented that RPA is screen scraping on steroids.

�Increasing the Automation of Business 
Processes
Automation of business processes to improve repeatability, throughput, 

and accuracy has been a goal for many years. Automation can be split into 

several domains as referred to in Table 3-2. This chapter is concerned with 

the first of these domains, business process automation.
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In the age of IT, there have been many attempts to provide solutions 

to changing workflows of existing applications without changing the 

software. Some years ago one of the authors came across a good example 

of this in a print works. A print job was supposed to have a unique number 

and a customer reference. If the job was small, one of a kind, and from a 

new customer, the clerk is supposed to create a new customer record but 

often clerks they don’t for a single job. They jump to validating the job, 

sending the job to the shop floor, and completing the paper work. They do 

this because the administrative tasks of creating a new customer record 

Table 3-2.  Automation Domains

Automation Domain Description

Business process 

automation (BPA)

Also known as business automation, this is the 

technology-enabled automation of complex business 

processes. BPA can streamline a business for 

simplicity, facilitate digital transformation, increase 

service quality, improve service delivery, or contain 

costs.

Enterprise workflow 

automation

Looks at the hundreds of processes involved that 

keep large organizations moving forward. Enterprise 

workflow management identifies the best ways to 

map, execute, integrate, improve, and automate 

workflows. This is an operational tool not a business 

tool focused on ensuring that all the architectural 

elements in a workflow are available and optimized, 

for example, ensuring that there is enough disk space 

for a file copy operation.

Automated manufacturing Integrates software and machinery so that 

manufacturing processes are run autonomously 

through computer programming.
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would take longer than the associated printing job, so the clerks used a 

dummy customer number 99999 for all such jobs. This had an associated 

customer ID of “Miscellaneous.”

In a small firm this type of hack was not really a problem. Larger 

organizations could be vulnerable to fraud or fraud accusations from 

auditors, and in both cases, incomplete records could remove an 

opportunity to upsell to a new customer. This practice subverted a part of 

the business process and became a new process that removed the “enter 

customer details” task from the original process. These problems may be 

the result of poor analysis, poor workflow design, inadequate procurement 

requirements, intentional fraud, or poor application specification or weak 

regulation.

There have been many methods for automating work using IT. 

Figure 3-1 shows the evolution of automation tools over time and their 

relationship to automation tools. For example, screen scraping can be seen 

in this figure as a potential precursor to RPA. It also runs in parallel with 

later tools. Rule-based applications and screen-scraped applications are 

seldom discarded but the new tools are used for new problems. Intelligent 

automation in Figure 3-1 is the end goal of automation in this context. 

It can take the output of tools that are task based such as business rules 

engines or screen-scraped applications as well as process-based tools 

like RPA and combine them with AI to build a business decision tool. 

Automation tools such as RPA support business processes but do not 

change them on its own. Automation tools are not the silver bullet that can 

repair a process error. There is a risk that a process error will be executed 

faster by RPA and potentially create more problems.
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A new automated application often has to coexist with other 

applications supporting different workflows. The new automated 

application may use the same components, services, and architecture. All of 

these different applications, old and new, are using different tools. Existing 

applications are frequently called legacy applications. Legacy applications 

are not just the mainframe applications noted in Figure 3-1 but can also be 

distributed or enterprise resource planning (ERP) applications.

Legacy application is a term that refers to an application that has been 

deployed for a long time and is frequently difficult to modify, update, 

or even maintain. Rules engines and screen-scraping tools first came 

on the scene in response to the high cost of modifying and updating 

mainframe applications. Rules engines were designed to add changes 

to inflexible applications by permitting parameters and decisions to be 

taken outside the application itself. Screen scraping can revitalize the GUI 

Figure 3-1.  Context of RPA

Chapter 3  Robotic Process Automation



81

of legacy applications, converting green screen mainframe applications 

to GUI applications. These are both part of a move to increase the scope 

of automation and improve the speed of reaction to business process 

changes. In Figure 3-1 the timeline refers to the length of time that 

particular solution applications have been implemented with many 

mainframe applications being implemented in the 1960s and 1970s. Rules 

engines have been popular in the domain of mainframe and distributed 

applications, and screen scraping cuts across both domains and included 

enterprise resource planning. RPA is a process not a task-based tool so 

it also includes cloud computing and agile computing in its scope. The 

influence of the different tools on automation of business processes 

increases as you move from mainframe and rules engines through to 

screen scraping, but the automation of difficult processes with many 

components requires tools like RPA.

Cloud computing and continuous improvement enables the 

automation of business processes by making changes to the composition 

of applications. Using components or cloud services that are composed 

quickly with little change is a fast way of building applications with 

little programming resources, and the use of composition tools rather 

than application development tools gives more flexibility for changing 

workflows at a code level over the last 5 years than was feasible for older 

legacy applications. Some of these composition tools use a graphical or 

mapping language to enable point-and-click composition, again with 

no coding needed. Even with these tools there is a great deal of work in 

the location and selection of services to compost into a new application 

that supports the whole process. RPA takes existing application and task 

workflows, links them with other tasks and workflows across the whole 

process, and generates an automation from start to end.

Replacing one cloud service with another that better matches the 

requirements of the changing process enables rapid changes to the logic 

and workflow of business-supporting applications with a minimal coding 

effort. Automation using reusable services will use fewer coding resources 
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than rejuvenation of legacy and possible monolithic applications but 

requires a different infrastructure from those monolithic applications. 

Often this architecture requires a large infrastructure investment. RPA 

needs no extensive infrastructure changes.

Agile methods and continuous delivery tools will deliver applications 

that can react to changing business requirements that can require 

weekly or even daily updates, but delivery of these applications will 

use considerable resources. Neither of these automation strategies and 

the multiple variants of the strategies can deliver with no coding. RPA 

can have a quick and inexpensive impact on business by working at the 

user interface level with no additional coding. We will discuss the RPA 

contribution to increased automation later in this chapter. First, we can 

consider here the impact of earlier automation strategies on business.

If business automation needs to change to support changes in the 

underlying business process, we should consider the impact that changes 

to the business process will have on business automation. There are 

very few businesses that have no competition and do not have a need 

to modify their business plan or software. Some years ago during a 

roundtable discussion with CIOs, CFOs, and academics, one of the topics 

we considered was the potential for survival of businesses that have little 

or no change to their business model. The roundtable was convened by 

CA Technologies to plan a research project into business model value. An 

example from one of the CFOs was of a factory he knew that produced 

gold thread for military uniforms and braid. This was a very niche market 

that at one time only two companies worldwide supplied all the military 

gold thread and braid. These two businesses still provide all the high-end 

shops and military suppliers but their niche market is being encroached 

upon. Checking recently, it seems that there are now more factories 

involved in this business that seem to be branching out into a number of 

other areas. This will bring pressure to change business process supporting 

applications. Even niche markets change over time and may require 

software automation to remain competitive and survive.
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There are clear advantages in large enterprises making changes to the 

logic of underlying applications or using replaceable services to generate 

adaptable logic that supports new business model changes. These changes 

will require design, development, coding skills, testing, and release 

processes that are often outside the capacity of small- to medium-sized 

companies that nonetheless need to react to business model changes.

Many organizations have adopted and implemented agile, continuous 

improvement methodologies to facilitate service development and usage, 

but the cost of creating an IT department capable of managing this process 

is frequently seen as high by many companies. The cost of entry to agile 

development methodologies may well be more than a small company can 

absorb, and even large companies have to consider the cost of agile as part 

of their improvement and automation strategies.2 RPA has a much lower 

cost of entry that makes it more suitable for these small- to medium-sized 

organizations.

�Process Management, Selection, 
and Optimization
RPA does seem to polarize opinions. Analysts and reporters in favor of RPA 

state that RPA is the next step in intelligent automation and is a precursor 

to full AI-led business process management. Other commentators, less 

impressed, suggest that RPA is merely screen scraping on steroids. Even 

though it is scalable and has extra functionality, they point out that screen 

scraping never really worked. Since our discussion is about the impact 

of RPA on automating processes, we will leave the debate about the 

effectiveness of RPA to others. We will also confine ourselves to discussing 

2�Embracing Agile; D.K. Kirby, J Sutherland, H. Takeuchi, Harvard Business review 
https://hbr.org/2016/05/embracing-agile
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the broad architectural functionality of RPA rather than the products and 

technologies that focus on this potential market.

As mentioned earlier, increasing automation of business processes 

has been a goal for many years and one of the technologies that showed 

initial promise was screen scraping. Screen scraping used the position 

and contents of fields on a screen to emulate a user of those screens by 

copying data from one data field on the screen to another or using the 

data to develop a query in the background. Screen scraping can also 

take a difficult navigation through an ERP system and simplify it to a 

single key press. Screen scraping enabled new screen design at the user 

interface level and underlying logic that could change the way that the host 

applications were used.

At its best, it has rejuvenated mainframe, green screen applications, 

making them easier to use for the infrequent or novice user, presenting 

actions and results in a relatively modern interface. Screen-scraping tools 

produced user interfaces that were never intended to replace the expert 

user but to support the infrequent user enabling them to navigate to a 

functional screen, for example, navigating to expenses approval screen 

without using a manual and six different command keys and screens. 

Expert users of a green screen application are faster than a novice user, 

but novice users frequently object to the “waste of time” using those green 

screen applications.

In some screen-scraping implementations, it was even possible to 

use a mobile phone to carry out parts of a mainframe-supported business 

process. There were a number of problems with screen-scraping-based 

user interfaces, but the most critical was the requirement to change the 

screen-scraped application if the underlying screen fields or command 

codes changed. It was not adaptable to even trivial changes to a mainframe 

green screen layout.

The next most critical issues were performance and scalability. 

Scalability often became an issue relating to the performance of underlying 
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applications and hardware impacted by numbers of users of the core 

systems, the interrelationship between different core systems suppling the 

data, and data management issues. Performance is similarly dependent on 

the performance of the core systems. It is claimed that RPA does not have 

all the same limitations and also has additional functionality that makes it 

more attractive to users than screen scraping.

Screen scraping is an action- and task-based strategy using base 

applications that must be built by point-and-click type operations, while 

RPA offers the opportunity to combine actions and tasks performed on 

multiple applications into a seemingly new application, built by copying 

the actions of a user following tasks in a business process rather than tasks 

dictated by a core application. RPA evolved from virtualized testing tools 

which recorded a user’s action and played it back to automate tests. RPA 

uses the similar concepts of creating test scripts from application usage to 

create automation rather than testing.

The enthusiasm for creating automated processes in a simple way, 

by replaying the usage of applications, can cause security to become 

overlooked. A software robot, developed as part of an RPA implementation, 

can be treated as another employee, having the same security constraints, 

authenticated and granted access to systems to enable it to work. This 

would require a sophisticated authentication and access control policy 

that is beyond the means of small- to medium-sized enterprises (SMEs). In 

many ways the security attack surface is no greater than an application that 

is in common use and the issues are well known.

RPA has some specific security vulnerabilities due in part to the 

architecture of an RPA solution. A human may see an instruction or an 

operation and say “this is odd” an RPA robot would not ask why. There 

are also concerns that a badly trained software robot may intentionally or 

accidentally violate compliance rules. Other security breaches may come 

through the development route.
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In a normal development cycle, there are design and coding rules, 

oversite and review processes, and testing that all may validate the 

modifications. Even in the agile methodology, daily stand-up meetings can 

expose errors. RPA being trained and in effect built by users demonstrating 

the business process can bypass oversite activities bypassing some user 

privileges. It is also important that suppliers, developers, and trainers 

of RPA implementations are transparent and accountable and that the 

solution is QA tested including security testing.

All software can be classed as a robot and some software robots 

are smarter than others. In RPA the interaction between applications 

is handled at the user interface level. The data is captured from an 

application in the user GUI layer and passed to other applications at that 

level. It does not need a framework to pass data between APIs and it needs 

no change to the underlying architecture.

To develop a software robot, the RPA toolset observes a process, 

records it, and then plays it back as though using a screen, in the same 

way that virtualized test data and interactions are recorded for testing. 

RPA uses the actions of an expert user for training. It relies heavily on 

earlier incarnations of virtualized testing. RPA does not need hardware 

modifications and that removes the complex management issues around 

new infrastructure and applications. Some RPA instances require human 

assistance to work and are referred to as assisted RPA.

Some RPA instances are fully automated. Fully automated RPA 

needs no human intervention and supplies the type of activity that will 

have the most impact on work in the future as it is more likely to replace 

humans, but all RPA currently operates at the task level not necessarily the 

complete, end-to-end process. RPA changes how services can be delivered 

by replacing people with technology. We are not talking of technology 

enablement where desktop scripts assist human agents but software 

automation that replaces most or all of the work previously performed by 

people. There is a heavy human price to pay for some automation, and this 
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style of automation is happening now and for the next 2 years is expected 

to increase the displacement and possible dismissal of knowledge 

workers.3

�RPA Implementations
After a review of the potential of RPA, most organizations’ next steps are 

to decide if, where, and how to implement RPA. This is usually driven by a 

need to reduce costs or improve services. There is often a feeling or even a 

hope that the process itself is likely to improve.

As we will show later, this is a false understanding of the impact of 

RPA. RPA does not change the business process; as the previous section 

notes, it is nonintrusive and works at the user interface of the supporting 

IT processes. It can improve the speed and consistency of a process, but it 

cannot alter the process at all. If there are flaws in the underlying data or in 

the process flow, they are still there after the RPA implementation.

Implementing RPA focuses on a business process. The business 

process is unlikely to be automated; as a whole there are often tasks 

that require human intervention, such as approvals, not eligible for 

automation. In Figure 3-2 you can see a notional set of tasks forming part 

of a business process.

3�Willcocks, L., & Lacity, M. (n.d.). Nine likely scenarios arising from the 
growing use of robots. Retrieved May 16, 2019, from http://eprints.lse.
ac.uk/64032/1/blogs.lse.ac.uk-Nine%20likely%20scenarios%20arising%20
from%20the%20growing%20use%20of%20robots.pdf
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In this business process the process flow is between tasks, some in 

sequence, some depending on human intervention, and some that can 

be done in parallel. Human intervention cannot be automated, but each 

task can be automated using RPA if they have a defined set of repeatable 

rules. Cloud services, when first introduced, allowed line-of-business 

departments of a company, like marketing or sales, to use online services 

without contacting the IT department. A sales department could decide 

to use Salesforce as a management and monitoring tool for their sales 

processes without contacting the company IT department to handle 

procurement and adoption of a sales management tool. This became 

known as shadow IT. Thanks to its low cost of entry and relatively simple 

installation and operation, RPA has been regarded as similar to shadow 

IT. Implementing technology outside the IT umbrella has a number of 

potential issues but is usually a tactic to implement quickly and avoid the 

potential stigma of being an IT implementation. Departments considering 

implementing RPA outside the IT umbrella should think more strategically. 

Figure 3-2.  Business process and task relationship
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Shadow IT is tactical and IT needs to be brought into the project as an 

article by InformationWeek noted.4

RPA can also be used in organizations where the IT department 

may be small. RPA and shadow IT generally become a problem if the IT 

department does not know about the use of RPA tools in the company 

and cannot evaluate the risk of violating the various data protecting and 

privacy protecting regulations. An additional issue would be the potential 

for unanticipated budget and resource shortfalls in the IT department 

should the department using RPA decides that it is no longer prepared to 

devote their own resources to managing RPA and “throws it over the wall” 

to the IT department. This has been an issue in shadow IT and has the 

potential to be an issue in RPA implementations.

Once an opportunity for RPA has been discovered, the first step is to 

study the business requirements and select the appropriate tools. Before 

making any decision on technology, the process to be automated must 

be selected. Process selection is critical to success and can help resolve a 

number of issues, but before selecting a business process, it is important 

to review the existing processes. As you can see from Figure 3-3, simple, 

repetitive processes are the low-hanging fruit of process selection and 

will drive value from early RPA implementation. As part of the selection, 

processes need to be evaluated in terms of the operating environment in 

which they exist.

4�Morgan, L. (2020, February 18). Who Should Own RPA? - InformationWeek. 
Retrieved April 6, 2020, from www.informationweek.com/big-data/
ai-machine-learning/who-should-own-rpa/a/d-id/1337065
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Figure 3-3 illustrates the way in which tasks can be classified. Simple 

manual tasks, such as data entry or onboarding new customers and 

suppliers, are likely to be automated. Onboarding new customers, for 

example, may rely on emails and web orders. This process may have 

a manual component if the email or online form is not complete and 

may only be complete when a human makes further enquiries for any 

missing information. The manual element of the process would then 

be less focused on the data entry and data validation and more focused 

on creating that additional information. Cognitive processes that use 

a formalized set of rules to complete tasks, for example, calculating an 

insurance premium, can be easily automated. If the decision is challenged 

or the customer wishes to negotiate with a clerk, this would fall under the 

complex banner and be more difficult to automate, although chatbots may 

change this.

For example, the process to create a new customer order may contain 

a number of steps that can be automated. The process may have different 

flows depending on the operators. Experienced operators may have a 

slightly different method, for example, a particular stock item may be 

frequently ordered making its stock number memorable. An experienced 

operator may merely type in the relevant stock number instead of 

Figure 3-3.  Automatable task classification
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searching for the stock number. When automating a process, the operator 

being used to train the RPA tool should use the basic process and not any 

shortcuts that they have developed over time.

Selection of a process that would benefit from automation is the most 

critical part of implementing RPA. Often the overall success of RPA in 

an organization depends on the automation of well-selected processes. 

Selection criteria for processes to be automated may vary but broad 

guidelines include the following:

•	 Pick processes that have repetitive, high-volume 

work that requires consistent approaches. Over time 

tiredness and boredom can reduce human efficiency 

and accuracy.

•	 Ensure that the process is well understood, and that 

allowance is made for any shortcuts or local knowledge.

•	 Establish clear objectives that are well understood. Is 

the RPA exercise part of a general strategic business 

review or focused on a specific tactical goal such as 

improving speed of throughput, reducing customer 

wait time or frustration?

•	 Select a currently stable process that is not scheduled 

to be modified or included in a new business process.

Resistance to change, particularly change supported by automation, is 

a factor that can’t be ignored. Automation as part of cost-saving exercises 

can make staff nervous and lead to worries over employment or wholesale 

firing of staff. Good change management is needed to counter this and 

RPA implementers need to consider the human factors as much as the 

technology. An organization that is ensuring that their employees see 

a clear migration for them from repetitive and dull work to work that is 

more worthy of them will manage the transition more successfully than 

organizations that ignore these important factors.
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Earlier in this section we mentioned the excitement and rush to 

implement new technology solutions and gain benefits quickly, but this 

has to be tempered by a need to ensure that the best processes are being 

automated. An excellent implementation of automation for a process that 

has flaws is no better than a poor implementation of an optimized process. 

Business process management offers methods to review and optimize 

processes, but this may be outside the scope of the small- to medium-

sized businesses where RPA could deliver advantage. There are a number 

of simple questions that can be used in the review of processes and their 

associated tasks to decide if they can be automatable:

•	 Are there any unnecessary steps in the process?

•	 Are there any redundant operations?

•	 What is the impact on the process of removing 

unnecessary or redundant steps?

•	 Can the process be simplified in any way?

•	 What business rules are codified in the process?

While this is not an exhaustive list, it indicates that there are a number 

of challenges to implementing RPA beyond training the automation.

�RPA: Advantages, Challenges, and Caveats
The advantages of implementing RPA have been outlined before, but it is 

worth outlining them again in relation to challenges that RPA presents. 

During late 2018 and early 2019, RPA became more readily accepted as 

having an impact on businesses. These are businesses who are taking the 

opportunity to revitalize older IT and business processes, particularly 

manual and repetitive tasks with a high error rate. Cost savings and 
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productivity are the main drivers for implementing RPA with an ROI of 5:1 

claimed by some organizations.5

The architectural style of RPA implementations, with the software 

robots sitting on top of existing IT systems and able to release staff for 

other work, is relatively easy to deploy and gain early advantage.

•	 RPA will generate lower error rates for many tasks, as it 

does not get tired or bored.

•	 RPA can easily harvest data from emails, online 

invoices, or payments and put into ERP or CRM 

systems.

•	 The ability of an automated process flow to manage 

data from a variety of different systems can enhance 

performance and contribute to increased regulatory 

compliance.

•	 Regulatory compliance is enhanced because rules that 

support compliance are applied at the same stage in a 

task every time.

•	 RPA tools can deliver improved analytics and reporting 

as well as employee satisfaction.

RPA does not replace all human functions in a set of tasks, in a process 

flow such as that in Figure 3-2. Some tasks can be automated and others 

either cannot be automated or require some form of external validation. 

This could be for validation or additional information and there may be 

judgment calls that have to be made on exception.

There are some “low-hanging fruit” in terms of automatable 

processes. In Figure 3-3 the tasks that are repeatable and simple are all 

good candidates for automation, and while they can yield good ROI, the 

5�RGP, https://chapters.theiia.org/san-diego/Documents/Presentations/
RPA%20IIA%20Presentation%20San%20Diego.pdf [accessed on August 2019]
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more difficult tasks are ones that may give greater benefits. It is more 

difficult to automate customer service tasks that require human-to-human 

communication, but if the supplier side of the communication can be 

automated using chatbots, then not only will this free up staff for more 

personalized discussions or more challenging tasks, it could free up an 

organization who can then offer 24x7 support without the need for staff in 

different locations or shift work.

Even some of the more abstract decisions taken by a human can be 

codified if there are some basic rules. If a decision-maker such as a hiring 

manager is asked how they make a decision, they can describe a number 

of rules that they apply. They may look to cross-referencing candidate’s 

qualifications with desirable qualifications, for example. If the decision-

maker also looks at length of time in previous company ideally > 1 year, 

then this can also be applied to all the résumés that are presented. There 

are underlying rules that may not be codified, based on the manager’s 

experience or personal knowledge that could be used to further refine 

the search. This experiential understanding can then be addressed and 

potentially codified.

Staff will happily hand over tedious or boring tasks to RPA and 

may also appreciate an improvement in accuracy. More difficult to 

automate tasks will cause more potential unease since many of these 

tasks may be the only expertise of a member of staff; thus, they will feel 

more threatened. Poor change management and communications from 

management can leave some valuable staff concerned. This should be 

addressed in the implementation stage, and one of the major challenges 

in implementing automation is in the area of staff relations. Not long 

ago, one of the authors met with some customers who were planning on 

implementing payroll automation software, and I said, “This will speed 

up and simplify the work of a payroll clerk so that they can spend less than 

a day preparing and issuing pay slips.” He did not realize that one of the 

people in the meeting was a payroll clerk and their sole job week in week 

out was preparing the payroll and thus they were very threatened.
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Any changes to business models resulting from RPA need to be 

communicated and the redeployment and retraining for the displaced staff 

should also be considered from a business model point of view. Business 

model changes that place less emphasis on staff and more on automation 

can increase the threatening nature of automation.

An additional challenge is the management of the implementation. 

This may seem self-evident, but as was noted before, there are issues 

regarding change management and communication that can derail 

implementations. There are a number of high-level decisions and tasks 

that have to be acted on at the start and during the project, for example:

•	 Identification of processes for automation.

•	 Process optimization, reviewing current processes, and 

see if there are unnecessary steps.

•	 Managing change and relationships between IT and LOB.

•	 Who runs the project?

•	 Continuous improvement, retrospectives, inspect, 

adapt Re: Draft Local Management Agreement.

•	 Managing staff whose job is being replaced.

•	 Redeploy.

•	 Exception review and audit.

•	 Extend role with more intuitive/creative work and 

more robots.

Although the robot can perform faster than a human, the robot can 

only proceed as fast as the process will allow. For example, if a correlation 

search between two databases takes 1 minute, this part of the process 

will take 1 minute whether the robot has initiated the search or a human 

operator. Software robots must obey architectural rules and compliance 

for the base system.
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If as mentioned earlier there is the possibility of an ROI of 5:1, then any 

outsourcing proposition would have to be based by balancing the risk of 

automating a task rather against sending repetitive tasks offshore. Risks can 

include cost and ROI, speed of automation against training offshore staff, and 

normal offshore challenges of time zones, languages, and quality. Chatbots 

will also affect offshoring. The risk to offshoring is based on conversational 

systems using core applications as automated help desks and call centers. 

Chatbots have this potential, but RPA does not affect offshoring. Some 

commentators see offshoring increasing rather than decreasing. Any existing 

offshore hosting will probably stay offshore, and a little confusingly reshoring 

will also grow.6 Reshoring and insourcing of processes and applications is the 

methodology for bringing work back into the country or the organization.

Another issue that will not magically go away when you apply RPA 

is the relationship between line-of-business management who own 

the processes and the IT team who develop the IT business–supporting 

software. The disconnect between these two teams is often great and RPA 

is not going to change that, unless it finally becomes the technology that 

can allow LOB to develop their own systems.

�Intelligent Automation, Bots, and Chatbots
Through this chapter we have been talking about RPA implementations 

that have to be taught; learning and recording mouse moves as the task 

is accomplished by an expert. When you look into the future of RPA and 

automation in general, it is easy to fall into the trap that AI will solve 

everything and enable software robots to automate all but the most 

difficult tasks in a process and automate whole processes as well.

6�Nine likely scenarios arising from the growing use of robots. L. P. Willcocks, M. C. 
Lacity, Retrieved May 16, 2019, from http://eprints.lse.ac.uk/64032/1/
blogs.lse.ac.uk-Nine%20likely%20scenarios%20arising%20from%20the%20
growing%20use%20of%20robots.pdf
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AIMDek makes the point that there are several types of RPA, including 

assisted RPA, where a human is supervising the RPA activities, and 

unassisted RPA where the software runs on a server without human 

intervention,7 although the process may call on other servers and 

applications. Figure 3-2 showed that this process is made of many tasks. 

Some are done in parallel and some depend on other tasks completing 

before they can act. Unassisted RPA can automate a task that needs no 

human intervention, for example, an unassisted RPA may complete all the 

tasks to complete a mortgage application although the process may need 

an intervention, final authorization from a human to complete.

In the world of software suppliers, there are conflicting views of the 

future of RPA and a lot of terms that are being used to try and identify 

each supplier’s view of the next step in process automation. The recent 

consensus is that RPA as we know it will evolve into cognitive RPA (CRPA) 

or cognitive automation (CA)—cognitive RPA (CRPA) where AI can be 

leveraged using technologies such as optical character reading. Cognitive 

automation is pretrained to automate specific business processes. Both 

of these are similar in scope, anticipating a use of AI to make process 

automation stretch ever further into complex tasks and processes. Bringing 

intelligence to bear on unstructured data as well as structured data will be 

the next stage on from the RPA that is currently being implemented.

EXPERT INTERVIEW WITH SERGE MANKOVSKI

Serge Mankovski is an expert in workflow automation and holds a large 

number of patents in this area and he also has some interesting things to say 

about intelligent automation. In this interview, we discussed his views on RPA 

and intelligent automation and based on the work that he has been doing in 

7�AIMDek Technologies, Evolution of Robotic Process Automation (RPA): The Path 
to Cognitive RPA, August 29, 2018.
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workflow automation, AI, and machine learning. We have made some changes 

for readability.

•	 Intelligent automation as a term appeared a few years ago. 

The earliest references were to enterprise automation and 

workload automation. Many of the tools in this domain had AI 

components but these were not a central feature. Critical path 

analysis had some AI tools and intelligent routing also had some 

intelligence, but it was not until chatbots and robots became 

mainstream thinking that everything became an intelligent 

automation system. There is an element of old wine in new 

bottles but there are some systems that are becoming more 

intelligent. A good example would be a document management 

system, which is in effect a gigantic workflow system. There 

are some AI-type components to make some intelligent 

routing decisions although again they are not central features. 

The advent of chatbots and robots creating the hype around 

intelligent automation showed that there are still the same 

issues that must be solved.

•	 The concept of automation has expanded over time, but it 

is still not well established. There is little open source, few 

standards that address this domain, and continuous delivery 

has generated islands of established system that exist in the 

world of agile and continuous delivery.

•	 Intelligent automation took enterprise automation by surprise. 

Enterprise automation was used to build large system 

environments with well set-out procedures, building very large 

systems. These systems had version control and other processes 

to automate the management of these very large systems. Agile 

computing plus the process and tools that support it have a 

different infrastructure and also enable a mobile infrastructure. 

This is a new type of automation based on agile processes and 
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infrastructure. This type of automation will use hourly or daily 

delivery of updates. It would use daily integration within the 

delivery window using tools such as Docker and Kubernetes 

and be influenced by open source. As was said earlier, the 

preeminence of open source has blindsided many tools and 

infrastructure providers. They are struggling to monetize their 

products and still compete, how to charge for company products. 

There are lots of open source tools that don’t get charged for; 

agile tools, for example, are generally free. Commercial agile tool 

providers have to rely on the attitude of customers who want to 

offload the responsibility for managing open source tools by using 

corporate branded tools.

•	 There are a number of islands of automation in enterprise IT, 

document processing, and intelligent manufacturing. Intelligent 

manufacturing, for example, is well advanced with solutions in 

logistics and supply chain that are dominated by niche players. 

Automation is a tapestry with many minor components like 

data preprocessing pipelines, data pipelines that are daily 

requirements and need to be repeatable and at scale. There 

are requests for new tools, but they are not being fulfilled 

completely. The focus is on intelligent automation rather than 

creating new tools.

•	 Intelligent automation would consist of several expanded layers, 

not just a sole emphasis on chatbots and “shiny things” that 

still need an infrastructure around them. Organizations are by 

and large still building the old-style proprietary infrastructure. 

Automation needs are now different and so are the solutions. 

Some companies are providing tools that bridge the islands 

of automation, stitching together the different islands but 

still not sure what intelligent automation is and what are the 

components.
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•	 One thing that is clear is that chatbots and other shiny things 

need to be integrated with enterprise automation. This can then 

be supported by an infrastructure that tries to weld together 

proprietary solutions. This could then give the possibility of 

updating software in robots through a continuous delivery 

pipeline.

•	 Disparate robots can communicate, using topic-based pub/

sub in the Robotic Operating Systems (ROS). As an open source 

meta-operating system for robots, ROS will ultimately enable 

high-level commands to be interpreted and become actions. 

An example would be the entry of a robot into an intelligent 

building. It would require a sophisticated way of coordinating 

with the buildings. There may be goal conflicts between the 

robot and the building, perhaps to deny or permit entry based 

on the robot’s intent. There is a need to be able to do this at the 

semantic level, with the semantics as simple as you would use 

an API-level communication.

•	 If you assume a well-structured robust API, that is well tested. 

There is a need to be able to say at the semantic level, “What 

have I accomplished?” and “What is the high-level goal?” It can 

be important to play this through a scenario, for example, using 

these questions:

•	 What will happen if I accomplish this goal?

•	 Am I going to fail?

•	 What additional resources are needed?

•	 What kind of capacity?

•	 Does this violate any constraints?
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•	 These are all intelligent automation components. With these 

being managed, we can look at a system and it can do things 

sensibly, that is, reliably understand what the system is 

doing and how to progress. If you look at the question about 

failure, it is possible to evaluate the risk of a failure and the 

subsequent cost. How can you reconcile intelligent automation 

with enterprise workflow automation, the automation of IT 

tasks and business tasks? If the cost of failure is high and the 

risk (or likelihood) of failure is low, then there is no issue with 

failure. There is nothing in intelligent automation systems at 

the moment that can make reasoning to recover from a failure 

automatically. Intelligent automation has to grow pragmatically 

and should cover the mundane not the shiny.

•	 One direction is to build on the blackboard problem used in 

problem escalation. There are many AI tools on a message 

pipeline with intelligent parsing of messages that throw any 

estimated problems on a “blackboard” for review. The review 

is managed by humans who can resolve the specific problem 

event and the system learns from each review so that they get 

better at recognizing problems and giving fact-based answers.

•	 The next generation of sensible AI has humans in control and 

works synergistically with AI. In this model the machines mine 

data and propose results with the humans making decisions. It’s 

not a new idea at all, but it needs work to become a scalable, 

repeatable, and sensible workflow. Intelligent automation will 

get human performance on the critical path, but despite some 

commentators, it will not reduce staff but increase the scope of the 

existing staff. This will also require an investment in continuous 

learning and staff development, for example, data scientists may 

have to take note of and prove their expertise in all the new “stuff” 

that comes out over a year to maintain their certification.
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•	 The good news is that the critical mass is already here. 

Technologies exist that cover a lot of the AI domain. We already 

have the technology that can build large parts of IA solutions. 

A good example is Google deploying tensor flow and showing 

the world how to build large-scale ML models. The problem 

is resources; you need to put really smart people on it and 

professors are already saying that they can’t find good PhD 

candidates in Silicon Valley because the students are going 

into companies to do ML. Cloud providers are sucking up data; 

ML can point to this data and use it for reasoning, although the 

cloud providers will charge for access to the data. To model 

this, we need a good use case, not autonomous cars, but 

healthcare may produce an interesting result.

•	 A critical element is the theorem of universal approximation, 

currently handling fake news, movies, and so on. This can 

conduct reinforcement learning and can be taught to automate 

any process as long as there is a good fitness function. It can 

replay continuously on its own and develop rules through 

adversarial learning as well.

•	 There are a number of gaming companies who create 

world simulation and a good 3D simulation, from Unity, for 

example, can produce a great simile of the world for low-risk 

experiments. If you take a population of robots that can learn 

in a simulated environment, then you don’t need to build a 

physical automated system to evaluate intelligent automation. 

This would be a complete disruption to the current models. It 

would also be possible to create intelligent entities and throw 

them into a virtual world that behaves by the rules that you 

want to observe. If you want a rule that says stay on the red 

line, you need to design an appropriate fitness function. The 

robots will learn in the virtual world at little or no risk.
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•	 Reinforcement learning aims to train an intelligent (automation) 

agent where as other forms of learning aim to make predictions 

or estimations. Reinforcement learning (RL) is there to teach 

machines to automate tasks by maximizing the reward so 

that the machine can exhibit emergent automation behaviors 

instead of explicitly prescribing it. This is in essence how 

robots learn to learn to walk nowadays. It is interesting that 

RL allows intelligent agents finding new automation strategies 

never discovered by humans. This phenomenon is somewhat 

superhuman, but it makes it more imperative to erect an 

intelligent cage around the intelligent automation so that it does 

not develop models that would violate policies and constraints 

within which it must operate.

•	 Creation of this intelligent cage is perhaps the most important 

aspect of intelligent automation of the future. It is akin to 

the need to develop deepfake detectors we are witnessing 

today. By fighting AI-based deepfakes with AI-based deepfake 

detectors, researchers pave the way for AI-based intelligent 

cages for intelligent automation agents. This cage is a firewall 

for the integration fabric joining islands of automation into a 

seamless flow defining the boundaries for behaviors of the 

process as a whole.

•	 Many of the current AI companies use single AI entities doing 

single-purpose tasks. Multiple agencies can act on the virtual 

world with no risk except compute time because it is all in the 

VR. The biggest problem is designing the fitness function and 

creating automation relies on the design of fitness functions.
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•	 The future of AI will come when automation becomes 

optimization. We know how to do optimization so that we can 

reformulate from rules to fitness functions. Once this happens 

IA will explode. It is not a doom and gloom scenario; we need to 

create the rules of engagement. We need to become controllers 

managing machines rather than controlled people being 

managed by machines.

•	 Specifically regarding RPA, large companies can afford to 

develop RPA with optimized processes; they can hire logistics 

and operations people to optimize processes. SMEs don’t have 

the same ability and some domains are better at this than 

others.

Some additional key points that Serge mentioned are as follows:

•	 Hype has generated interest in automation although the reality 

is a lot slower than we are led to believe.

•	 The interest and level of automation has expanded over time.

•	 There are few standards and open source solutions and this 

encourages vendor lock-in and makes it difficult for interaction 

between different solutions.

•	 There is a need to automate the underlying infrastructure to 

enable performance at scale and resilient infrastructure to 

support the RPA processes.

•	 Virtual trials of AI and robotic tools can be made using gaming 

platforms.

•	 Critical mass for AI is already here; there is already enough 

technology to cover most AI domains.

•	 As always resources are a problem, professors are saying that 

they can’t find good enough PhD candidates for AI.
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While a number of the points here are in line with our thinking, the use of 3D 

simulation to experimentally test theories of robotics is not quite as advanced 

as the comments make out; it is already a well-established model. Indeed, we 

spent many meetings in 2018 discussing the potential of using gaming models 

to test theories of robotic collaboration in a lower-cost, low-risk, environment 

without a physical engineering laboratory. It is particularly valuable in 

generating the large volumes of data needed for experimentation.

We have already noted that RPA does not change processes and this is 

supported in these notes from Serge. He also emphasized that processes need 

to be optimized before implementing RPA. It is clear from these notes and the 

rest of the chapter that there would not be a wholesale loss of employment 

but a migration of workers from repetitive jobs that are automated to more 

creative work that would be more interesting. The future could also offer 

facilities for small- to medium-sized enterprises that are currently the domain 

of large enterprises. While large-scale organizations can employ teams of 

process and IT optimizers, the SMEs can still automate thanks to the low cost 

of entry of RPA.

�Summary and Conclusion
RPA technology is in use now and is assisting organizations to automate 

high-volume, high error rate repeatable processes with well-known rules. 

This low-hanging fruit can be automated by offshoring, but the number 

of tasks that need automation is vast and there is an appeal to automating 

in-house. It is often supposed that RPA, like so many other automation 

strategies, will result in large-scale staff losses. It is becoming accepted 

that staff will be displaced but not replaced by RPA. They may be deployed 

into jobs that are more worthwhile and less repetitive instead. There is, 

however, no doubt that RPA will be an employment disrupter for at least 

the next 5 years. Strategies for change by implementing RPA must take 
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the human factor into account to more effectively develop automation 

solutions. Solid change management strategies will be key in avoiding the 

stress of imagined job losses.

In terms of the perception of adoption of RPA, there are mixed results, 

with some analysts suggesting that RPA is already at critical mass of 

deployment. This is explained by the low cost of entry and AI and robotics 

being at the early adopter stage. Process management and optimization 

are important techniques during an RPA project. This chapter focuses 

on RPA and its impact on business; that impact can be lessened if the 

corresponding techniques are not used to ensure that the automated 

project is in the best possible shape to deliver the maximum effect.

There are varying views of automation in general and RPA specifically. 

In terms of general automation, Chapter 2, “Technology Definitions,” and 

subsequent chapters review opinions ranging from “the robots are taking 

over” to robots will “cause mass unemployment.” The RPA predictions 

seem to be more pragmatic, perhaps because more people have seen real 

evidence of value. The value of RPA implementations seems to be rising 

and may increase more when small- to medium-sized organizations are 

looking for automation technologies with a good ROI. RPA will affect 

outsourcing by automating many tasks that could be outsourced; however, 

there are so many tasks and processes to be outsourced that outsourcing 

will grow in parallel.

An area of potential concern is RPA’s potential to be deployed by 

line-of-business managers, in the style of shadow IT. One reason why line 

managers are keen to avoid the IT department is the perception of large 

impact IT project failures in a number of companies. There have been a 

number of large and small IT projects that have failed. The failures have 

been for a variety of reasons, massive budget overruns, poor functionality, 

poor performance, and so on. Line-of-business managers are often keen 

to control a project affecting their business. This can lead to problems of 

integration with existing systems, compliance with corporate standards, 
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and increasing budget demands by the line of business. Line-of-business 

and IT implementers should work as a team to resolve these issues.

In conclusion, we find that:

•	 RPA will be a massive disrupter of business, work, and 

employment.

•	 The majority of employees will be displaced into other 

roles.

•	 Processes will need to be selected and optimized to 

gain the most advantage from automation.

•	 SMEs will find the low cost of entry attractive.

•	 In the future, employment will be disrupted further 

as more complicated tasks and processes will become 

automated by RPA.

•	 Intelligent automation using AI must have humans in 

control, on the critical path, and the automated tasks 

become more complex.

•	 Intelligent interactions between tasks, processes, 

and human interlocutors will be the next stage of 

automation and are discussed more fully in Chapter 4, 

“Robots in Teams.”

Finally, this and subsequent chapters show how much closer to the 

desired result we can get: business managers finally being able to use 

natural language to describe a new process in a dialog with a bot that 

already knows or can easily learn your business. This will revolutionize 

business since the supporting applications will be supporting the business 

without the need to translate for IT.
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CHAPTER 4

Robots in Teams
Devastation! If you were standing at the corner of Harbour Avenue and 

Front Street on this Caribbean Island, you would see in every direction, 

through patches of mist and dust, heart-wrenching scenes of devastation 

caused by the recent category 5 hurricane.1 The houses and buildings of 

this once-quaint, popular tourist city are smashed, broken into timber and 

glass and twisted metal. Days later, when the winds subside to tolerable 

levels, fires still rage.

Throughout the city are the sounds of search-and-rescue drones. It 

would be dangerous for humans to stand at the corner of Harbour and 

Front, but robots of different sizes and shapes slowly move across the 

ruins. Drones search for signs of life using infrared and sound sensors. 

Land-based robots, based on extraterrestrial rovers designed by NASA, 

carefully crawl through the fragile and dangerous terrain. If the ground 

gives way and they tip over or fall, they can stabilize and crawl back to 

solid land. Hospital pods are airlifted to stable and central locations. All 

of this is accomplished using remote-controlled and semi-autonomous 

robots. They communicate with each other and with human medics and 

supervisors, forming small teams. Each team is responsible for a well-

defined region of the city. The data they collect is used to map working 

and damaged infrastructure, and to trigger further surveillance, to predict 

1�The island and details are fictional.

https://doi.org/10.1007/978-1-4842-5964-1_4#ESM
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safe and unsafe regions, and to automate various recovery tasks. In safer 

neighborhoods, survivors work alongside the human-machine first 

responder teams.

There are scientific challenges that must be overcome to create 

collaborative robots of the sort described in the preceding narrative, but 

much of what is described here is quickly becoming reality. Search-and-

rescue is an excellent example of how robots can be used to complement 

or act in place of humans. Many of the tasks are dangerous and unsanitary. 

They require continuous vigilance, and extra-human strength and senses.

�An Introduction to Cobots
In this chapter, we focus on collaborative robots, or cobots. They have 

also been called social robots. We use a broad definition—cobots are 

robots that work with and alongside human workers, assisting them and 

collaborating with them to manipulate physical and logical objects (i.e., 

data) in order to achieve an objective. Throughout this chapter we will use 

the term cobots to distinguish robots that work alongside humans from 

the industrial robots that work in separate spaces, usually for safety and 

efficiency.

The fundamental requirements for industrial robots (the kind that 

don’t typically interact with humans) are the following:

	 1.	 Integrating (or fusing) data from various 

sources—information derived from sensors 

and other computers, and transmitted through 

communication networks.

	 2.	 Performing actions within its physical and logical 

environment in order to affect some well-defined 

objective. This often requires sophisticated 
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decision-making software that accommodates 

changes in the data and instructions received 

through its internal and external communication 

networks.2

Cobots must fulfill these two basic requirements but must also be 

able to carry out their actions within a social environment. As in the 

search-and-rescue example in the chapter introduction, the cobot must 

be aware of the humans within its environment, evaluate the role of these 

humans (emergency worker, volunteer, patient, etc.), and appropriately 

communicate with and act alongside them. In the next section, we’ll 

explore how cobots are changing organized work.

�Cobots in Complex Environments
The gadget-minded people often have the illusion that a highly 
automatized world will make smaller claims on human inge-
nuity than does the present one ... This is palpably false.3

—Wiener, N. (1964)

Cobots are designed to work alongside humans in complex tasks. This 

contrasts with traditional industrial robots that are intended to operate in a 

physical space that is separate from human work areas.

Traditional industrial robots have been used for decades in high-

volume, high-speed applications (e.g., sorting mail, welding, or injection 

molding where robots can be isolated from human workers). In these 

types of applications, the robots need to achieve highly accurate 

2�The mapping from data fusion to intentional action is often mediated through a 
model of the environment, which may be learned or predefined. Alternatively, 
the mapping between data and action may be handled by a human operator who 
monitors and issues commands.

3�Wiener, N. (1964). God and Golem, Inc: a comment on certain points where 
cybernetics impinges on religion (Vol. 42). MIT Press. p. 63.
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movements, work with other machines and robots, and operate with 

little or no supervision on tasks that automate processes or products that 

don’t frequently change.4 Industrial robots are designed to accomplish 

highly routine, precision tasks, at high speeds and low cost—they replace 

workers or accomplish tasks that are too dangerous, too tedious, or too 

difficult for humans.5 They are essentially the physical embodiments of the 

automation discussed in Chapter 3, “Robotic Process Automation.”

RPA and intelligent automation facilitate the integration of other 

industrial processes (management and control) with physical production, 

including those that use industrial robots. According to Fortune Business 

Insights, the rapid shift from manual labor to automation is creating a 

rising demand for industrial robots. The global market size for industrial 

robots was valued at almost $19 billion (USD) for 2018 and is expected to 

achieve almost $60 billion by 2026.6

Cobots are a different species of robots. Collaborative robots are designed 

to work with or be trained by humans. They are lighter, safer (for humans), 

more agile in body and intelligence (than industrial robots), and in some 

cases easier for nonprofessionals to program. Analogous to humans, some 

cobots learn by imitating humans or through guided experience.7

4�Universal Robots (2019). Beyond the Cobot Buzz: A Cheat Sheet on How to 
Choose Between Collaborative and Traditional Industrial Robots. https://info.
universal-robots.com/cobots-vs-traditional-industrial-robots [accessed 
on April 2, 2020].

5�Cory Roehl (2017). Know Your Machine: Industrial Robots vs. Cobots. Universal 
Robots, https://blog.universal-robots.com/know-your-machine-
industrial-robots-vs.-cobots [accessed on April 2, 2020].

6�Fortune Business Insights (September 2019). Machinery & Equipment / 
Industrial Robots market. www.fortunebusinessinsights.com/press-release/
industrial-robots-market-9257 [accessed on April 2, 2020].

7�Smith, K (March 29, 2017). “Cobot” with Deep Learning and Gesture Recognition 
Hits Audi Production Floor. https://www.allaboutcircuits.com/news/
collaborative-robot-deep-learning-gesture-recognition-audi-brussels-
factory/ [accessed on June 14, 2020.]; see also Wang, W., Chen, Y., Li, R., & Jia, 
Y. (2019). Learning and Comfort in Human–Robot Interaction: A Review. Applied 
Sciences, 9(23), 5152.
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Traditional industrial robots require large capitalization costs; individual 

cobots are relatively inexpensive and thus can scale with the size of the 

business needs. Cobots are thus transforming many industries, sectors, and 

regions. Although the market for collaborative robots is currently smaller than 

the market for industrial robots, the expected growth rate is much higher: 

The global market size for collaborative robots was $1.57 billion (USD) and 

is expected to grow to $23.59 billion by 2026.8 Universal Robots currently 

dominates the collaborative robot market with approximately 60% market 

share, but companies such as ABB, Robert Bosch, KUKA, and FANUC are now 

competing for this important and consequential market.9

Cobots will transform work in large and small organizations. Cobots 

are currently involved in laparoscopic surgery, providing massages, 

and disinfecting udders on cows before and after milking.10 GROWBOT 

(Grower-Reprogrammable Robot for Ornamental Plant Production Tasks) 

is a research project at King’s College that is using imitation learning to 

teach cobots to perform small, delicate horticultural tasks such as “taking 

and inserting cuttings, grading and collating plant specimens.”11

To illustrate some of the important challenges and benefits of cobots, 

the following three subsections explore how cobots are used in three 

different contexts: search-and-rescue, surgery, and order-fulfillment.

8�Fortune Business Insights (November 2019). Machinery & Equipment  
/ Collaborative Robots market. https://www.fortunebusinessinsights.com/
press-release/collaborative-robots-market-9395 [accessed on June 14, 2020].

9�EY-Mint Emerging Technologies Report 2019. Emerging Technologies: 
Changing how we live, work and play. www.slideshare.net/eraser/emerging-
technologies-changing-how-we-live-work-andplay-eymint-emerging-
technologies-report2019 [accessed on April 2, 2020]. The statistic regarding 
market share was cited in this report as originating from CB Insights.

10�www.ien.com/automation/article/20849060/collaborative-robots-are-
showing-up-in-the-strangest-places [accessed on April 2, 2020].

11�https://horticulture.ahdb.org.uk/project/growbot-grower-
reprogrammable-robot-ornamental-plant-production-tasks-phd-
studentship [accessed on April 2, 2020].
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�Search-and-Rescue
In their comprehensive review and analysis of search-and-rescue robots, 

Williams et al.12 divide search-and-rescue into four essential tasks: search, 

extraction, evacuation, and treatment. Different robots have been designed 

and deployed for each of these with little or no overlap between these tasks 

(although some may be designed to work in tandem with other robots).

Search robots do not need to be social; among the four categories 

of search-and-rescue robots, search robots (especially airborne and 

submersible) are the most widely used. They need to be able to survey 

affected regions and to search for humans and identify unstable 

environments (such as toxic or volatile gasses and insecure infrastructure), 

and they need to be lightweight, energy-efficient (enabling nearly 

continuous operations), and modular (able to easily add or remove diverse 

types of sensors and robotic arms and manipulators). The basic design 

imperative is that every second matters—the sooner someone is rescued, 

the more likely their survival. Discovering humans may require integrating 

data from various sensors such as CO2 detectors, heat imaging and visible 

spectrum cameras,13 and chemical (olfactory) detectors. In many ways, 

search robots imitate and expand on what trained search-and-rescue dogs 

have done for years.14

12�Williams, A., Sebastian, B., & Ben-Tzvi, P. (2019). Review and Analysis of 
Search, Extraction, Evacuation, and Medical Field Treatment Robots. Journal of 
Intelligent & Robotic Systems, 1-18.

13�Farooq, N., Ilyas, U., Adeel, M., & Jabbar, S. (2018, October). Ground Robot for 
Alive Human Detection in Rescue Operations. In 2018 International Conference 
on Intelligent Informatics and Biomedical Sciences (ICIIBMS) (Vol. 3, pp.  
116-123). IEEE.

14�Mochalski, P., Ruzsanyi, V., Wiesenhofer, H., & Mayhew, C. A. (2018). 
Instrumental sensing of trace volatiles—a new promising tool for detecting the 
presence of entrapped or hidden people. Journal of breath research,  
12(2), 027107.

Chapter 4  Robots in Teams



115

Many search robots are remote controlled, but ideally, they should 

be able to continue operations and quickly react to local conditions even 

when communications are disrupted or too slow for real-time responses. 

Search robots may also need to be sufficiently agile and small enough 

to enter and navigate small, unevenly shaped openings and tunnels. 

According to Williams et al., search robots can be divided into three 

major categories: evaluating the damage and stability of structures and 

infrastructure, acquiring data for additional processing, and discovering 

trapped or injured persons. In addition, some of these robots can make 

minor repairs or adjustments (such as stopping gas flow by turning a valve) 

or can transport small amounts of medicine and other supplies.

The other three categories of search-and-rescue support extraction, 

evacuation, and medical treatment. In these activities, interaction with 

human patients is critical and difficult. Some extraction systems work only 

if the injured person can be lifted onto a flexible stretcher that is attached 

to the robot (e.g., iRobot Valkyrie15); in other cases, the robot can lift the 

victim (e.g., the Battlefield Extraction-Assist Robot, which is produced by 

Vecna Robotics16), but this is advisable only if the victim has had no head 

or neck trauma.

Evacuation systems, such as LSTAT (Life Support for Trauma and 

Transport), transport patients to field hospitals for further medical support 

and typically monitor the patient’s blood pressure, pulse, temperature, 

oxygen levels, and so on. LSTAT has been successful in hospital and 

military field studies.17

15�Valkyrie was developed by iRobot in 2003 as a recovery robot. See http://
robotfrontier.com/gallery.html [accessed on April 2, 2020].

16�BEAR is a humanoid robot developed by Vecna Technologies in 2004.
17�Williams, A., Sebastian, B., & Ben-Tzvi, P. (2019). Review and Analysis of 

Search, Extraction, Evacuation, and Medical Field Treatment Robots. Journal of 
Intelligent & Robotic Systems, 1-18.
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�Surgery
This subsection explores the use of cobots during surgery. In current 

surgical applications, the cobot is remote controlled by a human surgeon.

The use of remote-controlled robots in medical surgery is not without 

controversy. The surgeon monitors multiple displays and instructs the 

robot. The robot, which is often situated above the operating table, uses 

precision, sensory-laden “fingers” to examine and manipulate.

When designing a cobotic system, it is important to ask psychological 

and sociological questions, in addition to the standard questions about 

effectiveness, functionality, reliability, and cost. Is the resulting human-

machine system an effective and healthy partnership? What happens 

when remote-controlled robots are used in surgery? How does power 

and authority shift? Does it alter the patient-doctor relationship? Does 

it modify the relationship between the surgeon and other surgical team 

members?

According to one study (Juo et al., 2018 ),18 which examined the 

doubling of robotic-assisted laparoscopic surgeries between 2008 and 

2013: “No significant association existed between the frequency of robotic-

assistance usage and relative outcome statistics such as mortality, charge, 

or length of stay.” No difference in self-reported postoperative outcomes 

was also reported for robotic and traditional laparoscopic surgery for 

women with endometrial surgery. Both laparoscopic techniques led to 

better outcomes than open surgery, but no differences in patient-reported 

outcomes were found between the robotic and traditional laparoscopy.19

18�Juo, Y. Y., Mantha, A., Abiri, A., Lin, A., & Dutson, E. (2018). Diffusion of robotic-
assisted laparoscopic technology across specialties: a national study from 2008 to 
2013. Surgical endoscopy, 32(3), 1405-1413.

19�Ferguson, S. E., Panzarella, T., Lau, S., Gien, L. T., Samouëlian, V., Giede, C., ... & 
Bernardini, M. Q. (2018). Prospective cohort study comparing quality of life and 
sexual health outcomes between women undergoing robotic, laparoscopic and 
open surgery for endometrial cancer. Gynecologic oncology, 149(3), 476-483.
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However, in a recent comparison of conventional laparoscopic and 

robotic-assisted bariatric surgery, robotic surgery was associated with 

significantly longer operations, and “in gastric bypass, rates of aggregate 

leak and bleeding were higher with robotic surgery, while transfusion was 

higher with laparoscopy.” In sleeve gastrectomy cases, other outcomes, 

such as “… reoperation, readmission, sepsis, …,” were higher with robotic 

surgery.20

A recent meta-analysis of 27 clinical reports of robotic and traditional 

laparoscopies,21 dated from 1981 to 2016, found that outcomes in robotic-

assisted methods were not significantly better than traditional methods, 

apart from lower estimated blood loss. Indeed, traditional methods 

resulted in better operative times and reduced complication rates and 

overall cost.

Robotic surgery is a transformative technology that reorganizes how 

teamwork is achieved. The use of these robots has radically altered the 

surgical environment. In human-conducted surgery, the surgeon works 

directly on the patient, peering directly into patient. The surgical team 

hovers around the surgeon, orienting themselves to his or her preferences. 

Traditional laparoscopy changes this somewhat, but the surgeon and 

the surgical team are still close to the patient and the surgical team is still 

oriented around the surgeon.22

20�Acevedo, E., Mazzei, M., Zhao, H., Lu, X., & Edwards, M. A. (2019). Outcomes in 
conventional laparoscopic versus robotic-assisted revisional bariatric surgery: 
a retrospective, case-controlled study of the MBSAQIP database. Surgical 
endoscopy, 1-12.

21�Roh, H. F., Nam, S. H., & Kim, J. M. (2018). Robot-assisted laparoscopic surgery 
versus conventional laparoscopic surgery in randomized controlled trials: a 
systematic review and meta-analysis. PloS One, 13(1), e0191628.

22�Pelikan, H. R., Cheatle, A., Jung, M. F., & Jackson, S. J. (2018). Operating at a 
Distance - How a Teleoperated Surgical Robot Reconfigures Teamwork in the 
Operating Room. Proceedings of the ACM on Human-Computer Interaction, 
2(CSCW), 138.
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Robotic surgery changes this: A many-armed surgical robot, such as 

the da Vinci telesurgery robot, is positioned over the patient. The robot’s 

arms and tiny articulators easily move with near-perfect precision and 

stability where humans cannot. The sensors attached to the articulators 

provide information about the patient’s condition that is not possible 

in traditional surgery. And the AI that ingests the sensory information 

provides real-time predictions about the health of the patient, such as the 

likelihood that the tissue under observation is cancerous or benign. These 

are great achievements of robotic and machine-learning technologies.

However, the surgeon is now located father from the patient. In 

another part of the room, the surgeon huddles over a monitor and 

control console, controlling the robot arms through various gestures 

and commands. The surgical team is no longer pressed close to the 

surgeon, but some of them are monitoring the patient. Despite the earlier 

mentioned benefits, robotic surgery transforms the physical arrangement 

of the surgical theater and the way in which humans interact. The need 

for verbal communication is increased because the humans can no longer 

communicate easily by glance and gesture23 and students don’t participate 

as extensions of the surgeon’s physical and sensory system and therefore 

don’t get the same level of direct training.

Evaluations of robotic surgery should not only measure traditional 

key performance indicators like operative duration, cost, blood loss and 

other complications, and postoperative health, but also the sociological 

impact: how does the inclusion affect the performance of the surgeon 

and the operative team? The training of students? And the real-time 

decision-making capabilities of the team? The longer operative times 

observed in many robotic-assisted surgeries may be due to the intra-team 

23�Pelikan, H. R., Cheatle, A., Jung, M. F., & Jackson, S. J. (2018). Operating at a 
Distance - How a Teleoperated Surgical Robot Reconfigures Teamwork in the 
Operating Room. Proceedings of the ACM on Human-Computer Interaction, 
2(CSCW), 138.
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communication obstacles introduced by the placement and actions of the 

robot. This might improve with time and experience, as the surgical team 

adapts to their new “member,” but some of the effects may have long-term 

consequences for the training and behavior of the surgical staff.

�Warehouses
Current robotic-assisted order-fulfillment warehouses offer other insights 

into the benefits and pitfalls of collaborative robots. In December 2018, 

as humans and robots were quickly processing customer orders in a 

New Jersey Amazon warehouse, a can of bear repellent was accidentally 

punctured by a robot.24 Fifty-four employees were exposed to the noxious 

fumes, of which two dozen were hospitalized. A similar accident occurred 

in 2015, at an Amazon facility in Haslet, Texas, when a robot rolled over a 

can of bear repellent.25

These accidents raise questions about the use of robots; human 

workers have also dropped bear repellent, but a human stepping on a 

can of bear repellent will not cause an explosion; instead, it will typically 

cause the human to stop pressing their foot, to bend down, and to restock 

the undamaged can. Developing an efficient, cost-effective solutions that 

allow robots to learn to monitor the consequences of their actions, to halt 

actions that might have dire consequences, and to take corrective action is 

nontrivial and a research challenge.

Retrieving fallen items is just one reason why a human worker might 

enter a restricted space. Other reasons for entering an area in which 

24�Louise Matsakis (December 6, 2018). This Wasn’t Even Amazon’s First Bear 
Repellent Accident. Wired, www.wired.com/story/amazon-first-bear-
repellent-accident/ [accessed on April 2, 2020].

25�Brian Heater (January 18, 2019). Amazon built an electronic vest to improve 
worker/robot interactions. TechCrunch. https://techcrunch.com/2019/01/18/
amazon-built-an-electronic-vest-to-improve-worker-robot-
interactions/ [accessed on April 2, 2020].

Chapter 4  Robots in Teams

http://www.wired.com/story/amazon-first-bear-repellent-accident/
http://www.wired.com/story/amazon-first-bear-repellent-accident/
https://techcrunch.com/author/brian-heater/
https://techcrunch.com/2019/01/18/amazon-built-an-electronic-vest-to-improve-worker-robot-interactions/
https://techcrunch.com/2019/01/18/amazon-built-an-electronic-vest-to-improve-worker-robot-interactions/
https://techcrunch.com/2019/01/18/amazon-built-an-electronic-vest-to-improve-worker-robot-interactions/
https://techcrunch.com/2019/01/18/amazon-built-an-electronic-vest-to-improve-worker-robot-interactions/
https://techcrunch.com/2019/01/18/amazon-built-an-electronic-vest-to-improve-worker-robot-interactions/


120

robots are working include setup, maintenance, and testing. The danger 

for humans working in these restricted spaces is obvious, and Amazon 

recently introduced an electronic vest to improve human and robot 

interactions. The vest allows robots to detect human presence more 

quickly and accurately and to move along paths that avoid humans. 

Despite the risks, the use of robots in warehouses improves efficiency and 

accuracy—robots can excel in tasks that require superhuman strength and 

endurance.

�Working Alongside Humans
Each of the previous examples (search-and-rescue, surgery, and factory 

teams) reflects the benefits and dangers that can occur when humans and 

robots work in proximity. Cobots can be larger, stronger, and more agile. 

They can be privy to data that humans cannot access in real-time and can 

respond to that data much more quickly than humans. Humans on the 

other hand can be more adaptive to changes in the environment and more 

flexible in how they think about and resolve problems. Robots tend to be 

constructed around specific, well-defined objectives; humans evolved to 

be adaptive. So how can they cooperate in human-robot teams that benefit 

human society?

Humans are social animals and the way in which we frame our 

interactions with our tools, other species, and our environment is 

strongly influenced by the way we interact with one another. We 

anthropomorphize. Some give names to their cars and most give names 

to their pets. Humans model their interactions with computers and other 

intelligent technologies on human-to-human dialogue, which is a good 

strategy because the interactions methods used by these technologies 

were designed by humans, and can be viewed as extended, computer-

mediated, dialogues. As robots become more intelligent and more varied 

in their responses, we will increasingly ascribe personalities and names 
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and anthropomorphize their behavior.26 We will adapt to their limitations 

and abilities, and through iterative design and machine learning, they will 

adapt to us.

�Levels of Automation and Collaboration
Automation and collaboration are not simple concepts that are either 

absent or present in a human-machine interaction. It is a continuum 

that exists across multiple dimensions. In Table 4-1, we present our 

method describing this continuum,27 by decomposing it into automation 

vs. human-machine collaboration (the second and third columns) 

and into five levels of collaboration (0 to 4) from interacting with non-

intelligent mechanical tools to collaborating with robots that have artificial 

intelligence and autonomy. The column labeled, Automation, provides 

examples of machines that operate without frequent human supervision. 

The Human-Machine Collaboration column focuses on the examples with 

frequent communication between humans and machine—the behavior of 

each, constraining the other.

26�Reeves, B., & Nass, C. I. (1996). The media equation: How people treat computers, 
television, and new media like real people and places. Cambridge university 
press.

27�This table is influenced by prior research on levels of automation and autonomy, 
particularly, Abbass, H. A. (2019). Social integration of artificial intelligence: 
functions, automation allocation logic and human-autonomy trust. Cognitive 
Computation, 11(2), 159-171; Endsley, M. R. (2017). From here to autonomy: 
lessons learned from human–automation research. Human factors, 59(1), 5-27; 
and the National Highway Traffic Safety Admin (NHTSA). (2013). US Department 
of Transportation, preliminary statement of policy concerning automated 
vehicles. NHTSA preliminary statement. www.nhtsa.gov/staticfiles/
rulemaking/pdf/Automated_Vehicles_Policy.pdf [accessed on April 2, 2020].
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Table 4-1.  Levels of Automation and Collaboration

Level Automation Human-Machine
Collaboration

  0. � Non-
intelligent 
tools

No intelligent automation

·· Non-intelligent devices 

that operate with little or 

no human supervision.

·· Examples: gas engines, 

boilers, water turbines that 

existed prior to 1930s.

No intelligent interaction

·· Human makes 

all decisions, and 

interpretation is fixed.

Examples: driving or braking in 

cars made before the 1970s; 

mechanical looms.

  1. � Human-
directed 
interactive 
tools

Human-directed automation

·· Fixed logical process 

initiated and designed by 

humans.

·· Examples: batch 

processing and RPA; 

industrial robots working 

in restricted areas; the 

Jacquard loom with 

punch cards (c.1801).

Human-directed interaction

·· Human makes all 

decisions; machine can 

make local adjustments.

Examples: modern antilock 

braking systems and cruise 

control in cars; standard text 

(w/ autocorrect) or graphic 

editors.

(continued)
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Level Automation Human-Machine
Collaboration

  2. � Partial or 
conditional 
collaboration

Human-assisted automation

·· Human selects goals, 

robot recommends 

actions and once 

confirmed acts with 

limited autonomy.

·· Examples: smart buildings 

automatically adjusting 

lighting and airflow; 

intelligent process 

automation (IPA).

Machine-assisted interaction

·· Human selects goals, 

receives continuous 

feedback, and can quickly 

assume full control. Robot 

has limited autonomy.

·· Examples: virtual 

assistants that reserve 

flights for air travel; 

traffic-aware cruise 

control; remote-controlled 

surgical robots.

  3. � High 
collaboration

High automation

·· Humans (who can be 

remote) determine goals 

and monitor situation. 

Robot acts with autonomy.

·· Examples: autonomous 

vehicles with relaxed 

human supervisor (not 

possible today except in 

experiments).

Human-directed cobot teams

·· Humans determine goals, 

and human and robot 

coordinate actions.

·· Examples: search-and-

rescue cobots; robots that 

work alongside humans 

in warehouses.

  4. � Machine-
directed 
governance & 
coordination

Full automation

·· Robots determine mission 

and perform all necessary 

actions (not possible 

today).

Machine-directed cobot teams

Robots determine mission and 

direct human-robot teams (not 

possible today).

Table 4-1.  (continued)
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We do not represent in Table 4-1 the so-called singularity in which 

machines reign supreme and are supremely intelligent and autonomous 

(and often tyrannical),28 although Level 4 may hint at this possibility.

Level 0 describes the early days of human-machine interaction 

(precomputers). This is the age of mechanical and electromechanical 

machines, in which many humans designed, created, operated, and 

maintained these machines. Some of these machines were complex 

and required constant human attention for their operation (such as 

early automobile), and the relationship between input and output was 

analog and continuous—turning the steering wheel slightly, turned the 

car slightly). Collaboration, at this level, is between humans; machines 

are simply tools or infrastructure that support human interactions and 

physical needs. Technology has continued to evolve Level 0 machines 

(such as traditional refrigerators and furnaces) that can operate without 

human supervision for long periods of time.

Level 1 reflects a monumental shift in how humans and machines 

interact. Mainframe computers, which emerged in the decade following 

World War II, receive and act upon human instructions in batch mode 

(automation).29 The Jacquard loom with its punch cards for input (c. 1801) 

was an early form of Level 1 automation, and robotic process automation 

(RPA) is currently a popular form of Level 1 automation.

Human-directed tools became more interactive (human-machine 

interaction) and personal during the 1960s and 1970s. During the period 

cruise control and antilocking brakes became popular in cars. Personal 

computing and the highly interactive software (human-machine 

interaction) first emerged as a mass-market consumer device in the 

1970s. Although not truly collaborative, these machines required designs 

28�Cadwalladr, Carole. “Are the robots about to rise? Google’s new director of 
engineering thinks so.” The Guardian 22 (2014).

29�Batch mode computing can operate with minimal interaction and execution 
time and resources can be scheduled.
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that anticipate human behavior and made minor adjustments based on 

human input and environmental conditions. Standard text editors with 

autocorrect are a good example of Level 1 collaboration.

Level 2 represents another major advance in human-machine 

interaction, involving (a) inexpensive and efficient data storage and 

processing, (b) access to global data, (c) miniature Internet of Things 

devices, and (d) new machine-learning techniques—deep learning in 

particular. This has enabled powerful techniques for partial or conditional 

machine intelligence in:

•	 Automation: Algorithms and systems for intelligent 

process automation (IPA). IPA is a predefined 

combination of “business rules, experience-based context 

determination logic, and decision criteria to initiate and 

execute multiple interrelated human and automated 

processes in a dynamic context.”30 Like RPA, but with 

much greater intelligence and conditional logic, IPA 

delivers complex series with little or no human assistance.

•	 Human-machine collaboration: Algorithms for gesture 

and natural language recognition, and chatbots and 

personal assistants that explore complex databases, 

such as air flight information. At the device level, 

IoT microprocesses, sensors, and tactile feedback 

interfaces have supported traffic-aware cruise control 

and remote-controlled surgical robots.

For the present discussion, chatbots and personal assistants are 

particularly interesting because they constitute the emergence of 

intelligent one-to-one, or dyadic interaction between human and 

30�2755-2017—IEEE Guide for Terms and Concepts in Intelligent Process 
Automation. https://standards.ieee.org/standard/2755-2017.html 
[accessed on April 2, 2020].
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machine. We can have short directed conversations with personal 

interactive software like Amazon Alexa, Apple Siri, Google Assistant, 

and Microsoft Cortana. They have been designed through rules and/

or machine learning to emulate humanlike responses. Collaboration is 

dyadic—two actors, one human and one machine. Notably, their behavior 

is not autonomous—they act within very narrow, predefined limits. A 

human personal assistant, who can think “out-of-the-box,” might help you 

with your travel plans by suggesting a city that you had not considered 

or might even suggest a staycation, in which you vacation at home. But, 

as of 2020, we are not aware of any commercially available chatbot that 

interrupts a flight reservation dialogue to suggest that the caller should 

consider a vacation in a different city or simply stay home.

Level 3 recognizes a critical milestone in robot intelligence and 

human-machine interaction—autonomous robots. At this level, humans 

and machine work together monitoring each other’s behaviors and acting 

to minimize risk and maximize defined benefits.

Automation at this level is termed cognitive automation which is 

defined as a system that achieves its objectives by performing “corrective 

actions driven by knowledge of the underlying analytics tool itself, [and 

iterating] its own automation approaches and algorithms.”31 It can rewrite 

itself! For some, this a tipping point in human-machine interaction and 

inevitably leads to Level 4, in which machines dictate our behavior and 

objectives (this might be limited to specific situations such as search-and-

rescue or mining operations).

Human-machine collaboration at Level 3 fully incorporates the use of 

cobots in work teams. These cobots can observe and interact with multiple 

actors (humans and machines) and fuse this data into a coherent model 

of their social environment. To achieve this level of integration, there are 

physical and emotional cognitive challenges for both humans and robots. 

31�2755-2017—IEEE Guide for Terms and Concepts in Intelligent Process 
Automation.
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Clearly, robotic hardware needs to be designed for high interactivity with 

humans and must minimize the likelihood of harm to humans. But there 

are cognitive and emotional obstacles. What does it take to be a good team 

member? We shall explore this question in the next section.

We shall not consider Level 4 in more detail in this chapter, reserving 

that for discussion in the concluding chapter of this book.

�Teamwork: From Conversational Interfaces 
to Physical Cobots
The remainder of the chapter will focus on Level 3, High Collaboration, and 

the evolution from conversational interfaces that interact with one person at 

a time to cobots that collaborate in teams of other cobots and humans.

The challenge of creating chatbots and virtual assistants that are truly 

aware of multiple human teammates has been examined by Seering et al.32 

In their systematic classification of research on chatbots and on deployed 

chatbots, Seering et al. concluded that chatbots that can participate in 

a multiperson is an important but underresearched topic: “None of the 

chatbots described in the research literature were designed to be members 

of a community, but rather they were all designed as tools to support their 

communities.”33

32�Seering, J., Luria, M., Kaufman, G., & Hammer, J. (2019, April). Beyond Dyadic 
Interactions: Considering Chatbots as Community Members. In Proceedings of 
the 2019 CHI Conference on Human Factors in Computing Systems (p. 450). ACM.

33�In their systematic survey of research on chatbots, Seering et al. identified 
104 research papers, of which 91 were primarily concerned with dyadic 
communication, 6 dealt with broadcasting chatbots (chatbots that send one-way 
messages to many recipients), 6 focused on multiuser chatbots, and 1 paper did 
specifically concentrate on any of these categories. Among the 130 chatbots that 
they identified that are used outside of academic research, 103 were dyadic, 14 
were broadcasting chatbots, and 13 were multiuser. Of the 13 multiuser chatbots, 
11 were used on online community platforms to host chatroom-style interactions 
(e.g., Twitch, Discord, and Slack).
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Although there are many valuable applications that require only 

interacting with, and on behalf of, a single person (e.g., a travel reservation 

chatbot), physical robots that are intended to move in the real world 

among other humans should be able to coordinate their physical, social, 

and communicative behaviors in the context of other robots and multiple 

humans. Context and familiarity can reduce the inherent complexity.34

In 2017–2018, the authors were part of research team whose goals 

were to develop computational models for task-oriented human-robotic 

systems. This research was led by Professor Moncef Gabbouj and his 

students at Tampere University. The authors (who at that time were 

research scientists at CA Technologies) and M. Vakkuri (from Tieto Oyj)35 

provided the business framework and industrial constraints for modeling 

the interactions.

One context (or scenario) developed to guide this research was 

search-and-rescue. Robots were tasked with helping humans navigate a 

dangerous environment. This context can easily be extended to business 

settings in which humans and robots interact in factories, shipping docks, 

and so on. In addition to their other tasks, the robots would need to classify 

environments as safe or unsafe for robots and humans and, if safe, to 

initiate various activities. A schematic of this problem is shown in Figure 4-1. 

As can be seen in this figure, in order to classify the environment as safe or 

unsafe, the robot(s) would need to

34�For example, an autonomous vehicle needs to coordinate its actions with those 
of other vehicles and might only verbally interact with the driver. A robot that 
is a part of a team of dock workers might only take commands from certain 
team members and might only carry out certain tasks. Other humans in these 
situations will over time learn how these robots interact and will likely adapt to 
what can be expected from the robots and how to avoid interfering with their 
proper behavior.

35�Tieto is now called TietoEVRY, following a merger in 2019.
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	 1.	 Scan the environment and other data streams

	 2.	 Identify and track humans, robots, machines, and 

other aspects of the environment

	 3.	 Update a situation model based on (a) the results 

of steps 1 and 2, (b) earlier situation models, if they 

exist; (c) other information about humans, robots, 

and machines; and (d) other information about the 

environment and its physical properties
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Overall cobot control could be either (a) individual-based in which 

case each cobot forms a unique model of the environment, (b) distributed 

in which case the cobots communicate with each other to form a unified 

model, or (c) centralized in which case a control server forms the model 

of the environment using inputs from each cobot and then instructs the 

cobots.

If no humans or robots currently existed in that region, then the 

classification would be used to decide whether humans or robots (and 

what type of robots) could enter the space. If humans and robots already 

inhabit the region, then the classification can lead to a decision to evacuate 

or continue working. If the decision was to continue working, then the 

robots could carry out their tasks, using the same situation model that 

formed the basis for the safety analysis.

To accomplish its safety analysis and to be able to navigate its 

physical and social environment, cobots functioning at Level 3 (High 

Collaboration) would require an effective and efficient algorithm for 

combining disparate sources of data to create a coherent situation 

model that supports collaborative search-and-rescue. The challenges of 

combining different sources of data are explored in Chapter 6, “Robots in 

a World of Data,” but its relation to collaboration should be emphasized, 

here. In order to appropriately interact with other robots and humans, 

cobots must integrate (or fuse) information about the physical and social 

environment: the safety and capabilities of the physical infrastructure, the 

location of the robots, humans and other objects in that environment, and 

what the other robots and humans are doing and communicating. The 

sophistication and complexity of this information will depend on the roles 

that the cobot is expected to fulfill.
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�Conflicts and Trust
In almost any multihuman situation, conflicts arise. Adding semi-

autonomous collaborative robots to these situations is unlikely to reduce 

the number of conflicts. Some conflicts arise because the most efficient 

path between the current location of a human, or cobot, and a desired 

destination is blocked or about to be blocked by another human or cobot 

(or anything else in motion). There are many studies of this type from air 

traffic management systems36 to robots in a shared workspace.37 Other 

conflicts arise because two agents wish to use the same object: they are 

attempting to grab the same box, edit the same document, or make use of 

another robot or person. In these cases, conflicts arise because different 

agents are attempting to use the same physical or virtual extrinsic resource.

Another type of conflict arises because two or more agents have a 

different perspective.38 This might be due to differences in knowledge, 

belief bias, experiences, commitment, or ways of reasoning or acting. For 

example, if two robots are to carry a large object and they move at different 

speeds or heights, there is a conflict that must be resolved. You can observe 

humans in this type of conflict by watching movers carry furniture up a 

staircase. These are intrinsic conflicts.39 They arise because of differences 

between individual agents (or even within an agent).

36�Tomlin, C., Pappas, G. J., & Sastry, S. (1998). Conflict resolution for air traffic 
management: A study in multiagent hybrid systems. IEEE Transactions on 
automatic control, 43(4), 509-521.

37�Wong, K. W., & Kress-Gazit, H. (2015, May). Let’s talk: Autonomous conflict 
resolution for robots carrying out individual high-level tasks in a shared 
workspace. In 2015 IEEE International Conference on Robotics and Automation 
(ICRA) (pp. 339-345). IEEE.

38�Tessier, C., Chaudron, L., & Müller, H. J. (Eds.). (2006). Conflicting agents: conflict 
management in multi-agent systems (Vol. 1). Springer Science & Business Media.

39�Castelfranchi, C. (2015). The cognition of conflict: ontology, dynamics, and 
ideology. In Conflict and Multimodal Communication (pp. 3-32). Springer, 
Cham.
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From a design perspective, there are three basic strategies for conflict 

management: avoidance, detection, and resolution. If the designer 
of a cobotic system (cobots + humans + environment) can foresee all 
possible conflicts, then these can be explicitly embodied in a set of rules 
or implicitly in a deep-learning system through repeated exposure during 
training to the conflict situations. However, overengineering a situation to 
reduce conflicts can have negative consequences as well. As Easterbrook 
states, “not only is conflict inevitable in society, both within and between 
individuals and organizations, but that conflict has a useful role in 
facilitating change and producing higher quality group decisions.”40

In lieu of completely predictable interactions, cobots and any supervisory 
system need mechanisms for identifying and resolving the conflict. There are 
many strategies for resolving conflict and most of them involve understanding 
why the conflict arises and how the goals and perspectives differ. Conflict 
resolution requires trust and an evaluation of common ground—the common 
knowledge and beliefs shared by all participants.

Klein et al.41 argue that collaboration, or joint activity, requires that 
each agent must agree to a mutual intention to work together. They 
must also be predictable and responsive to each other and must work to 
maintain common ground. These allow teams “to facilitate coordination, 
work toward shared goals, and prevent breakdowns in team coordination,” 
and they are fundamental to trustworthiness. Trust evolves over time, but 
humans quickly form and reform judgments about trustworthiness, based 

on their short-term interactions with others.42

40�Easterbrook, S. (1991). Handling conflict between domain descriptions with 
computer-supported negotiation. Knowledge acquisition, 3(3), 255-289.

41�Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich, P. J. (2004). 
Ten challenges for making automation a “team player” in joint human-agent 
activity. IEEE Intelligent Systems, 19(6), 91-95.

42�Greenspan, S., Goldberg, D., Weimer, D., & Basso, A. (2000, December). 
Interpersonal trust and common ground in electronically mediated 
communication. In Proceedings of the 2000 ACM conference on Computer 
supported cooperative work (pp. 251-260). ACM.
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For cobots to be treated as a team member, the policies that govern 

their behavior and accumulated data must be transparent and quickly 

comprehensible to the other team members. Similarly, while they are 

working in a team, cobots must ensure that others can easily predict and, if 

necessary, adjust the cobot’s behavior.

In successful human teams, members value and protect each other’s 

privacy and look out for one another. If a cobot is present on a team,  

and a team member says or does something that violates business policy,  

should the robot issue a report to management? This is challenging  

ethical question, and creating a policy for cobot behavior is nontrivial.  

A comparison to controversies surrounding email highlights some of the 

important concerns. All email on a corporate server is legally owned by the 

corporation. Corporations could proactively analyze emails for indications 

of unhappy (and potentially harmful) employees, for evidence of romantic 

partnerships that violate company policy, and for suggestions of ethical 

violations. However, most companies refrain from this, respecting the 

privacy of an individual’s email.

Humans that work with cobots will need to be assured that the cobot 

is not recording every action and utterance or, if so, that the data will be 

kept private unless there is an extraordinary and compelling legal reason 

to analyze and expose it. It might be useful to have detailed recordings of 

every action taken in a surgical operating room, but having the cobot do so 

might affect how the human medical staff behaves. Cobotic systems are not 

strictly hardware and software implementations. The roles and objectives of 

cobots must be aligned with social expectations for ethical interactions.
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�Guidelines for Designing a Cobot
Cobots can be conceived of as decision-making entities that operate 

through prediction and automation but are constrained by interactions 

with the physical and social environment. Apart from the physical 

requirements which are beyond the scope of this book, a cobot that works 

on a team with humans should be able to43:

	 1.	 Integrate data that it receives from scanning the 

environment (across multiple sensory modalities) in 

order to:

	 a.	 Identify the active participants and other movable objects in 

the environment.

	 b.	 Perceive the status and intentions of the participants. This 

includes being able to identify requests for help, follow 

directions to attend to something or someone in the 

environment, and obey human-provided instructions to 

modify its behaviors or objectives.

	 c.	 Perceive unexpected patterns of data, recognize that they are 

unexpected, and react accordingly.

	 2.	 Construct models of their environment appropriate 

to the team’s goals. The cobot must be able to 

construct, maintain, and modify its models of 

the current physical and social environment. To 

negotiate a social and physical space, robots will 

need to classify the multilayer roles that humans 

43�This list is influenced by the work of Klein, G., Woods, D. D., Bradshaw, J. M., 
Hoffman, R. R., and Feltovich, P. J. (2004). Ten challenges for making automation 
a “team player” in joint human-agent activity. IEEE Intelligent Systems, 19(6), 
91-95.
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assume in specific contexts. This is associated 

with the conversational roles that humans adopt 

but includes the challenge of categorizing human 

activities to ascertain a human’s role in a task (e.g., 

decision-making roles in a team may switch back 

and forth among human experts as an evolving 

situation demands different skills).

	 3.	 Apply policies to regulate its behaviors and 

resolve conflicts. Notably, as cobots become more 

autonomous, they also become less predictable. 

Policies restore some of that predictability by setting 

limits and governing actions. In line with these 

policies, the cobot must be able to dynamically 

detect possible failures and create plans to avoid 

them while maintaining the overall team goals.

	 4.	 Complete tasks by integrating (or fusing) models of 

physical and social environment with policies and 

objectives (as defined by designers, integrators, and 

supervisors). This includes being able to negotiate 

goals and be (re)directed by humans and other 

cobots through:

	 a.	 Physical and conversational turn-taking and activity 

management: The cobot must determine when it is its turn 

to contribute an action, or when it can interrupt an ongoing 

conversation.

	 b.	 Attention management and joint attention: The cobot must be 

able to determine what others are attending and must be able 

to direct the attention of others when necessary. For example, 

an autonomous vehicle should be able to direct the driver’s 
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attention to road obstacles that require the driver’s decision, 

and a search-and-rescue cobot should be able to direct the 

team’s attention to survivors or teammates that require help.

	 c.	 Goal-directed actions: Cobots must be able to initiate 

actions either directly in a physical environment (through 

manipulation and movement), or indirectly through data 

and human forms of communication (gestures, text, speech). 

This includes interactions with other robots and humans 

that promote both task objectives and team-building goals. 

For example, in a factory setting, some of these actions may 

be directed to transporting product components from one 

section of the factory to another, and some actions may be 

social greetings to humans that the robot encounters along its 

path. The social greetings help to create trust that the robot is 

functioning, awareness that the robot is present and carrying 

out a specific task, and perhaps also relay specific messages.

	 d.	 Task completion: Cobots should complete their tasks within 

expected time and resource constraints or indicate to the 

appropriate stakeholders when delays or failures might occur.

As we have observed, the design of successful cobotic systems (cobots, 

environment, humans, policies, and objectives) is more than just the 

physical and software construction. Analyzing and optimizing a cobotic 

system is much like analyzing and optimizing a work environment in 

which multiple intelligent beings interact. Careful attention must be given 

to team dynamics and activities44:

44�These questions are derived from activity theory. See Engestrom, Y. (2000). 
Activity theory as a framework for analyzing and redesigning work. Ergonomics, 
43(7), 960-974.
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•	 What are the objects of value that are created by the 

team (documents, practices, transactions, physical 

objects, etc.)?

•	 Who are the stakeholders (not just the team) in this 

value creation? Who has power? Who is considered 

part of the team, and who is not?

•	 How are the activities distributed across the 

participants and what happens when there are 

conflicts?

•	 What tools and practices are required for team’s 

activities and objectives, and who controls them?

•	 What are the rules that guide objective setting, task 

management, and conflict resolution? And how is trust 

maintained or repaired?

In their analysis of incident response teams in computer and network 

operations centers, Brown, Greenspan, and Biddle45 found that team 

roles and composition were fluid—different members would come get 

involved at different times and might belong to multiple teams. Moreover, 

their role definition might change as the teams evolve. As cobots evolve 

to become assistants in complex operations, they will also need to evolve 

organizational fluidity.

45�Brown, J. M., Greenspan, S., & Biddle, R. (2016). Incident response teams in 
IT operations centers: the T-TOCs model of team functionality. Cognition, 
Technology.
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�Summary and Conclusion
In the beginning of this chapter, we examined the benefits that 

collaborative robots are bringing, or might bring, to search-and-rescue, 

surgical, and warehouse operations. We also considered some of the 

technical, organizational, and ethical challenges that could weaken these 

benefits. For example, the social and physical dynamics between the 

surgeon and the surgical team are transformed and perhaps weakened by 

using large remote-controlled surgical robots that are positioned over the 

patient.

We then considered what it means to collaborate with others and 

introduced a five-level model of collaboration:

	 1.	 Non-intelligent tools

	 2.	 Human-directed interactive tools

	 3.	 Partial or conditional collaboration

	 4.	 High collaboration

	 5.	 Machine-directed governance and coordination

Many of today’s robots and automation software are examples of either 

human-directed interactive tools or partial or conditional collaboration. 

We are on the verge of high collaboration between man and robots. 

Even today, semi-autonomous cars and jets make moment-to-moment 

decisions without human input, and robotic ships that map the ocean floor 

devise strategies and tactics for carrying out their missions. To achieve 

greater levels of collaboration, we must construct robots that are able to 

participate in teams, as a team member. These cobots will not be fully 

human, but they will be more than a simple tool.
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The discussion, therefore, turned to question of what’s required for 

team collaboration; what social and cognitive abilities are required? And 

how can a machine resolve the conflicts that typically arise in teamwork?

To answer these questions, we summarized research on social 

collaboration and teamwork and provided guidelines for designing cobotic 

systems, including the ethnographic questions that should be discussed 

with the humans that will interact with cobots.

There is a growing scientific and nonscientific literature about the 

dangers of intelligent robots, suggesting that robots will take our jobs, 

become our master, or turn the workplace into places in which humans 

will need to act more like robots in order to coexist with robots.

The differences between humans and cobots (as they evolve) are partly 

structural (biological vs. engineered) and partly social construction. As 

cobots become integrated into our workforce, our expectations, biases, 

and aspirations will determine our human-machine relationship as much 

as the physical differences between human and machine. What we design, 

develop, and use should be based on a clear sense of objectives and 

societal deliberation, and not just the marketplace pressures for efficiency 

and low cost.
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CHAPTER 5

Robots Without Arms
Smart Buildings and Transport

We are looking toward a future where more things become smart with 

the addition of many sensors and actuators connected to the world of the 

Internet of Things (IoT). Software robots and physical robots are being 

developed and increasingly deployed in the home and workplace with 

lights, door locks, air conditioning, and cookers increasingly becoming 

sources of data and action. Software robots are becoming smarter, 

managing process automation using robotic process automation (RPA) 

or using chatbots capable of holding a two-way conversation as we saw in 

Chapter 4, “Robotic Process Automation.” Physical robots are working 	

in supply chains, in warehouses, and in the delivery of goods. These have 

all been discussed in earlier chapters. In this chapter we will examine the 

current and future impacts on society and two special cases of automation: 

smart buildings and autonomous vehicles sometimes called driverless 

vehicles. This chapter will focus on these two cases that could best be 

described as “robots without arms.”

Can smart buildings and autonomous vehicles be called robots? They 

provide automated responses to the needs of users, but they don’t gather 

or manipulate items in an environment. Robot vacuum cleaners move 

around their environment and gather items from the floor. Warehouse 

robots use a variety of rollers, arms, and other manipulators to move items 

into and out of storage. Smart buildings are stationary with users entering 

https://doi.org/10.1007/978-1-4842-5964-1_5#ESM
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or leaving the building. Autonomous vehicles move passengers or goods 

and the passengers or goods are not gathered by the vehicle but enter 

under their own steam or by the agency of a third party. The term robots 

is sometimes used to describe technology that is an integral part of society 

that supports the activities of humans without being controlled by the 

users. Robots without arms is a term that can be used to differentiate smart 

buildings and autonomous vehicles as robotic special cases with their own 

unique challenges and values to both work and society.

Transport vehicles are ubiquitous and are a general requirement in 

developed societies. Autonomous vehicles can be classed as a special 

case because they carry goods and passengers, are bristling with sensors, 

and fulfill a basic need in society. Goods are delivered by trucks, people 

are transported by cars or public transport, but there are legal and social 

limitations on the use of transport. Currently a user has to walk to a bus 

stop to be driven somewhere. Others who are driving a car have to be 

over a certain age and capable of driving, measured by a driving test. 

The elderly may also lose their capability to drive or the means to own 

a vehicle. In a discussion with an elderly relative, one of the authors 

suggested they gave up driving. The elderly relative became emotional 

since they equated the ability to drive and own a car as vital to their 

independence and well-being. Autonomous vehicles that can transport 

goods and users from place to place without human intervention are 

expected to have a positive effect on both business and personal users. The 

fate of delivery drivers and truckers will be discussed later in this chapter.

The Internet of Things is helping to increase the intelligence of 

commercial and public buildings to the stage where the building’s 

capabilities such as lighting and air quality are integrated into a single 

view of the building and are capable of customizing the environment for 

individuals. This customization can make buildings change the lighting 

levels for visually impaired workers or increase the humidity in an area 

used by a worker with eczema. Only a small but increasing number 

of buildings are capable of this level of customization and integration 
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and they are generally purpose built. Are smart buildings robots? They 

have autonomy within parameters to change the internal environment, 

but they don’t move. They are human centric with a goal of making life 

better for the users. Smart buildings are being developed and deployed 

to enhance the working life of users both in commercial buildings and 

public buildings. Home use of smart technology relies on the needs 

and requirements of the owners but is currently patchily implemented. 

Personal choice influences the use of smart home technology and it is 

unlikely to require the same scale and direction of smart technology 

integration and will not be part of this discussion.

�Smart Buildings
Many organizations have been looking to make their buildings better 

places to work in and more efficient in the use of heat and light. This 

is leading to optimism in the buildings industry with growth figures of 

30% in the smart building market or growth from $8.5 billion in 2016 to 

approximately $58 billion globally in 2022.1 It is not clear whether these 

figures include the growth of retrofitting existing buildings or only include 

new buildings. What is clear is the amount of hype both in the commercial 

and home market. Corporate brochures are making claims for their 

company buildings. On television there are advertisements for doorbell 

cameras, home control apps, and heating controls. One feature common to 

both markets is the potential for integration of their technologies to enable 

the use of management portals and consoles to achieve a complete view of 

all systems that may be interlinked. There are a number of characteristics 

that make smart buildings a good investment.

1�Blue Future: The Future of Smart buildings, https://medium.com/@BlueFuture/
the-future-of-smart-buildings-top-industry-trends-7ae1afdcce78 
[accessed on April 13, 2020].
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It is interesting to note that in the Gartner Hype Cycle for Emerging 

Technologies 2018,2 smart workspaces were almost at the top of the “peak 

of inflated expectations.” In the 2019 hype cycle,3 smart workplaces are 

nowhere to be seen. An explanation for this discrepancy appears at the 

end of the 2019 emerging trends descriptions. This appears to be a Gartner 

decision to refocus on emerging trends that have not appeared in earlier 

versions of the hype cycle and removing trends that are still important but 

have been featured for a number of years. Some of these trends are not so 

much a trend but static taking up real estate on the hype cycle and prevent 

newer more dynamic trends to be noted. It may also be the case that some 

of these trends have vanished because the world has moved on and left 

them behind.

�Benefits of Smart Buildings
There are a number of benefits of smart buildings that we will discuss here. 

Benefits include improved building efficiency, lighting improvements, air 

quality, and temperature and humidity. The advantages of using smart 

buildings are their potential to improve working life for employees in 

offices or visitors to public buildings, reducing energy consumption and 

improving building efficiency, increased productivity, and better use 

of resources. New buildings that are purpose-built smart buildings can 

realize those benefits from their first occupation. Older buildings that 

need to be retrofitted with smart building technology may never achieve 

2�5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies 2018,  
www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-
cycle-for-emerging-technologies-2018/ [accessed on April 13, 2020].

3�5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies 2018,  
www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-
hype-cycle-for-emerging-technologies-2019/ [accessed on April 13, 2020].
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the full benefits of a smart building.4,5,6 This can be attributed to a number 

of factors, for example, older buildings may have fewer windows, poor 

ventilation infrastructure, or badly situated partitioning or inner walls.

�Improving Building Efficiency

Many organizations would view building efficiency as one of the major 

attractions of using a smart building. There are many claims made for 

smart building efficiency and one of the primary benefits is the reduction 

of energy consumption. Reducing energy consumption is attractive 

because of the potential cost saving and the impact on greenhouse gasses. 

New buildings are able to exploit cost-savings arguments when they are 

up for sale. Improved lighting, air conditioning, and air quality are three 

areas of efficiency that can have a positive effect on employees as well on 

the costs of owning or leasing a building. Lighting and heating efficiency 

are often the most obvious areas that can be improved as a cost benefit and 

a benefit to the occupants. Environmental factors like air quality can also 

have a significant effect on building occupants and their health, and even 

decrease tension and arguments between coworkers, as we will discuss.

Lighting

Good-quality lighting and well-controlled natural lighting are considered 

as a valuable tool for employees, particularly those employees who 

spend a long time at computer screens or monitors. Although the myth 

of the damage that poor lighting has caused for computer users has been 

4�Smart Buildings Magazine, https://smartbuildingsmagazine.com/ [accessed 
on April 13, 2020].

5�World Construction Today, www.worldconstructiontoday.com/ [accessed on 
April 13, 2020].

6�ScienceDirect, www.sciencedirect.com/science/article/pii/S0360132316303171, 
[accessed on April 13, 2020].
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debunked,7 good lighting can ease eye strain and improve eye health 

according to a study by Wout J.M. van Bommel.8 For example, screen users 

tend to blink fewer times than those who are not using a screen, and this 

can lead to sore and irritated eyes. Users are advised to look away from the 

screen on a regular basis to avoid eye strain.9 In the van Bommel study, 

attention is drawn to the minimizing of all these effects by working in an 

environment with optimal lighting.

Of course, some of the attempts to manage natural light have had 

comical results. There is a building in Datchet, United Kingdom, that 

was originally promoted by the builders as a smart building with window 

blinds controlled by computers and sensors on the roof. Some 20 years ago 

this building was occupied by the first tranche of employees who noticed 

that the blinds on a set of windows were either all down, all half down, 

or all up. The position of the blinds and the curvature of the building left 

some employees in bright sunlight with the majority of employees in the 

shade. It didn’t matter what the exterior lighting values were, the blinds 

moved in unison. Enquiries were made and it was established that the 

architect designed the building to look better from outside if the blinds 

were all at the same level, proving that good lighting management can 

be easily subverted if the comfort and welfare of employees was ignored. 

This discovery forced changes to enable the window blinds to be moved 

separately by individuals, making the lighting optimal for each individual 

and minimizing any arguments between employees.

7�Harvard Health Publishing, Harvard Medical School www.health.harvard.edu/
healthbeat/safeguarding-your-sight [accessed on April 13, 2020].

8�van Bommel, W. J. M. (2006). Non-visual biological effect of lighting and the 
practical meaning for lighting for work. Applied Ergonomics, 37(4), 461–466. 
https://doi.org/10.1016/j.apergo.2006.04.009.

9�Tribley, J., McClain, S., Karbasi, A., & Kaldenberg, J. (2011). Tips for computer 
vision syndrome relief and prevention. Work, 39(1), 85–87. https://doi.org/ 
10.3233/WOR-2011-1183.
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Another consideration for a smart building would be the control of 

lighting in hazardous areas that may only occasionally need lighting. 

A plant room that houses environmental management and control 

equipment would only need lighting when a person enters the room; this 

can be achieved by having movement-sensitive lights triggered when a 

person enters. As long as the occupant of the plant room keeps moving, 

the light would stay on, but many of us have been in rooms with motion-

sensitive lighting where the light has gone off because we are standing 

still, reading a meter, for example. A truly smart building would know 

when someone entered the room and would monitor both their activity 

in the room and when they leave the room. The lighting would then stay 

on for an optimal time and not plunge the poor occupant into darkness 

and force them to leap up and down to switch the light on, perhaps at a 

critical time for their activity. An office building that I worked in during the 

1990s was an early adopter of this technology. The lights in the main body 

of the office were controlled by motion sensors although on permanently 

during the working day. The offices, however, were in the center of the 

building with no natural light and the office lights were solely controlled by 

motion sensors. Frequently, sitting at a desk, with the door closed, on the 

telephone the room would be plunged into darkness and I would leap up 

and wave my arms to get the lights on. There are also stories of people in 

the restroom having the lights go out.

Air Quality

Sick building syndrome (SBS) is a condition that is difficult to diagnose. It 

is most often reported by employees in their places of work rather than in 

domestic property. Possible symptoms can include headaches, blocked or 

runny noses, dry itchy skin, and sore eyes. Many health authorities have 
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notes and papers on sick building syndrome10,11 and the consensus shows 

that the symptoms are manifest in the building’s occupants, but there 

may be no discernable problems with any of the building’s environmental 

measures. There may be nothing obviously amiss with that building. There 

are many environmental factors that are suspected causes, and although 

there have been experiments in air pollution, introducing pollutants in the 

form of a 20-year-old uncleaned office carpet,12 there are no clear cause 

and effect relationships in a “sick” building.

The symptoms of sick building syndrome are varied. It is difficult at 

times to distinguish symptoms of SBS from symptoms with other causes, 

for example, headaches may be a symptom of an occupant suffering from 

sick building syndrome or a symptom of eye strain from staring at a screen 

for too long without a break.13 The relative causes of headaches can be 

tested by changing the behavior of a sufferer by reducing the amount of 

continuous screen time and making them take a break. If the headaches 

still occur, the cause may be SBS. This style of diagnosis can be used to 

evaluate other symptoms.

Air quality can be an important factor in the efficiency of a building 

and smart buildings can play a role in maintaining that quality. Dust, 

radon, and fungi can all contribute to a reduction in air quality. Sensors 

10�Finnegan, M. J., Pickering, C. A., & Burge, P. S. (1984). The sick building 
syndrome: prevalence studies. Bmj, 289(6458), 1573–1575. https://doi.org/ 
10.1136/bmj.289.6458.1573

11�Burge, P. S. (2004). Sick building syndrome. Occupational and Environmental 
Medicine, 61(2), 185–190. https://doi.org/10.1136/oem.2003.008813

12�Wargocki, P., Wyon, D. P., Baik, Y. K., Clausen, G., & Fanger, P. O. (1999). 
Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity 
in an Office with Two Different Pollution Loads. Indoor Air, 9(3), 165–179. 
https://doi.org/10.1111/j.1600-0668.1999.t01-1-00003.x

13�Yan, Z., Hu, L., Chen, H., & Lu, F. (2008). Computer Vision Syndrome: A widely 
spreading but largely unknown epidemic among computer users. Computers 
in Human Behavior, 24(5), 2026–2042. https://doi.org/10.1016/j.
chb.2007.09.004
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can detect these wherever the sensors are placed; however, placing sensors 

at head height can report on the quality of the air at the breathing level 

of the employees. Dust on the floor and in the corners of the room would 

not be detected unless it was disturbed. Location of sensors can be an 

important factor in the accuracy of air quality detection.

As can be seen from Figure 5-1 when the open plan office has been 

fitted out, lights and air-conditioning ducts are spaced evenly throughout 

the space and lighting and air conditioning were balanced in that space.

Once the new owners start building partitions for offices, the balance 

can be lost as shown in Figure 5-2.

Figure 5-1.  Open plan building initial layout
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Figure 5-1 gives a well-balanced idea of where the relative utilities 

should be placed. If the new occupants wish to change the space by 

building partitions, they frequently give instructions that are not precise, 

for example, as long as the occupants have light it does not matter if it is 

at the edge of the room or in the middle This can result in the less than 

ideal state in Figure 5-2. The authors have experienced the effects of this; 

however, in one case in London, a partition was erected that split the 

light in half and left the control in one office. When the light was switched 

off, the occupant of the office without the control had to shout or go to 

the other office to get the light put back on. Air conditioning was often a 

bigger issue with one office having no air conditioning and another office 

having twice the throughput of heated or chilled air. On days with extreme 

temperatures, this could lead to some very acrimonious arguments. In a 

newly built smart building, the expectation is that the building is designed 

to have office and room partitions compatible with the requirements for 

optimal air conditioning, lighting, and the associated sensors to monitor 

Figure 5-2.  Open plan after partitioning
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those spaces. A building that is being retrofitted with partitions would be 

more difficult to organize, but retrofitting environmental sensors even in 

poorly served offices would enable some balance to be achieved. Sensors 

in an office that had little or no heating could indicate to environmental 

control staff the need for extra heating and the staff can develop a strategy 

based on monitoring the conditions in that room.

Temperature and Humidity

Temperature and humidity are allied to air quality and are part of the 

overall environment. In the paper from the Environment Protection 

Agency cited earlier, there is a note that the temperature in an office-style 

building should be kept below 23 degrees Celsius to avoid increases in SBS 

symptoms. In many countries the health and safety regulations specify 

a minimum operational temperature for an office but not a maximum. 

Humidity levels can also develop SBS symptoms such as itchy eyes in a 

dry hot environment, although this can also be attributed to screen use. 

Temperature and humidity levels are noted more frequently when they 

are at extremes. When those extreme levels are approached, occupant 

productivity drops. In more moderate climate where air conditioning is 

restricted to opening a window, it may not be possible to cool a building 

or a room and little or nothing of value is achieved. Smart buildings would 

aid productivities by eliminating extremes of temperature and humidity.

Occupant Efficiency

All of the factors mentioned earlier can contribute to occupant efficiency 

and in particular an occupant’s productivity. You would expect that a 

smart building would be able to control lighting and air quality as an aid 

to productivity. The Environment Protection Agency cites a 1984 World 

Health Organization Committee report that claims potentially 30% of 

new and remodeled buildings worldwide may have air quality issues that 

can generate SBS symptoms. Air quality issues may be the result of poor 
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design, use, or inappropriate occupant behavior. There are a number of 

these reports dating back to 1958 and covering pollutant effects ranging 

from mild symptoms such as a cough through to death. The reports cover 

interior pollution, household pollution, and so on.14 It seems that problems 

with air quality and other environmental factors have been known for a 

long time. The fact that these are still considered important factors in an 

occupant’s health may be due many reasons including cost and feasibility. 

It is certain that a move to a smart building where all of these factors are 

monitored and managed will improve a working environment. Building 

efficiency can be influenced by taking a more holistic view of the interior 

environment and that is the goal of the integrated smart building.

Most organizations may be keen to have the best working environment 

for staff that is also a cost-efficient solution. Some organizations may 

consider cost as the major factor in making a decision and conclude that 

it is not worth retrofitting sensors and other environmental controls in an 

existing building. This may be due to their financial position but without 

some investment organizations would lose out on a productivity bonus 

resulting from lowering absentee rates caused by SBS.

�Increased Productivity

The health and wellness benefits should not be managed individually. The 

integration of the sensors into a complete picture would mean that factors 

are not overlooked. Fixing a failing light will return an environment to 

its optimal state but there should be no trade-offs; the lighting cannot be 

repaired at the expense of the air quality. All the benefits of smart buildings 

can together improve productivity and the health of the work force but 

only if they are integrated into a complete view of all the environmental 

14�WHO guidelines for indoor air quality: selected pollutants www.euro.
who.int/en/health-topics/environment-and-health/air-quality/
publications/2010/who-guidelines-for-indoor-air-quality-selected-
pollutants [accessed on April 13, 2020].
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factors. There are a myriad of studies15 that cite employee welfare as a 

critical component of productivity. These productivity advantages will 

be gained by improving the working environment. Employee morale is a 

key factor in productivity and can be affected by the health of all the work 

force, for example, low levels of attendance may lead to being short-staffed 

lowering the morale of the rest of the workers. Poor environmental control 

can create a poor working environment and a subsequent loss of occupant 

productivity.

Inefficient building design and insulation can increase energy 

costs and create a poor working environment. Energy costs can also be 

affected by the weather. The associated cost savings of retrofitting smart 

building technology are not so evident for older buildings but they can be 

measured. In some cases, there are claims that greater than 40% reduction 

in energy use can be achieved by fitting sensors and monitoring the CO2, 

humidity, and temperature.16 Managing energy use efficiently is another 

benefit of smart buildings and is allied to the productivity improvements 

gained from a good working environment, reducing energy use, and 

reducing sickness.

Resource Management

Employee skills are a major asset to any organization. There are more 

tangible resources and corporate assets, for example, buildings, office 

space office equipment, and meeting rooms. The condition of these 

resources has an impact on users. Imagine arriving at a cubicle and 

finding there is no chair or trying to use a photocopier that is out of either 

15�Hillier, D., Fewell, F., Cann, W., & Shephard, V. (2005). Wellness at work: 
Enhancing the quality of our working lives. International Review of Psychiatry, 
17(5), 419–431. https://doi.org/10.1080/09540260500238363.

16�Smart Buildings Magazine https://smartbuildingsmagazine.com/features/
how-retrofitting-smart-technology-helps-deliver-energy-efficiency 
[accessed on April 13, 2020].
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ink or paper? The frustration and upset can be really high. The authors 

have too frequently been in the position of preparing a meeting room 

for an important meeting only to find that the vital cable connector to 

the audiovisual (AV) equipment is missing or incompatible with one of 

the presentation machines. Video conference equipment that has been 

left in an unworkable state by a previous occupant is another problem 

that causes anxiety in the organizer of a meeting. Locating employees in 

an unfamiliar floor or building can also take time and repeated phone 

calls; room booking can also have its problems. Using the organization’s 

resources can be frustrating at times and counterproductive. In a smart 

building it would be possible to access the meeting room information 

before booking to see the condition of the AV equipment. You can discover 

the location of a room if you are unfamiliar with the building and the 

location of a member of staff if you don’t know where they are working 

that day. All of these solutions can come as part of a smart building 

management system.

Maintenance has been mentioned several times in this section of the 

chapter, and in a working building, wear and tear can occur. Preventive 

maintenance is a potential feature of smart buildings. Data analysis 

can be used to predict failures in building components, for example, a 

door that has been opened frequently and is getting close to the mean 

point of failure for the hinges. iSmart building systems could identify the 

door and its potential for failure. The smart building system can notify 

maintenance staff of the need to examine, order spare parts, and plan 

repairs before failures disrupt the use of the space. What would happen if 

a door hinge fails when you are in the room? Are you trapped? Would the 

door injure someone if the hinge failed? The consequences of a failure 

could be avoided if the potential failure of the hinge was known in time for 

preventive maintenance.

Not only do smart buildings manage and maintain the building 

environment, smart buildings are also capable of integrating 
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environmental, operational, and resource data and producing a more 

efficient experience for the occupants. The keyword in the last sentence 

is integrating.

As mentioned, employees can check on the meeting room and 

equipment status before they decide to book it. If the employee’s diary 

system is integrated with the room booking system, the booking system 

can take information about dates, time, and attendees without the 

employee having to switch from system to system. The booking system 

now knows the details about a meeting and can contact the maintenance 

department with the equipment failure notice and a request for repairs. 

There are many other tasks that can be accomplished in a smart building 

management system, and the possibilities are huge; however, they still 

need all of the internal and external controls integrating with each other. 

The management system may also require techniques such as data fusion 

that are more commonly associated with robotics and autonomous 

vehicles.

�Smart Building Example
The authors were able to visit a building that has an integrated smart 

building management system. Tieto’s Empathic Building Technology17 has 

been installed at the headquarters of Tieto Finland Oy at Keilalahdentie 

2-4, 02150 Espoo, Finland. This is a purpose-built smart building in 

Finland. Tieto’s objectives, stated on their website,13 are

•	 Boost happiness

•	 Increase performance

•	 Better experiences

17�Tieto Empathic Building, www.tieto.com/en/what-we-do/data-and-ai/tieto-
empathic-building/ [accessed on April 13, 2020].
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The benefits of smart buildings have already been laid out in the earlier 

part of this chapter and Tieto plans to take advantage of these benefits. An 

emphasis on wellness has the potential to be one of the most important 

results from smart building technology. Tieto tells us on their website that 

smart buildings will help develop a “more motivated and agile workforce 

with a better workflow.”

The headquarters, an impressive structure of steel and glass, is a 

functioning smart building and a demonstrator for their integration 

products. Environmental and operational information sources are integrated 

to create and manage a more complete data set that covers a wide variety 

of factors from heating and lighting to room booking. It is the integration 

of all the data from all of the information sources that makes the building 

smart. As we have noted earlier, there are many hard objectives for smart 

buildings based around cost management, energy management, and 

building efficiency. We have also described some of the effects of a smart 

building on the occupants including alleviating symptoms of sick building 

syndrome, increasing employee well-being, and removing irritations 

generated by various environmental factors. When we entered the Tieto 

building, there was a large display in the lobby announcing events and 

visitors. We went to the reception desk and they were able to tell us how 

far away from reception our host was and how long it will take for them to 

meet us; that gave us the opportunity to take a coffee and relax. As soon as 

we registered with reception, our host was notified that we had arrived and 

where we were. Wearing a visitor’s badge to gain access to the elevators 

ensured that we had a friction free visit and you could give full attention to 

the meeting. During the meeting, we viewed the smart building data and we 

were shown information that helps Tieto optimize their use of space. If an 

area or room was not being fully utilized, they would see it in the data. From 

there Tieto can plan to repurpose the space or change the configuration 

of that part of the building. All of this information was readily available on 

their application, and it was fascinating to see a display that could show the 

meeting room we were in, who was in there, what the meeting topic was, 
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and what equipment was being used. This was a very interesting meeting 

but most importantly we felt very relaxed. It may not seem a big advantage 

but the knowledge that we could leave the meeting to visit a lavatory or to 

get a drink of water without having to be escorted or borrowing an identity 

badge for access made it easier to concentrate on the meeting. All the doors 

responded automatically according to the security level of the visitor’s badge 

and what security zone we were trying to enter. At the end of the meeting, we 

needed no escort to get to the elevators and we signed out of the building by 

handing over our visitors’ badges. We remarked on the ease of attending a 

meeting where the meeting was the focus, not can someone tell us if we are 

going to wait long for our host.

Smart buildings and the associated technology are being marketed 

and developed in increasing numbers. Increased initial costs of a smart 

building can be offset by long-term cost saving from better energy 

management and staff well-being. All of these improvements are based on 

using integration of data from environmental and operational technologies 

that deliver the benefits that we have described.

In the future many people will benefit from the implementation 

of smart buildings. Some problems in older buildings will need to be 

addressed by using integrated approaches to a building environment. 

Sick building syndrome is a good example of an issue for occupants and 

using smart buildings environmental controls will benefit the building 

occupants. Benefits for organizations including increased productivity 

will provide productivity and improvements in morale. In addition to 

the environmental benefits, the integration of internal systems such 

as booking, diary, and other supporting applications can increase the 

interaction between the occupant, the building, and the organization 

as a whole. The building then becomes autonomous, gathering data 

and making decisions based on data from occupants and the building 

environment that will improve all aspects of the physical organization. 

With these advances, the smart building, its environment, and occupants 

can then be thought of as a robot, but without arms.
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�Autonomous Vehicles
There is a large body of work covering the technical, human interaction, 

and impact of autonomous vehicles on society. Autonomous vehicles 

frequently attract attention from journalists who sensationalize the 

successes of this technology as well as the failures. There are many 

articles and papers focused on this technology. The articles record the 

strides in safety, the advantages, disadvantages, and frequently the 

timescale for widespread adoption of autonomous vehicles.18,19,20 This 

part of the chapter will review autonomous vehicles from the standpoint 

of the impact of personal and commercial autonomous solutions on 

employment and in particular the future of work. It is worthy of note that 

the autonomous vehicle domain is moving at such a speed that a major 

advance can be made in a matter of months rather than years. The societal 

impact will become more obvious once autonomous vehicle adoption is as 

widespread as the adoption of electric and hybrid cars are in 2020.

Fully autonomous vehicles are capable of making decisions based on 

information from a wide variety of sources, including infrared sensors, 

LIDAR, radar, GPS, cameras, mapping of the environment, input from 

street furniture, and other sources of data. Autonomous vehicles are 

capable of driving from one place to another without human intervention 

and can communicate and collaborate with the outside world.21 They are 

18�Marvin, B. (2019, March 1). Which Self-Driving Cars Put in the Most Fully 
Autonomous Miles? Retrieved February 27, 2020, from www.pcmag.com/news/
which-self-driving-cars-put-in-the-most-fully-autonomous-miles

19�Davies, A. (2019, April 22). Are We There Yet? A Reality Check on Self-
Driving Cars. Retrieved February 27, 2020, from www.wired.com/story/
future-of-transportation-self-driving-cars-reality-check/

20�Kaan Ozbay, Xuegang (Jeff) Ban & C. Y. David Yang (2018). Developments in 
connected and automated vehicles, Journal of Intelligent Transportation Systems, 
22:3, 187-189, DOI: https://doi.org/10.1080/15472450.2018.1466407

21�Young, M. (2020, February 2). 43 Examples of Autonomous Vehicles. Retrieved 
April 12, 2020, from www.trendhunter.com/slideshow/autonomous-vehicles
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independent from the requirement to have a human guiding them. The 

information source “Which?22” has a table of levels of vehicle automation 

based on similar levels in a National Highway Traffic Safety Administration 

(NHTSA) document that can give an insight into the current positions of 

solutions for autonomous vehicles as vehicles. The NHSTA document also 

outlines safety and regulation options.23

Table 5-1 indicates an approximate status of automated vehicles 

although different manufacturers may claim a position higher up the 

spectrum of automation. An article in the New York Times indicates 

that many autonomous vehicle projects from manufacturers are not 

progressing as fast as first anticipated.24 There are several claims made 

for the value of automation from improved safety to real assistance in 

a medical emergency, for instance, in an article in The Guardian.25 In 

the case cited the driver was having a medical emergency, switched 

on the autopilot, and got driven near enough to the hospital to be able 

to take over for a few minutes and guide the car to the ER entrance. It 

can be claimed that this vehicle is approximately at level 3, Conditional 

Assistance, because the driver still had to touch the steering wheel 

regularly to prevent the autopilot driving to the verge of the road and stop. 

Sadly, there are also a number of cases, noted in the same article, that 

22�Harding, J. (2018). Driverless Cars: What Are Autonomous Vehicles? Retrieved 
February 27, 2020, from www.which.co.uk/reviews/new-and-used-cars/
article/driverless-cars-what-are-autonomous-vehicles

23�National Highway Traffic Safety Admin (NHTSA) (2013). US Department of 
Transportation, preliminary statement of policy concerning automated vehicles. 
NHTSA preliminary statement. www.nhtsa.gov/staticfiles/rulemaking/pdf/
Automated_Vehicles_Policy.pdf

24�Boudette, N. (July 17, 2019). Despite High Hopes, Self-Driving Cars Are “Way 
in the Future.” Retrieved April 11, 2020, from www.nytimes.com/2019/07/17/
business/self-driving-autonomous-cars.html

25�Tesla’s autopilot helps get man to the hospital during medical emergency 
| The Guardian. Retrieved February 28, 2020, from www.theguardian.com/
technology/2016/aug/08/tesla-model-x-missouri-medical-emergency
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claim accidents and even death that are also partially attributable to the 

driver using autonomous driving technology. The reality is that automated 

vehicles are still in the early stages of development and deployment. 

Other related areas still in the early stages of development are the legal, 

insurance, and regulatory domains. These may be critical to the future 

of work; however, their potential impact is not well understood in the 

employment domain.

Table 5-1.  Levels of Vehicle Automation

Level Meaning Description Status

0 No Automation A majority of vehicles on the road are 

at this level.

Ubiquitous.

1 Driver Assist Some autonomy but under passenger 

control, e.g., cruise control or lane 

assist.

Been in place 

for more than 20 

years.

2 Partial 

Assistance

Driver is aware and capable of taking 

full control. Increased autonomy when 

engaged, e.g., traffic-aware cruise 

control.

Still fairly new.

3 Conditional 

Assistance

This requires a driver and the vehicle 

can carry out many tasks, but the 

driver must be prepared to take over if 

necessary.

Some vehicles can 

match this.

4 High 

Automation

Once the vehicle is in an appropriate 

environment, the driver can switch on 

the automation and relax, e.g., on a 

freeway.

Not possible 

today except in 

experimental areas.

5 Full Automation Does not need any external control, 

steering wheel, or pedals. No human 

control or driver necessary.

Not possible 

today except in 

experimental areas.

Chapter 5  Robots Without Arms



161

�Challenges and Triumphs
While there are still a number of challenges to autonomous vehicles 

becoming a normal mode of transport, there have also been a number 

of victories. We will not dwell on the potential insurance and legal issues 

should the person have an accident while driving to the hospital.

Maps of metropolitan areas held in the vehicles internal data store 

can help guide an autonomous vehicle, taking notice of regular obstacles, 

red lights, and street furniture. Some maps can be updated with more 

temporary obstructions, parked vehicles, broken-down vehicles, or 

garbage on the road. This would be enabled by autonomous vehicles 

communicating and sharing information. This has the potential to 

increase safety based on a better awareness of driving conditions. Mapping 

technology allied with sensor input from the vehicle and the environment 

is one of the cases where data fusion (see Chapter 7, “Robots in Society”) 

becomes important. Although a fully autonomous vehicle has little need 

for a driver, the vehicle itself has to blend different data into a complete 

view of its environment to avoid accidents and drive successfully.

The ethical issues that are raised by driverless level 5 fully autonomous 

vehicles are no less challenging than successful navigation of the 

environment. Most people would agree that if there is a pedestrian in 

the roadway, the vehicle should avoid the pedestrian if possible, and if 

not, the vehicle should stop. So far, so obvious. An interesting question is 

raised if the pedestrian in the roadway is a criminal carjacker, what is the 

decision in this event? Most people would either take avoiding action but 

would draw the line at running the pedestrian over. A further dilemma is 

based on the well-known trolley problem.26 In autonomous vehicle terms 

the problem has been outlined in a paper called “The social dilemma of 

26�Thomson, J. J. (1985). The Trolley Problem. The Yale Law Journal, 94(6), 1395–3. 
https://doi.org/10.2307/796133
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autonomous vehicles.27” If an autonomous vehicle detects six pedestrians 

in the road and it cannot stop in time, should it swerve to avoid them even 

if that swerve would kill a single pedestrian on the side of the road? In a 

refinement, should the vehicle swerve into the wall at the side of the road, 

saving all the pedestrians but killing the occupants of the vehicle? These 

moral questions are difficult to resolve, even if the driver has a coin to toss. 

Studies have shown that in the case of killing pedestrians many people 

would take the reduced casualty option28 but would be more reluctant to 

drive into a wall saving the pedestrians at the cost of their own life.

The real triumphs will come in the future with level 5 automation. 

Safety improvements, reduction in parking requirements, and reduced 

numbers of vehicles on the road will improve pollution, congestion, and 

general well-being. However, safety may also be considered a major block 

to declaring a vehicle fully autonomous. Road safety is something that 

children learn about at an early age, usually focused on creating awareness 

to traffic and avoiding accidents. As the children grow into young adults 

and learn to drive, they are taught safety from the point of view of the 

driver and are expected to understand the risks from the point of view of 

pedestrians.

Mobile phone habits have changed this a little; the expansion in 

the number of people with mobile phones has led to an expansion in 

the number of pedestrians who suffer from cognitive distraction.29 This 

leads to an increase in accidents since there are a number of distractions 

27�Bonnefon, J. F., Shariff, A., & Rahwan, I. (2016, June 24). The social dilemma of 
autonomous vehicles. Retrieved February 28, 2020, from https://arxiv.org/
pdf/1510.03346.pdf

28�Bonnefon, J. F., Shariff, A., & Rahwan, I. (2016, June 24). The social dilemma of 
autonomous vehicles. Retrieved February 28, 2020, from https://arxiv.org/
pdf/1510.03346.pdf

29�Nasar, J., & Troyer, D. (2013). Pedestrian injuries due to mobile phone use in 
public places. Accident; Analysis and Prevention, 57C, 91–95. https://doi.org/ 
10.1016/j.aap.2013.03.021
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for drivers already and having pedestrians distracted leads to situation 

where a moment’s lack of attention compounded by pedestrians gazing 

at their phones can lead to more accidents. Tiredness or lack of attention 

particularly on long journeys would also be eliminated and result in 

safer roads. Tiredness that may cause lane drifting is already addressed 

by lane management technology installed in some vehicles with level 2 

automation.

There is an anticipated reduction in the number of vehicles on the 

roads based partly on changes to driving habits and traffic. Improved 

traffic flow will result from fully automated vehicles integrating their 

internal data and fusing it with data from street furniture, traffic lights, 

traffic signs, and other vehicles. This fused data can be used to allow 

vehicles to travel closer than is advisable in a regular vehicle. Fused data 

from other autonomous vehicles nearby, in front, behind, and at the 

side of a vehicle can be collected. Internal data on braking, steering, or 

lane changes can be fused with the external data and can be managed at 

computer speed eliminating human error and variable human reaction 

times. Vehicles will have enough information to join traffic flows without 

disruption to other vehicles and still maintain the traffic density.

�Impact on Society
Personal vehicles have a special place in many people’s hearts. An elderly 

relative of one of the authors explained their need to own and drive a 

car, even in their 80s, in one word, “independence.” On questioning they 

said that without the car they are dependent on others for shopping, trips 

out, and going to see other relatives. Extending the travel time by using 

infrequent public transport does not compare well to the independence 

of driving a car. Talking about a relative giving up a car is frequently a 

difficult topic to discuss due to the level of emotion that is generated. 

The use of fully automated vehicles has the potential to resolve this issue, 
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as the increasing age and driving capability of a user will no longer be a 

barrier to travel. Passengers in an autonomous vehicle are just passengers 

in a vehicle that does not need a human driver. Elderly drivers whose 

eyesight or other problems could ban them from the steering wheel can 

still be mobile. Impairment of the faculties of a passenger will no longer be 

considered a barrier to travel. The highest level of automation will remove 

some if not all the responsibilities from a vehicle occupant.

When looking at how most users will interact with autonomous 

vehicles, we should consider a number of scenarios. The first scenario is 

a world where nothing changes in the behavior of the vehicle user. They 

own their own vehicle and use it in the same way that they would use a 

conventional vehicle. Scenario one is least likely in the long term due to 

financial and societal issues outlined in the following “Private Vehicles” 

section. Scenario two is where the new technology results in a new 

attitude. A user may decide that they can work in the autonomous vehicle 

and have no need to stay late at work. Even the most optimistic commuter 

cannot accomplish much in a crowded and cramped commuter train, but 

in the relative peace of an autonomous vehicle, they may be able to work 

successfully. They would include their commuting time in their working 

time. They would continue to own their vehicle. Scenario three could be 

the new technology would result in a change in attitude to both working 

and ownership. Using a shared pool of autonomous vehicles will reduce 

costs and will reduce congestion by having fewer cars on the road. After 

establishing the value of an autonomous vehicle to passengers in all 

scenarios, there will be a need to establish requirements for a dedicated 

personal vehicle. In this chapter we have chosen the third scenario as our 

focus since it will be the most radical. It is also possible that there is a mix 

of scenarios. A scenario that suggests no behavioral change is unlikely to 

be happen in the long term.
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�Private Vehicles

Owning an autonomous vehicle as a private individual may be 

prohibitively expensive. The running costs will remain at least as high as 

for conventional vehicles. Additional expenses such as updated software 

and data storage as well as power and maintenance requirements will 

likely increase costs. Just keeping a conventional vehicle on the driveway 

costs money and private car utilization is at approximately a mere 4%. In 

urban areas there is an attraction to sharing vehicles, as long as the shared 

vehicle is available almost on demand. Shared autonomous vehicles 

will further lower the costs of commuting and shopping. Strategists and 

analysts such as UBS30 speculate that future autonomous vehicle-based car 

sharing can replace 25 private cars by 1 shared vehicle. Ride hailing can 

replace an estimated 5 to 10 cars. Ride sharing is already available in large 

urban areas with Uber. Vehicle sharing using the Zipcar model is currently 

available in large urban areas. Zipcar is probably the closest analogy to 

autonomous vehicle sharing with the main difference that an autonomous 

vehicle can drive itself from its park to the customer without any human in 

the car. Zipcars require you to travel to their parking place. The reduction 

in number of vehicles, lower vehicle emissions, and lower environmental 

impact will make a compelling case for individual and governmental 

support for ride share and ride hail.

Commuting in this future will be different. A driverless car arrives at 

home, the commuter enters and is taken to the train station or to the office 

and the vehicle leaves for a new assignment, and other vehicles will do the 

school run and shopping trip all without the need to large areas of land 

being dedicated to car parks.

30�UBS: Ganter, R., Berrisford, C., Dennean, K., & Dessloch, S. (2019). Smart 
mobility, 1–31. Accessed on February 28, 2020, from www.ubs.com/global/en/
wealth-management/chief-investment-office/market-insights/digital-
disruptions/2017/smart-mobility.html
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Figure 5-3 shows a potential model for using ride share and ride 

hail with the scheduled regular requirements being met from a pool of 

vehicles, with the vehicle arriving at a set time. If there are requirements 

that are outside the contracted ride share times, there is also the option 

to use a ride hail vehicle that will have a lead time to arrive but may have 

availability problems. A cautionary note is that this model will work best 

in an urban environment; rural areas have their own challenges due to 

low population density, although not all urban areas are equal in support. 

The preponderance of autonomous vehicle development and testing in 

the Silicon Valley area has resulted in highly detailed road mapping. Other 

urban areas both in the United States and other countries have fewer 

development and test areas and maps are subsequently less detailed.

The impact of private autonomous vehicles on employment is likely to 

be changes in individual working practices. Travel in a private autonomous 

vehicle would facilitate work during travel time with no detriment to 

the vehicle safety. Passengers can read, type, and call with colleagues, 

Figure 5-3.  Ride hail/share strategy
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even attending conference calls over the in-car Internet, ensuring that a 

long commute is no longer wasted time. A trouble-free commute may be 

jeopardized should the occupant suffer from motion sickness. Reading 

is frequently cited as a cause of motion sickness31 and working in an 

automated vehicle may generate this unwanted side effect.

Driverless vehicles will mean fewer human drivers. Fewer cars will be 

sold and the many companies that support the manufacture of personal 

vehicles will also be under threat from fewer cars being built. Employment 

in the car industry has been disrupted over time and will continue 

to be disrupted as autonomous vehicles become common. Even the 

service centers will employ more computer engineers than oil changers. 

Disruption of the personal car domain will not be as immediate and 

painful as the disruption in the transport and delivery industries.

�Commercial Vehicles

Self-driving autonomous vehicles will be the cause of a massive disruption 

in the social and economic life of developed and developing nations 

for years to come. Freight carrying and passenger carrying autonomous 

vehicles will result in new working practices and fewer employees in many 

cases. Licensed taxi drivers in most cities are already being squeezed out 

of work by the working practices and business model of companies like 

Uber and Lyft. Even the new working practices of these two companies 

with sophisticated mapping, ride hailing, and pricing will not be able to 

compete with an autonomous taxi that needs no driver and needs no 

break between passenger. An autonomous taxi is expected to be safer and 

more cost effective for both the ride hailing company and the customer, 

removing the only intermediary left, the driver. All will not be doom and 

gloom for drivers. Luxury cars may still use human drivers as a status 

31�Hain, T. (2003, February 17). Why does reading in a moving car cause  
motion sickness? Scientific American. Retrieved March 3, 2020, from  
www.scientificamerican.com/article/why-does-reading-in-a-mov/
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symbol. There is also a potential demand for delivery drivers for first and 

last mile delivery. If you consider a supply chain that looks like Figure 5-4,  

goods can be delivered a short distance to a warehouse where they are 

loaded on a freight autonomous vehicle. City to city highways are much 

easier for autonomous vehicles to navigate than small town and rural 

roads, with fewer dynamic changes or obstructions to the roadway.

Goods will need to be moved from the manufacturer to the distribution 

center, in this case the First Mile Warehouse. Movement can be done with 

driverless or driven vehicles. At the warehouse the goods are loaded on to 

autonomous vehicles that only need simplified mapping to get them to the 

highways.

This vehicle will then travel the longer distance without a driver, 

dropping goods at so-called “last mile” depots. The goods can be unloaded 

by robots and loaded onto smaller vehicles that may have a supervising 

driver. The importance of the last mile is that this is often the highest cost of 

the delivery particularly in pollution terms. Using electric and supervised 

self-driving, this can potentially offer an increased demand for local 

delivery drivers. Local delivery can remove many of the health issues of the 

long-distance driver. The increased demand for local delivery may reduce 

the impact of automation on the working population of truck drivers.

The strategy of replacement of truck drivers by automated vehicles is 

progressing with many of the leading truck makers developing vehicles 

that can drive themselves. The trucking industry is ripe for automation. 

Figure 5-4.  Last mile delivery strategy
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There are not enough drivers to meet current demand and those that 

are in the industry have serious ailments from the physical nature of 

the work, the mental stress, and frequent long periods away from home. 

The replacement of drivers is only now becoming visible to the truckers 

themselves. Some commentators are anticipating labor disputes and even 

riots as more and more trucker replacements become visible.32 Other 

commentators see a need for retraining of truckers who lose their driving 

jobs into new industries or the more technical aspects of automated 

vehicles.33 Autonomous vehicles will have many sensors, radar, LIDAR, 

and other technology, onboard computers, and communications; all of 

which will be severely tested by the rigors of driving for 24 or 48 hours with 

no stops. Maintenance of autonomous trucks will be more complex than 

brakes, lights, and the drive train.

Elsewhere in this book we have commented that automation of 

repetitive, often low-paid work results in the creation of different new 

jobs, and this may be the case with commercial vehicles. Trucks are likely 

to become so automated in the future that they can also be called robots 

without arms. They can be carrying out valuable work while freeing 

humans to do more creative work.

�Summary and Conclusion
In the introduction we noted that smart buildings and autonomous 

vehicles exhibit the attributes of a robot: self-directing, decision-making, 

data gathering, responding to collaboration, and so on. However, the main 

32�Yang, A. (March 4, 2020). Self-Driving Vehicles: What Will Happen to Truck 
Drivers? Evonomics. Retrieved March 4, 2020, from https://evonomics.com/
what-will-happen-to-truck-drivers-ask-factory-workers-andrew-yang/

33�Samuels, A. (February 27, 2017). The Automation of Trucking. The 
Atlantic. Retrieved March 4, 2020, from www.theatlantic.com/business/
archive/2017/02/when-robots-take-bad-jobs/517953/
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differentiator is that either of these special cases is unlikely to manipulate 

objects. It is possible to reaffirm that smart buildings and autonomous 

vehicles can be called robots without arms.

Smart buildings may not have a big disruptive effect on employment 

and the future of work. These can be a considered as a more efficient 

way of housing workers rather than a robot doing work. Workers in smart 

buildings will, however, respond well to an optimized environment and are 

generally more productive in a smart building setting. An additional bonus 

for employers will be the improved health of the employees that work in 

the smart building. A causal relationship between poor built environments 

and the symptoms of sick building syndrome may be difficult to 

establish, but there is evidence that the costs of improving an employee’s 

environment are easily offset by increased productivity and fewer sick 

days. A section on the economic consequences of sick building syndrome 

in Burge’s paper34 supports this assertion.

Large amounts of data from sensors both inside and outside the 

building can be collected and integrated. This will allow better and more 

comprehensive data analysis based on that data. In the future it will 

be possible for an employee to be recognized when they arrive at their 

work with an optimal car parking space being allocated and a notice of 

any changes to a meeting that they are attending can be sent to their car 

or phone. Efficient use of office or warehouse space will be the result of 

analysis showing the space utilization and the probability of a space being 

under used or overused to maximize the working area.

The future of work over the next 10 years will see employees and 

buildings integrated to create a pleasant and productive work environment 

without those frustrations and sickness that can create stress and anxiety 

for the people delivering value in the workplace.

34�Burge, P. S. (2004). Sick building syndrome. Occupational and Environmental 
Medicine, 61(2), 185–190. https://doi.org/10.1136/oem.2003.008813
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Autonomous private vehicles are likely to have a tangible effect on the 

future of work resulting from their effect on the employment of freight-

based drivers of commercial vehicles. The use of autonomous vehicle 

technology for both commercial and private vehicles is similar in its goals 

and objectives. The description of private vehicle functionality closely 

resembles that of the commercial vehicles. Private autonomous vehicles 

will change some working practices, with commuters being able to live 

further away from the office or use their travel time for effective working. 

Nondrivers will also become less dependent on others for mobility by 

having access to driverless cars. Passengers who are young, elderly, or 

unable to drive will no longer have to rely on a third party to take them 

where they need to be. The removal of an obstacle to travel for work or 

amusement will potentially generate a more self-reliant society.

Autonomous commercial vehicles will have a serious effect on the 

employment of truckers and freight delivery drivers by replacing them. 

Once these vehicles are common, the numbers of drivers will reduce 

massively. In the shorter term, it is likely that long-distance truckers in 

the United States will still be needed to supervise vehicles or conduct 

pods of trucks, but these will eventually be replaced by fully autonomous 

vehicles. Prospects for low-paid repetitive jobs will be poor in the 

automated future; however, vehicle maintenance will become more 

technologically oriented. Maintenance will not just be about the brakes, 

lights, and drive chain of a truck but the sophisticated electronics that 

will be installed, from sensors to computers and communication devices. 

Trucks are likely to get external data about weather, obstructions, and 

jams from the data that they and other trucks gather and store in the 

cloud for analysis. All of this will offer an opportunity for truckers to 

retrain in technology and other jobs. New delivery models will also 

contribute to reemployment of truckers as last mile solutions will need 

an increase in delivery drivers.
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In both these cases data is of great importance. Smart buildings with 

integrated software will store data for analysis and automated action. 

Autonomous vehicles will need to access data about external conditions 

as well as vehicle telemetry. Analysis of this data will increase the ability 

of managers of both smart buildings and autonomous vehicles to institute 

preventative maintenance and reduce the downtime of either smart 

buildings or autonomous vehicles. Smart buildings and autonomous 

vehicles will require more sophisticated maintenance personnel.
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CHAPTER 6

Robots in a World 
of Data
Creating Human-Robot Synergy

Data fusion is considered an important component for many of the new 

technology initiatives that are being developed. We define data fusion 

in the next section of the chapter. Data fusion is an enabling technology 

in many domains, but currently it has been brought to prominence by 

the development of autonomous vehicles, intelligent automation, and 

collaborating autonomous mobile robots.

The importance of data fusion in robotics is attributed to a need 

for a common understanding of all relevant data points and decisions 

based on those data points. When a collaborative robot is holding a 

piece of wood, data is being collected by sensors on the whole of the 

robot’s manipulator. The data can describe the parts of the manipulator 

holding the wood, the pressure that is being exerted on the wood, and 

the direction of motion of the manipulator. All of this and additional data 

are not immediately understood by the human collaborator but has to be 

interpreted programmatically along with other data that may come from 

elsewhere either on the robot or natural language instructions to the robot 

or identical data from other. All of these different types of data, collected 

by robots and humans, must be merged together to create a model of the 

https://doi.org/10.1007/978-1-4842-5964-1_6#ESM
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environment the collaboration is taking place in. Collaborative robotics 

needs a reliable method of communication and decision-making that is 

understood by all parties. Autonomous vehicles are leading this initiative 

using the combination of different sensors inside and outside the vehicles. 

Just travelling down an empty road requires a huge amount of data from 

sensors including LIDAR, radar, video, and ultrasonic. The data from these 

sensors is used to calculate the distance and shape of objects, how fast they 

and the vehicle is moving and in what direction. All of this data informs 

a series of decisions on direction, speed, and safety of the vehicle and its 

surroundings. Without the fusion of this data, the vehicle may not be able 

to move safely.

This chapter will examine data fusion in the domain of collaborative 

robotics and in particular a research project led by Professor Moncef 

Gabbouj of Tampere Technical University, Tampere, Finland. In 

conjunction with Professor Gabbouj, we feel that successful data fusion is 

a critical technology in the future development of collaborative robotics. 

There will be additional input from the ENACT research project, in 

the domain of healthcare. The ENACT objectives are based on applied 

research and will shed light on some of the architectural barriers to a 

comprehensive and future solution.

The main difference between the type of approach of an autonomous 

vehicle and a collaborative robot is the different interactions between 

the human actors and the vehicle/robot. A collaborative robot needs to 

share in the decision-making that leads to a complete task, but a fully 

autonomous vehicle is designed to have total control of the decision-

making process, requiring no human intervention once the goals of the 

journey have been set with the passengers being no more interactive than 

cargo. The main task of data fusion in autonomous vehicles is to maintain 

local mapping to enable a robot to locate itself in the learned environment 

and its position relative to other robots.
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�Data Fusion Definitions
In a “A Review of Data Fusion Techniques,”1 Federico Castanado notes that 

information fusion and data fusion are often considered synonymous.

The article also notes that in some situations data fusion and 

information fusion can describe different effects. For example, data fusion 

handles raw unprocessed data and information fusion can be described 

as the fusion of processed data. There are many definitions of data fusion 

but the most generally accepted definition of data fusion was generated by 

the Joint Directors of Laboratories (JDL). Akiwowo and Eftekhari refer to 

the JDL model developed in the mid-1980s and JDL is still cited in many 

papers.

Data Fusion: a multilevel multifaceted process dealing with 
the automatic detection, association, correlation, estimation 
and combination of data and information from single and 
multiple sources to achieve refined position and identity 
assessments of situations and threats and their significance.2,3

There are other definitions from organizations such as the Institute of 

Electrical and Electronics Engineers (IEEE). Perhaps the most succinct is 

that defined by Steinberg in 1999. This follows on from a definition by Hall 

and Linas4 and is a refinement of JDL.

1�A Review of Data Fusion Techniques, Federico Castanedo, Hindawi Scientific 
World Journal 2013.

2�JDL, Data Fusion Lexicon. Technical Panel For C3, F.E. White, San Diego Calif 
1991.

3�Feature-based detection using Bayesian data fusion, Akiwowo, Ayodeji, Eftekhari, 
Mahroo, 2013/12/01, International Journal of Image and Data Fusion.

4�D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,” Proceedings 
of the IEEE, vol. 85, no. 1, pp. 6–23, 1997.
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Data Fusion is the process of combining data to refine state 
estimates and predictions.5

With all these definitions and possible conflicts between data fusion 

and information fusion, we are settling on data fusion as a more general 

definition than information fusion in this chapter. The JDL model does 

more than have a snappy definition of data fusion. The model additionally 

has several distinct layers that define the status of a data fusion exercise. 

This has been developed by the JDL Information Group as illustrated in 

Table 6-1. This layered structure of the modeled data fusion status is not 

without its critics. A critical problem with layered models is that they imply 

some form of order to the different layers, although this does not need to 

be the case. A layered model can also imply that there are no humans in 

the loop, but there may be frequent interventions needed when something 

in the process is not understood or there is an error. Despite these 

limitations the model is excellent for visualizing the process.

Table 6-1.  JDL Data Fusion Model

Level Description

0 Source preprocessing/subject assignment

1 Object assessment

2 Situation assessment

3 Impact assessment (or threat refinement)

4 Process refinement

5 User refinement or cognitive refinement

5�Revisions to the JDL data fusion model. Steinberg, Bowman, White Aerosense99, 
International Society for Optics and Photonics 1999.
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�Humans: The Data Fusion Mavens
Mavens are a trusted expert in a particular field—in this case, the field of 

data fusion. If it seems as though we are discussing data fusion capabilities 

as something new, nothing can be further than the truth. Back in the 

mists of time, early hominids were able to combine data from a number of 

senses to help them survive. They fused data from vision, taste, and touch 

to tell if a fruit was ripe and if it was safe to eat. A red fruit looks ripe; if it is 

soft to the touch, it is even more likely to be ripe. If other animals are eating 

it, then it is not likely to be poisonous; however, if it is bitter to the taste, 

then it may not be something to eat unless in extremis. Data fusion is not 

new. Data fusion is a part of our everyday life as a human animal. Once we 

are past the immobile baby stage, we become increasingly sophisticated 

in our use of data fusion. Hearing, vision, touch, taste, and indeed all our 

sense are providing data to the brain and being used to create a complex 

model of the world we live in.

Humans don’t integrate data into a single truth. Our approach to data 

fusion is to evaluate and discard data that is of no interest at the time. This 

is an automated process. Humans will view the whole scene in front of 

them and then ignore irrelevant data. We can’t concentrate on everything 

at once; we have to critically evaluate the data we are receiving and ignore 

data of little or no interest. If we don’t have accurate data that covers 

all the scenarios, we use personal or shared experience that can give 

an approximation that may be good enough to take valid decisions. For 

example, if you are driving a car in the rain, you may not know more about 

the state of the road than it is wet. If you are driving on a familiar road, you 

may feel comfortable driving a little faster or slower based on your memory 

of the road. If the road is an unknown, you may have to guess on the road 

conditions, and if you can see the countryside, you may notice a hilly 

environment that may be liable to flooding and slow down accordingly. 

These inferences, based on personal experience, and the fusing of data on 

the condition of the vehicle, the weather, and the topography may give a 
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good enough overall view that allows you to continue on your journey or 

pull over and wait until the weather improves. This ability is not something 

that can easily be programmed into robots, and this chapter will look at 

the attempts to create a robot that can take this type of decision based on 

the fusion of data from many sensors and the development of “experience” 

that will improve decisions on the same way that the Human Data Fusion 

Maven can.

�First Steps in Data Fusion: Structured  
Digital Data
It is common when discussing sensors and actuators to think in terms 

of structured digital data, or signals that can be interpreted as digital 

data. Many sensors have descriptions of the data they provide and 

the structure of that data. Any confusion about the type of data to be 

processed may lead to simplifications and suppositions creating a false 

impression of the challenges of data fusion. For example, in a sensor-based 

environment where sensor signals are sent in a “standard” structured 

digital representation, they can be handled as much of the nonsensor 

digital data processed in an environment. Sensor data can be used as 

input to various storage or processing systems and analyzed. The main 

challenges in using structured digital data will always be those of scope, 

timing, and lack of standards. It is not enough to pile the data into a data 

store and link the data together for analysis. Sensors will have different 

sampling rates, timing measures, and most likely be from different parts 

of a highly complex environment. When a robot hand is grasping a glass 

vessel like a jar, there will be sensors in the robot hand and arm that are 

generating data although the data format and sampling rates will most 

likely be different. Some data will come from pressure sensors that can tell 

how much pressure the hand is exerting. Other data from pressure sensors 

can be used to establish the coefficient of friction between the glass and 
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the hand. These data, once fused together, may result in a decision by the 

robot to increase the pressure of the hand. A glass jar is a delicate object 

and the robot using data from the hand has to calculate the optimum 

amount of pressure to hold the jar or place the jar down before it slips from 

the grasp of the robot or the robot crushes the jar. Similarly, if the robot 

arm is in motion, with the hand holding the glass jar, there is more data 

collected, analyzed, and fused with the data from the hand so that height 

direction of travel and weight data can be added to the other fused data 

to give a more comprehensive model of the work being done, changing 

the level of decision from is the robot hand going to crush the jar to the 

robot can complete its task to carry the glass without crushing it. Different 

sensors generate different data, but similar sensors measuring, for 

example, moisture, may also have data differences. If a moisture sensor is 

being used in a field, the sampling rate and data generated will be different 

to that of a moisture sensor that is measuring a grain silo and different 

again from a sensor measuring moisture in a hay store. All the sensors will 

be similar and may even be the same model but a field moisture sensor 

may be sampling hourly, the grain store daily, and the hay store weekly. 

The data generated will be the same, but data fusion will be needed to 

ensure the accuracy of the moisture model of the farm. Data fusion is 

needed to enable risk and decision models to be created and, if needed, 

remedial action to be taken.

Autonomous vehicles have a different layer of complexity. A wide 

variety of monitoring data is important for safety and effectiveness in a 

poorly unstructured environment. Some of this data can be offline, for 

example, traffic flow monitors. Other data like that provided by onboard 

Doppler radar provides point information about the velocity of objects 

at a distance but is not able to provide geospatial data that would need 

a different sensor that can give coordinates or an address. All of these 

different types of data can be converted and held in a database ready 

for processing into data for decision-making data input, fused or not. 
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Decision-making using structured data is not error-free. There have been 

several cases where an autonomous vehicle has had an accident due to a 

failure to recognize a pedestrian, but there may be many causes like the 

result of errors in data acquisition, data fusion, or the decision-making 

algorithms themselves. The first pedestrian killed by an autonomous 

vehicle died because they were not recognized until too late and the car 

spent valuable time searching for an alternative route. The fact that the 

safety driver in the vehicle was also distracted and didn’t react in a timely 

manner contributed. The conclusion in investigations was that software 

errors were contributing to the accident. Onboard computers make 

decisions based on the external and internal data; data fusion may or may 

not have been a contributing factor. Poor data frequently leads to poor 

decisions, but the various reports only discuss decisions, not the data that 

would be input to the decisions, fused or not.6

An additional source of data for autonomous vehicles can be a 

process known as floating car data where cars on a road can become 

active as moving sensors feeding information about traffic conditions 

to a traffic management center. This highlights a common data fusion 

problem. Coping with this amount of data will result in high CPU and 

network usage, but can build a more comprehensive model of the current 

environment the vehicle is acting in. CPU and networking loads will 

increase due the needs of analyzing structured data from on car telematics 

(easy) and unstructured data like camera feeds and data from street 

furniture (harder).

Cooperative systems such as collaborative robots should exchange 

data to improve safety and efficiency and fusing this data with other data 

will produce an improved model. The potential for damage and injury 

in a collaborative robotics scenario is high, when humans and robots are 

6�RAC. (2019, November 19). Uber self-driving car that killed pedestrian had  
software flaws. Retrieved March 27, 2020, from www.rac.co.uk/drive/news/ 
motoring-news/uber-self-driving-car-that-killed-pedestrian-had-
software-flaws/
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working in the same space. Even with the limited intelligence robots in 

a warehouse, there is a high risk of problems. Autonomous collaborative 

robots increase this risk because there can be no fixed “safety area” if 

there is real collaboration between them and humans. Part of the risk 

mitigation would be for humans to have access to the same fused data that 

is modeling the world for collaborative robots, including sensor data from 

the robot, video, and LIDAR data as well as radar. The fusion of this data 

into a common model is vital for safety and effectiveness and would be 

shared between all collaborating participants.

Structured digital data is not the only type of data needed for a 

complete picture. Structured data is not sufficient or efficient enough to 

provide an accurate picture of the working environment or actions for the 

mobile robot or autonomous vehicle and will need different types and 

sources of data to make decisions. The sources of data are many and varied 

and some are mentioned in the autonomous vehicle example earlier in 

the chapter. Video data from cameras will be an important component 

that will add to the numeric structured data. Other sources of data include 

LIDAR and radar with similar goals to determine range, speed, and 

location of objects and GPS data for positioning. Unstructured data, such 

as video, audio, and analog, does not have a predefined data modal but 

can represent a large proportion of data that is collected and fused into the 

environmental model of a cobot.

Decisions using rules or AI based on structured data are relatively 

straightforward and can be automated readily as we discussed 

in Chapter 3, “Robotic Process Automation,” on robotic process 

automation. Decisions that rely on more complex and unstructured 

data are themselves more complex, but they will need to develop 

decisions that will support the autonomy of collaborative robots.
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�Infrastructure Complexity Drives Data 
Fusion
If structured digital data is not sufficient for accurate decision-making 

in robotics and autonomous vehicles, additional data will need to be 

acquired to make the cobots safer or more reliable and decisions more 

accurate by improving the accuracy of the data set. To improve decision-

making the data set needs nonstructured data that has to be gathered, 

processed, and fused with other data and used as part of the larger domain 

data set. Nonstructured data would improve performance and safety of 

a collaborative robot, for example, adding nonstructured data from a 

camera to data from radar will improve the model of the environment and 

ensure that the collaborative robot would better recognize obstructions. 

There is a real balancing act between effectiveness and complexity. 

Complexity in autonomous robots is increased by their evolution into 

collaborative robots since collaborative robots and human collaborators 

have to be in constant communication with each other and not reporting 

individually to a controller. To indicate the effect of collaboration on 

the complexity of data fusion, Figure 6-1 shows that robots who are 

collaborating with each other may be sharing updates to their internal 

representations of their environment as new data comes in and is fused 

into that internal representation. This will then generate updates to the 

collaborating human. The human may provide updates to the learned 

internal representation which has to be distributed between the robots 

and fused with their current representation. Data fusion is only one part of 

the picture, the robots and humans acquire data, and it is fused with other 

and existing data and used to create new internal mapping that is accurate 

in near real-time. A good example of this is a team of robots and a human 

building a wind turbine. Several robots are tasked with collecting and 
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carrying turbine blades from a store and bringing them to the construction 

site, and as they bring a blade, it is handed to robots to hold the blade in 

position while the human attaches the blade to the turbine and makes any 

fine adjustments. All of the actors in the team, robot or human, needs to 

be in constant communication to enable each actor to make and modify 

decisions in a timely manner. Each of the actors is providing data that 

needs to be fused into the real-world model which can then be sent as an 

update to the team.

Other modes of collaboration are noted and discussed in Chapter 4, 

“Robots in Teams,” including the conflicts in a scenario where a single 

robot getting updates and instructions from multiple humans. Figure 6-1 

will be used in this chapter to describe a centralized architecture for data 

fusion as well as to illustrate the complexity of the environment. Different 

data fusion architectures have an impact on performance, safety, and 

security in a collaborative robotics environment and will be discussed in 

the next section.

Figure 6-1.  Centralized data fusion architecture: collaboration and 
complexity
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�Architectures and Their Impact on Collaborative 
Robotics
Mobile robots can be considered as a set of sensors, cameras, radar 

detection, and so on. They are generating a huge amount of data as they 

move and complete tasks. The architecture of data capture and data fusion 

solutions can have an impact on the performance and reliability of the 

results that are sent to the decision-making part of a solution. There are 

two basic architectures for data fusion, a centralized architecture and a 

distributed architecture. Both bring advantages and disadvantages.

Figure 6-1 showed a simplified view of the complex environment that 

is prevalent in collaborative robotics. There are other representations 

of architectures for both data fusion as a process and robotics as an 

environment. In line with the focus of the book, we have only considered 

the use of multiple robots collaborating with each other. The box labeled 

ROBOT indicates the capabilities of a single robot that collaborates with 

other robots that may be different in physical appearance and construction 

but have the same capabilities. The smaller unlabeled boxes represent 

other robots identical to the structure used in the box labeled ROBOT 

and the text is omitted for clarity. The robot acquires data from sensors, 

cameras, and radar/LIDAR represented here by Doppler. As the data is 

acquired, it is stored in temporary storage and then uploaded to a central 

server where the data is managed and stored. The different types of data 

are fused together to develop an updated view that is a combination of 

the view that is common to both humans and robots, for example, a map 

of the warehouse layout, and new data that may indicate a change to the 

map, perhaps an obstruction. This updated view is then synchronized with 

the collaborating robots and humans so that a near real-time view can be 

used to improve activities. Any of the robots and humans can update what 

will become a new internal view of the environment. The robots still have 

autonomy even though they are relying on an identical common view.
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Decision-making is not only part of each robot’s capabilities but 

can also be centrally directed. A good example is task allocation while 

building a wind turbine. Each robot may be given different tasks such as 

carry blade or hold blade. The robot makes decisions on where to move or 

stand with no further reference to the central server unless it needs further 

instructions, for example, if a sensor detects an obstruction, the decision 

of the robot could be to stop and send new data to the server requesting 

alternate route instructions and informing other collaborators. It is clear 

that data volumes may be large in a cobotic world. Some sensors sample 

(read and transmit) data more than 1 million times a second. Having only 

ten sensors in a robot appendage would result in 10 million data points. 

Ten sensors may well be only the number of sensors in one part of a 

digit. Including unstructured data such as video and audio plus GPS data 

increases the amount of data, and this is only the tip of the iceberg. This, 

and all the additional data, can be processed or sent for processing to give 

the accurate picture of the operating environment for the robot. Fusing the 

large amount of data gathered will require high CPU usage to execute the 

data fusion algorithms, more CPU power than is available locally on the 

robot. Data transmission speeds and network resilience will be important 

in this scenario.

This scenario delivers accurate revisions to the internal mapping 

synchronized to each unit in the scenario, but this comes at a cost of stable 

high-speed networks and powerful servers. This is tenable in a controlled 

environment but may be more difficult to support in an unpredictable 

environment. There may also be the issue of low-powered devices that 

only have limited connectivity. Sensors at the end of a network will have 

to work with very low power. A sensor on a house light has access to plenty 

of power; a sensor that can only draw on power from the network or from 

intermittent solar power has to cope with low power. The sensors may not 

have the power available to carry out complex operations on data in this 

circumstance. Data may be summarized or analyzed on the spot before 

transmission.
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Later in this chapter we will hear from a company that makes medical 

devices that have similar problems of low-power and unstable networks. 

These “edge of the network” devices have some capabilities that can 

overcome the high network and CPU utilizations of a centralized data 

fusion architecture. If you imagine a set of sensors in a home, some for 

measuring light levels, some for measuring temperature or humidity, and 

some for measuring movement, all of these send data back to a household 

controller. If this is the home of a vulnerable person, it is important that 

all the data is gathered and processed immediately and without the lag of 

updating a centralized server and waiting for analysis. Local household or 

even sensor processing is at the edge of the network and some analysis can 

provide immediate feedback. For example, if a motion sensor detects that 

the occupant has not moved for a set period of time instead of relaying the 

movement data, it can send an alert to the household or other supervisor 

that there has been no movement. This would be faster than sending data 

to a centralized supervisor for analysis.

A distributed data fusion architecture, as illustrated in Figure 6-2, 

conceptually needs to carry out all the storage and processing functions 

locally and then locally fuse the data into an updated real-world model. 

This model or the fused data to update the model can be sent to each actor 

in the collaboration team enabling them to use an updated model.
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This synchronizing of communications between actors is a complex 

task. Newly updated models should not be able to overwrite data or 

models in other actors and should not have their models and fused data 

altered without checking if the data arriving is conflicting with the fused 

data or the updated local model. This is outside the scope of this chapter.

To reduce the network load and give near real-time results, each robot 

needs to be able to store data for partial processing and data fusion. The 

fused data can be used, along with any relevant external data, to update 

the internal mapping and decision base so that the results of the updates 

can be acted on locally. Updates can be shared, but using technology that 

can act locally or at the edge of the network and distributing the processing 

and data fusion means that each actor has a local accurate and timely 

view of the environment. For example, should a robot have an internal 

map of the environment, locations of shelves, height of shelves, width and 

length of pathways, and items to be collected, this will enable the robot 

to navigate through the warehouse. If there is an obstruction that is not 

mapped, this would cause problems, unless the robot uses sensors and 

Figure 6-2.  Distributed data fusion architecture
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cameras to recognize the obstruction. It can then update its own internal 

map. This obstruction then becomes a new part of the data set held by that 

robot. Local processing and data fusion enable this robot to react without 

delay and continue with a task even while it is sending the update to the 

rest of the team of collaborating robots. It does not need to send data for 

fusion; it has already accomplished this and just needs to pass the updates 

to the internal mapping.

�Data Fusion Challenges for Collaborative 
Robots
Collaborative robots are autonomous and are designed to complete tasks 

in collaboration with other robots and human collaborators. They need 

to be aware of all of the actors, human or robot, that are working in the 

collaboration space. This challenges in the use of data fusion to maintain 

the real-world model of the working environment. We will address some of 

these challenges and use examples to illustrate the issues.

�Problem Space
Once we move beyond the static, repetitive, manufacturing robots to 

autonomous mobile robots, the data challenges become evident. Static 

robots don’t have to use sensors that map their relationship with the 

space they are working in. There are well-established safety procedures 

and physical barriers that can keep humans safe outside the space in 

which the robot acts. Sharing a space with a mobile robot requires both 

a human awareness of the robot’s place in the environment and a robot’s 

awareness of humans and other objects that share that space. In the case 

of warehouse robots, they may already have an internal, learned model of 

the environment, but unless they are designed to cope with an unstable 

environment, they may find it difficult to adapt to changes. These warehouse 
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robots may only need a learned environment and a sensor that will allow 

them to sense when there are humans in the area. This does have some 

limitations as can be seen from the examples noted in the following text. Just 

moving around a learned environment does not require the sophistication 

of location awareness, sensing, data management, and decision-making that 

is the stock in trade of a collaborative robot.

Autonomous mobile robots have a requirement to adapt to an 

unstructured environment where objects, furniture, fixings, and people 

frequently move around the environment. These robots maintain a 

continual review of their location and its relationship to other objects in 

the real-time environment. In the case of warehouse robots, they may 

already have an internal, learned model of the environment, but they 

find it difficult to adapt to changes in their working environment without 

additional capabilities such as radar and cameras. The introduction of 

cameras as data acquisition tools creates additional demands on data 

fusion; structured data is not the only type of data in these environments. 

Increasingly nonstructured data has to be taken into account and used as 

part of the overall domain data set. This requires a different approach to 

managing and analysis of the complete data set.

Multisensor requirements and unstructured data such as audio or 

video need to be combined in a coherent way as key data in creating or 

updating learned and updated internal mapping accounts. Many additional 

types of data including audio, video, and multisensor will generate internal 

model updates describing the state of the robot. The large amount of 

data previously noted and the architectural challenges of low power and 

variable network connectivity combined with low storage capacity may 

become the norm in collaborative robots and have already been mentioned 

in our discussions about architecture. All of these challenges do not exist 

in a vacuum. One problem that needs to be addressed is that of lost, 

missing, or corrupt data. Bad data has the potential to cause dangerous 

or difficult situations. If a robot is moving across a warehouse floor and it 

has no information about the GPS location of other robots, it has to rely 
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on its onboard sensors to help avoid a collision. If data wrongly indicates 

that the robot is handing an item over to another robot, this could cause 

safety issues and damage to the item, the robot, or the warehouse. This is 

already an issue in ordinary commercial computing but has a potential 

to introduce a dangerous element when autonomous mobile robots are 

working in collaboration and coexisting with humans in their environment. 

Missing or lost data may affect the accuracy of the data set on which an 

autonomous mobile robot will make decisions. In Chapter 7, “Robots in 

Society,” we discuss military use of robotics and the debate that is current 

in the US military about giving robots the ability to take firing decisions.7 

The issues seen in different warehouse robots, medical robots, and military 

robots are similar even if the outcomes are not identical. Sensors that fail 

to transmit data or transmit unexpected data, too many outliers, and failed 

network connections all contribute to this problem domain. In any of these 

cases the problems could adversely impact performance of the robots or 

the collaborating team at the least, or cause a dangerous or costly situation 

to arise. There are the obvious problems with incomplete data yielding 

inaccurate analysis and possible poor decision-making. There is another 

area that you may have to consider and that is poor decisions based on 

data bias. There have been many articles regarding data bias in recent years 

covering a wide variety of cases ranging from sentencing of criminals to 

selection of CEOs.8 In each of these cases the bias was found to be a result of 

the data samples selected. There are a number of cases where data selection 

can cause problems. A study of drug use in teenagers would generate false 

conclusions should the data set studied just use teenagers between 13 and 

17. This would ignore use from the group of 18- to 19-year-olds who may 

have widely different usage since they are less likely to be in school.

7�Fryer-Biggs, Z. (2019, September 3). Killer Robots and the New Era of Machine-
Driven Warfare. Retrieved November 2, 2019.

8�Lum, K., & Isaac, W. (2018). To predict and serve? Significance, 13(5), 14–19. 
https://doi.org/10.1111/j.1740-9713.2016.00960.x
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Another area of study in the problem space is that of potential security 

holes. We have all seen movies where a hacker gains access to a robot and 

uses it for some sort of nefarious purpose. While there may be fiction, there 

are a number of reports of hacks to domestic robots and other Internet-

linked equipment including one by James Vincent,9 possibly due to 

generally low levels of security protocols and tools for this class of robots. 

The article described demonstrations of typical hacks in this area, where 

cameras were hacked to enable the hackers to spy on the householders. 

Perhaps more worrying were home robots controlled by outside sources 

and instructed to do some damage. Robots used for commercial projects 

have higher levels of security than domestic robots. The ENACT case study 

cited in the following text has as a major goal of securing healthcare critical 

robots and devices that use distributed and localized data processing, data 

management, and later data fusion.

�Examples of Data Fusion Challenges
In the problem and architectural sections, we have discussed the internal 

mapping that a robot uses to understand its operating environment. We 

have also mentioned updates to that mapping and the subsequent state 

changes involved. In this section there are two examples that demonstrate 

the future need for robots that are more aware of the changing state of 

their environment and the robot’s ability to create updates to internal 

mapping. Both of these examples are widely reported and our use of 

them is only to illustrate the changes needed before autonomous mobile 

robots can operate safely in an unknown and possibly changing operating 

environment. Cobots with additional detection capabilities can use them 

to generate a more accurate internal data model of the environment 

allowing decision-making to resolve the problem before it occurs.

9�The Verge, James Vincent: Accessed in November 2019, published August 2017
www.theverge.com/2017/8/22/16183514/hack-home-robot-surveillance-ioactive
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�Example 1

A household robot vacuum cleaner will traverse house floors picking 

up debris. This robot uses infrared to detect walls and obstructions and 

this will help it navigate around the room. If the robot detects a new 

obstruction, it will try to navigate around that new obstruction. If the 

cleaning is set to begin at a time when there are no people, cats, or dogs in 

the room, then this works well. The problem comes in when nondetectable 

deposits are made that the robot can’t recognize. In one case10 the owner’s 

dog had an accident, leaving feces on the floor. The robot started to clean, 

rolled over the faces, and carried on cleaning with the wheels dirty. This 

spread the deposit around the room and probably ruined the owner’s 

day. The use of video and image recognition could be added to the robot 

allowing the fusion of data to help in the decision-making process by 

updating the internal model of the robot.

�Example 2

A similar accident happened in an Amazon warehouse.11 In this case an 

automated robot punctured a canister of bear repellant that fell off a shelf 

according to news reports. Employees ended in hospital as a result of this 

incident. If the robot had been able to recognize the canister, perhaps that 

it contained hazardous material, it could have stopped or avoided the 

obstruction and updated other robots to enable them to do likewise. The 

capacity to recognize a problem from data gathered, perhaps by video, 

and fusing this data into the data model would have created an internal 

model that could recognize the hazard and the changed risk profile would 

then generate a decision to avoid or evade the hazardous material. Again, 

10�www.theguardian.com/technology/2016/aug/15/roomba-robot-vacuum- 
poopocalypse-facebook-post

11�www.theguardian.com/technology/2018/dec/06/24-us-amazon-workers-
hospitalised-after-robot-sets-off-bear-repellent
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this indicates that awareness of surroundings and changed state of the 

area of robot operation could have led to a real-time update to the internal 

representations of the warehouse which would have the potential to avert 

a nasty accident.

�Potential Solutions
Problems fall into two broad categories, coping with an unstable 

environment and coping with data. This is true for the two examples as 

well as for collaborative robotics. Before looking at the technical solutions, 

we can consider operational solutions to the preceding two examples. 

In both cases there are operational solutions that can be implemented 

immediately. In the case of the household robot vacuum cleaner, the 

owners can restrict the operation of the cleaner to rooms or times where 

the likelihood of a pet generated, or other accident, is not possible. The 

possible solution for dangerous substances is to put these substances in 

a different facility and introduce changes to the storage, handling, and 

management processes. Both of these may only be “band aid” are likely 

to be faster and more cost effective in the short term than retooling or 

purposing of automated robots.

While there are operational solutions giving short-term fixes, the short-

term changes would not be sustainable in the longer term. It is reasonable 

to expect that future robot vacuum cleaners would have the ability to 

recognize that they are making more mess than they remove. Robots in a 

warehouse should be able to carry a map of what robots and humans there 

are and identify the goods being carried by either. The long-term solution 

would involve the development of collaborative robots in both scenarios, 

able to move independently, and recognize other actors in their space. In 

both these examples, the robot should be able to take decisions to mitigate 

the risk of continuing their task by considering their internal map; again 

this would require accurate and extensive data gathering and data fusion. 

While these more advanced solutions involve cost, creating newer more 
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autonomous robots would return the business model flexibility. Returning 

flexibility to the business model by having all the warehouses equipped to 

the same standard instead of having different warehouses for different good 

would reduce costs in the long term and enable changes to the business 

model to be made faster and easier. Ensuring that operation of a robot 

vacuum cleaner could be as simple as charge it up and let it go anywhere is 

likely to make these more attractive to buyers and improve sales.

Focusing on collaborative robots, the problems of creating and 

maintaining a shared awareness of environment, tools, and tasks by using 

data from sensors and cameras require the use of data management and 

fusion. This will provide both knowledge and context for a collaborative 

robot. In Figure 6-3 the completed process has been described in 

numbered boxes. The numbers in this paragraph refer to the box number 

in the figure. The process can start (box 1) with raw data acquisition where 

signals are converted into machine readable form by the sensors. There 

are few standards in this area, and this will generate additional work 

for international standards bodies determining agreed communication 

protocols and agreed structures and capabilities for the next stage of data 

acquisition (box 2) where data is stored or transmitted depending on 

the architecture that has been chosen (box 3). Data processing (box 4) 

follows data acquisition and depends on numerous factors such as the 

type of sensor, the capabilities of the device that carries the sensor, and 

the types of data being collected and environmental conditions. Once the 

raw data is stored, it can be examined and combined with other data by 

data fusion (box 6) with other data to create information. This information 

can then be fused with other data (box 6) to create a more comprehensive 

data set to provide information for analysis and decision-making (box 7). 

As we have mentioned there are storage costs and processing costs that 

need to be reconciled alongside networking costs. When designing a 

collaborative robot architecture, all of these factors will influence decisions 

on sensors and architectures. Should the architecture decision be to 

use mobile device communications styles, the challenges of storage and 
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processing can be addressed by a number of techniques, although there 

may be changes to this strategy going forward with the development of 5G 

networks. 5G networks can connect different devices at high speed; it is 

claimed that 5G networks are 100 times faster than 4G networks, although 

this is at the theoretical maximum performance. This would mean that 

more data can be transmitted faster and this may remove the need for 

segmentation. However, at the current time the rollout of 5G technology is 

slow and patchy, so there is a need for managing large amounts of data in 

the current networking environment. If there is a large amount of data, it 

is possible to use segmentation techniques to create smaller coherent sets 

of data that are more suitable for the processing power of the devices. To 

resolve the storage issues, data for context information can be processed. 

With the context information stored, the raw data can be discarded and 

saving space and reducing networking traffic.

Figure 6-3.  Process flow for maintaining a shared environment
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Data processing, as the name implies, involves subjecting raw data 

to some form of handling that give a level of information. Taking a set of 

temperature readings and converting them into classifications such as 

“too hot or too cold” is typical of the level of data processing that may be 

done at the edge of the network. Other processing may be comparing the 

location of the collaborative robot to the mapped safe area to give a simple 

evaluation of safe or not safe. Again, this type of context information can 

be either used to generate an action; in the case of the robot not being 

in a safe area, the robot may decide to stop moving until it is given fresh 

instructions. This can either happen at the edge of the network or this 

context data can be transmitted to a central server. In the case of safety, 

it is more likely that the processing will be local; in the case of ambient 

temperature, the data may be centrally processed and matched with other 

data from other robots enabling the central location to take a decision on 

altering the ambient temperature.

The introduction of cameras or other video or audio equipment into 

the monitoring mix can add to the processing burden. Unstructured 

data analysis is more complex than the structured data analysis referred 

to earlier. Each data set that is processed needs to be related to a view 

of the whole environment and this can only be achieved by some level 

of data fusion. Fusing video, radar, and sensor data can give a more 

comprehensive view of the world in which the robots and humans act 

in. Fusion of video data with structured data is done by using algorithms 

that combine, reconcile, and relate different types of data to create a 

complete context. The data might show, for example, that one robot is in 

the shade and other robots are in sunshine. This may be the only reason 

for the differences in temperature sensed by the robots. If the robots in the 

sunshine are approaching the limits of operational safety, an imperative 

command could be transmitted to the robot team to all move to the shade 

to stay cool enough for operational safety.
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While these different types of data and processing can yield important 

safety or task results, we also need to consider other problems with 

data. The repair of missing or incorrect data including outliers is a data 

science problem but we consider it here because of the potential for safety 

violations. There are many algorithms for identifying outliers in structured 

data and these can be applied to data as it is gathered. An outlier, or a value 

that is outside the normal range of the data values in a data set, can skew 

machine-learning results. Some machine-learning algorithms are sensitive 

to the distribution of data. There are a wide variety of preprocessing 

algorithms to detect outliers and repair data sets such as extreme value 

analysis. Other problems with data such as missing data, perhaps caused 

by a camera failure, can be repaired or updated by deriving missing images 

using data from other cameras and data such as GPS location.

�Impact on Collaborative Robotics
Autonomous vehicles are solving some of the problems that we mention 

here; however, the solutions are more focused on safety and transport 

rather than interacting and collaborating with humans. Data fusion is 

more necessary in collaborative robotics than in autonomous vehicles 

since human collaborators need a “world” view that is synchronized and 

supplies the same data that the robots interchange. Missing, inaccurate, or 

poor data can influence the decisions that the humans and robots take.

Incomplete or false data fusion can have serious consequences and 

more research into data acquisition, data processing, and decision-

making will help overcome this. Security and privacy are also factors to 

be considered. In the world of working robots, security has to prevent 

unauthorized access, or changes to data that can influence decisions have 

to be prevented or detected and mitigated. If robots have cameras to assist 

in their work, the camera may pick up other images unintentionally. There 

have been amusing images of photo bombers and the more sinister lack 

of control in robots moving around the home with a camera capturing 
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and transmitting image data of private moments. In some domains, such 

as healthcare or medical applications, there is also the consideration of 

privacy. This is discussed more fully in the ENACT project research notes 

later in the chapter.

�Supporting Research Projects
In this section we explore two research projects who have been investigating 

data fusion and related topics from their own perspective, having an impact 

on collaborative robotics and ultimately the future of work.

�ENACT
ENACT is a research project that is handling data processing at the 

edge of the network bringing some perspectives that are important for 

collaborative robotics. ENACT12 is a project funded by the European 

Union under the H2020 Programme13 and is expected to end in January 

2020. Although the project is focused on the Internet of Things (IoT) 

technologies in transport and eHealth, its significance in this chapter is 

the development of research into edge of the network technology. A robot 

that is engaged in search-and-rescue operations in a hostile environment 

may be considered a device at the edge of the network and may be using 

similar technologies to mobile, low-power devices. Low power or power 

conservation would be important to a robot that is away from power 

supplies and needs motive power to complete its tasks.

12�Consortium, E. (April 1, 2020). ENACT: Development, Operation, and Quality 
Assurance of Trustworthy. Retrieved April 1, 2020, from www.enact-project.eu

13�Commission, E. U. (April 1, 2020). What is Horizon 2020? | Horizon 2020. 
Retrieved April 1, 2020, from https://ec.europa.eu/programmes/horizon2020/
what-horizon-2020
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The ENACT project will develop, as one of many use cases, a digital 

health system for supporting and enabling patients to remain in their 

home instead of entering a care facility during either treatment of care. In 

this section we will consider elderly care as part of this use case. This use 

case controls lifestyle equipment, light and heating controls, door locks, 

and so on. the use case also controls various types of medical devices 

and sensors including blood pressure, weight, fall detection, and video 

surveillance equipment and sensors. This system needs to integrate with 

other systems, like management and emergency systems, and provide 

information/alarms to response centers and care givers. All of this is done 

at the edge of the system using a variety of networking tools. Normal 

computer networks will have a computer at the end of the network; 

however, the sensors in this use case have very little processing, storage, 

and networking power. Many of these devices are single-function tools 

that measure temperature and so on, and their data needs interpreting 

by other equipment, either a local or distributed computer. This type of 

architecture is not only increasing in use but is related strongly to the use 

of robots that have a tenuous link to their networks. In these scenarios the 

data processing may include data fusion as a component, although in the 

early stages of ENACT, data fusion is a future goal.

EXPERT INTERVIEW WITH ARNOR SOLBERG

Dr. Arnor Solberg from Tellu is a major contributor to the ENACT project. In 

an interview with him, we discussed his edge of the network technology 

prototypes, his view of the relevance of data fusion, and what his plans are for 

the future of the ENACT and other projects.

•	 There are several issues that elderly encounter when living in 

their own home that can be managed and monitored and have 

until recently required a part-time or full-time caregiver. The 

same issues are present even if they move into a nursing home, 

for example:
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•	 Falling

•	 Being too hot or too cold

•	 Failing to eat

•	 Blood pressure problems

•	 With low-cost low-power devices, much of the in-home 

monitoring can be done by sensors, video cameras, and an 

application that gathers and analyzes data. The analysis is 

carried out centrally.

•	 Some of the analysis can be complex, asking questions like “Is 

the patient lying on the sofa because they are tired or because 

they are ill or faint?” This can be resolved using a combination 

of tools, measuring blood pressure, checking the temperature 

of the room, last food consumption times, and so on. It may 

be necessary to contact the patient by mobile or some other 

communication device. This leads to the concern that there are 

too many false alarms which absorb resources and annoy the 

patient. There is also the possibility of missing or false data. A 

failed sensor for room temperature would be critical if it was 

the only sensor in the room. In some houses the location of 

the heating thermostat can decide the temperature of only one 

part of the dwelling and opening or closing doors can have a 

significant effect on temperature.

•	 If the patient is in the main body of the dwelling and can be 

seen, much additional data can be gleaned from video or other 

monitoring. If the patient is hidden, for example, behind a sofa 

sensor, monitored data will need to be analyzed further to 

establish if the patient has collapsed or is picking up something 

that has dropped behind the sofa. Again, this can lead to false 

alarms.
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•	 Much of the important data comes from sensors and monitors 

deployed around the house and uses device management 

and where possible remote deployment of software. The use 

of processing at the edge of the network will lead to better 

security and privacy, with only the context relevant data being 

sent to a central location for analysis. The current application 

uses rules to decide on alerts and the rules are use case 

dependent.

•	 Currently a person monitoring the patient uses alarms as 

a guide to action; however, there is no integrated view of 

the data. In the future Tellu will be developing a data fusion 

approach that will enable better accuracy and the ability to gain 

a holistic view of the data in a case. This should remove more 

positives and improve overall performance. At the moment it 

is not decided if the data fusion algorithms will be deployed 

locally on the devices or centrally prior to analysis.

�CVDI Co-Botics Project
The research project Co-Botics14—intelligent cooperating robots and 

humans: parts 1 and 2—has been managed by Professor Moncef Gabbouj 

of Tampere Technical University in Finland. The project was initiated 

as part of the Center for Visual and Decision Informatics (CVDI) is a US 

government National Science Foundation (NSF) initiative, and a number 

of commercial and academic partners collaborate, generating funding 

and research partnerships. The initial goal of the project was to investigate 

14�Gabbouj, M. (2020, August). Co-Botics—Intelligent Cooperating Robots 
and Humans—Phase II 7a.028.TUT—CVDI. Retrieved April 1, 2020, from 
www.nsfcvdi.org/wordpress/cvdi_project/co-botics-intelligent-
cooperating-robots-and-humans-phase-ii-7a-028-tut/
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computational models to automate and monitor interactions between 

humans and robots. The models would provide a view of reactions to 

various behaviors. This is explored more fully in Chapter 7, “Robots in 

Society.” The project was focused on collaborative robotics and used the 

coined term Co-Botics. The Tampere group has focused on advanced 

machine learning and pattern recognition to facilitate intelligent shared 

cooperation between robots and humans. The most significant for this 

chapter is the research into multiview data analysis that can describe 

cues from the real world. Ultimately the project intends to combine visual 

information analysis with sensor data analysis and use this combined 

analysis for decision-making.

The project will continue toward enhancing the performance of 

multimodal visual/sensor data analysis methods for efficient robot-human 

interaction in efficient scheduling applications. Moreover, it will focus on 

creating data visualizations that combine information coming from various 

types of sources (visual, depth, audio) in order to provide insights on the 

way robots perceive their environment. We believe that such visualizations 

will allow us a better understanding of how to enhance the overall operation 

and increase intelligence of robotic units in the targeted scenarios.

EXPERT INTERVIEW WITH MONCEF GABBOUJ

We asked Professor Gabbouj a number of questions, via email, to explore the 

topics and we report on his answers here.

•	 Deep learning has been defined in Chapter 2, “Technology 

Definitions,” and is used here in the context of the number of 

learning layers that transform raw data into higher abstractions. 

The synergy of the topics of multiview learning and learning 

to rank can be used in multiview lingual text ranking and 

image data ranking. Image data ranking will be beneficial in 
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data fusion applications in collaborative robotics. Experimental 

results are promising and show that there is a performance 

differential between supervised and unsupervised models, 

although this is still theoretical work. There are a number 

of papers that support and describe this work15,16,17 and are 

recommended reading for more information on the topic.

•	 In discussion about other components in a robotics solution, 

Professor Gabbouj noted that there are two additional 

components in robotics solutions beyond data fusion. They are 

co-creation and situation awareness. Co-creation refers to the 

human-machine close or intertwined collaboration. Situation 

awareness is about developing the actual AI solutions for this 

awareness.

•	 A discussion about ineffective fusion of structured and 

unstructured data led to a comment that poor data fusion 

cannot only produce bad results but may also lead to wrong 

conclusions if the results highlight any biases often present in 

training data (biased training data is discussed earlier in the 

chapter). Proper data fusion must then be verified in varying 

environments to make sure the solutions are robust.

15�Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj, Vijay Raghavan, Raju 
Gottumukkala, Deep Multi-view Learning to Rank, IEEE Trans. on Knowledge 
and Data Engineering, 20 Sept. 2019. arXiv:1801.10402.

16�Guanqun Cao, Alexandros Iosifidis, Moncef Gabbouj, “Multi-modal subspace 
learning with dropout regularization for cross-modal recognition and 
retrieval,” 6th International Conference on Image Processing Theory, Tools and 
Applications, IPTA 2016, 12-15 Dec. 2016, Oulu, Finland [Winner of the Student 
Best Paper Award at IPTA 2016].

17�Guanqun Cao, Iftikhar Ahmad, Honglei Zhang, Weiyi Xie and Moncef Gabbouj, 
“BALANCE LEARNING TO RANK IN BIG DATA,” 22nd European Signal 
Processing Conference, EUSIPCO 2014, 1-5 September 2014, Lisbon, Portugal, 
pp. 1422-1426.
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•	 Tainted or biased data or occasions when different sources of 

data contradict or are inconsistent with each other are common 

data science discussions. Putting these questions in a robotic 

context, Professor Gabbouj noted that it is not necessarily due 

to bad or tainted data; it could arise from different sensors 

measuring different characteristics of a system or those 

different characteristics may have conflicting implications and 

he mentions that some perceptual illusions in humans arise in 

this way. In the era of big data, a lot of errors come into play: 

wrong data, missing data, biased data. The good news is that 

we have ways to deal with some of these issues. For modalities 

to infer from available data (and not about the missing data), we 

can also prevent data overfitting at training via mathematical 

regularization, for example, our work in the paper mentioned in 

Chapter 2, “Technology Definitions.”

•	 Professor Gabbouj mentioned another issue about balanced 

learning in large data and their proposed distributed learning 

to rank method. It is not applicable to train a centralized 

ranking and the distributed methodology can easily be scaled 

up to billions of images. Experimentally the proposed method 

outperforms a straightforward aggregation of boosting 

algorithms.

•	 Returning to the topic of missing or inaccurate data, Professor 

Gabbouj described a situation where we know that in some 

applications some data is missing and, in some cases, it can 

be inferred from available data. In other occasions, we simply 

ignore the missing data and do the inference based on what is 

available. Data filtering seeking outlier removal is often applied, 

especially if we know ahead of time that such outliers do not 

arise in normal situations.
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•	 Other critical problems are many, for example, what data and 

what modalities are sufficient to perform inference/fusion/

learning, what are the best models, and in what sense are 

those models best.

These points in the interview are interesting in the context of collaborative 

robotics, even though they only address a few of the software issues in this 

space. The point that Professor Gabbouj made regarding human/robot fusion 

(co-creation and situational awareness still to be addressed) indicates that 

in this area collaborative robotics will need much more research before the 

collaborative robots mentioned in many scenarios become a reality.

�Summary and Conclusion
Looking into the first technology challenge, we explored the use of data 

fusion, an enabling technology that can help solve one of the hardest 

problems in collaborative robotics. Collaborative robots need a shared, 

common view of the unstable environment that they inhabit and this view 

would not be possible without data fusion. After defining data fusion, we 

looked at the leading example of data fusion, the human being. Humans 

are highly successful data fusion experts. They can pull together data from 

many inputs, sight, sound, touch, and all the other senses to build a picture 

of their surroundings and enabling them to relate to those surroundings. In 

data fusion terms, collaborative robots should have the human data fusion 

ability although without converting; indeed, data fusion success should, 

in the future, be measured against human capabilities. Another area 

where humans excel and few robots can come near is in pattern matching. 

Humans can use very sparse information to match patterns, such as a 

limited side view of a person’s face. In pattern matching humans are adept 

at identifying patterns when large amounts of data are missing.
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In robotics structured digital data is reviewed as a relatively easy 

way of describing a subject’s state. This is not the only type of data to be 

considered. Structured digital data needs to be added to video, audio GPS, 

and other data to create an almost complete version of the autonomous 

mobile robot’s operating environment. These are the bigger issues in data 

fusion that arise for a need for more comprehensive internal maps for 

autonomous mobile robots. The robot can also be considered a mobile 

“edge of the network” device that may have limited power and networking 

capabilities and needing special treatment of data to improve data quality. 

Data fusion can help overcome some existing robot’s limited adaptability. 

If the robots that we mentioned in the examples earlier in the chapter 

had more sensors, cameras, and other data-gathering equipment, they 

could respond effectively to their environment rather than merely moving 

around without the context of the environment to help them overcome 

obstructions. A mutually understood internal map or environment is 

not just the goal for the robots; their human collaborators also need 

to understand the environmental context of all of the collaborators, 

both human and robot. This mutual understanding should enable the 

collaborating team to operate in safety and with effective communication 

to complete their mutual tasks.

Research is important in moving data fusion forward and two research 

projects were identified as relevant. The relevance of one of the projects, 

ENACT, was in its forward-looking resolve to solve problems identified in 

their current prototypes. Their prototypes are already on trial in healthcare 

sites and the data collected is rudimentary at the moment. But the plan 

is to upgrade the analysis of existing and future data by data fusion of 

sensor and other data to improve the accuracy of the current system. This 

upgrade would also improve the quality of decision-making and improving 

the quality of life for the elderly residents, allowing them to stay in their 

own homes longer.
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The second research project, Co-Botics, in partnership with the Center 

for Visual and Decision Informatics is researching ways of both fusing and 

analyzing data faster and more accurately than is currently possible. This 

research pioneered new ways of analyzing data that starts with evaluating 

a single data type analysis and then introducing a second data type and 

a third fused together and analyzed. In doing this the ability to analyze 

new data sets from multisensors will improve. Once the research moves 

into the applied phase, practical applications will come. This research is 

ongoing but is not concluded. Building these tools into a working robot 

environment may be a long-term goal. Solving data fusion problems will 

be a major milestone in collaborative robotics. Other areas of research and 

development are underway; using data fusion in the intelligent transport 

world is underway, focused mostly on autonomous vehicles. Vehicle 

manufacturers are working hard to solve the fusion of data from vehicles 

and roadside sensors. Chapter 5, “Robots Without Arms,” expands on this 

use case.

Data fusion is an important component of collaborative robotics 

and it is not expected to be fully usable in the short term, but research is 

improving the prospects of having this solution available in the midterm. 

Although it is an important component and essential for collaborative 

robotics to work, there are other problems to be solved as well and these 

are discussed in future chapters. Using the human as an example of good 

data fusion shows just how far away an ideal solution is. Humans and 

robot common world views are still a long way off and as such the level of 

autonomy in collaborating robots is still set at a low level.
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CHAPTER 7

Robots in Society
Corporate Responsibilities

Unlike traditional injuries, tort law will have difficulty finding 
the injuries caused by highly sophisticated AI to be the fault of 
someone’s negligence or some product’s defect.1

—Yoshikawa, J. (2018)

Consider the humble vacuum robot. In Chapter 1, “Will Robots Replace 

You?”, we recounted the story in which a friend’s Roomba navigated itself 

into and through a cat litter box and across her wood floor, depositing and 

spreading litter and stool. In her case, the damage was temporary, but 

what if the damage had been permanent, perhaps destroying an antique 

rug? If we assume that the robot is a tool, we might ask whether the 

scenario was foreseeable and whether the manufacturer was strictly liable 

because product warnings and instructions failed to clearly warn the user 

about floor-level containers with a low barrier (in this case a litter box).

If we think of the robot as an autonomous agent of a service provider, 

or if the robot were remote controlled by a human, would our legal 

response change? Robots such as autonomous vehicles and surgical or 

1�Sharing the Costs of Artificial Intelligence: Universal No-Fault Social Insurance 
for Personal Injuries. Vanderbilt Journal of Entertainment & Technology Law, 
2018; 21:1155.

https://doi.org/10.1007/978-1-4842-5964-1_7#ESM
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search-and-rescue cobots will occasionally commit errors that directly or 

indirectly lead to injury or even death. The fact that they might make fewer 

errors than humans in the same situation may justify their use, but it will 

not free them from liability.

In this chapter we will discuss the policies and tools for regulating, 

monitoring, and governing collaboration between automated processes, 

robots, and humans. We will discuss these work-related issues in the 

following sections:

•	 “What Can Go Wrong?”, which examines some the 

incidents involving robots and automation

•	 “Legal Remedies,” which considers some of the legal 

and policy issues surrounding robotic activities

•	 “Robots in Corporations, Corporations in Robots,” 

which proposes guidelines for businesses and societies 

that create and use robots

�What Can Go Wrong?
The example of the vacuum robot is trivial when compared to the 

tragedies that can occur when automation or robotic systems fail.  

A fatal accident involving Tesla Model S’s autopilot system occurred  

in 2016. According to an IEEE article on the accident, the cameras  

and radar used by the autopilot system were not able to recognize,  

“the white side of the tractor trailer against a brightly lit sky,” and 

according to the CEO, “[the] radar tunes out what looks like an 

overhead road sign to avoid false braking events.”2 In their statement 

2�Cited from E. Ackerman (July 1, 2016). Driving Car Crash Reminds Us That Robots 
Aren’t Perfect, IEEE Spectrum. https://spectrum.ieee.org/cars-that-think/
transportation/self-driving/fatal-tesla-autopilot-crash-reminds-us-
that-robots-arent-perfect [accessed on March 8, 2020].
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concerning the accident, Tesla noted that accidents involving their 

automobiles are extremely rare, and asserted that:

Every time that Autopilot is engaged, the car reminds the 
driver to “Always keep your hands on the wheel. Be prepared 
to take over at any time.” The system also makes frequent 
checks to ensure that the driver's hands remain on the wheel 
and provides visual and audible alerts if hands-on is not 
detected. It then gradually slows down the car until hands-on 
is detected again.3

The earliest recorded instances of deaths due to robot failures occurred 

in the late 1970s and early 1980s. In 1979, Robert Williams, a worker at 

a Ford Motor casting plant, was asked to climb up to a shelf to retrieve 

castings because a five-story industrial robot which moved castings on and 

off the rack had provided workers with possibly erroneous information on 

the number of parts.4 While on the rack, a one-ton cart with a mechanical 

arm hit and killed Williams.

In 1981, Kenji Urada, a Kawasaki employee, was killed when he entered 

a restricted safety zone to perform maintenance on a robot that he had failed 

to completely turn off. The robot’s hydraulic arm pushed him into adjacent 

machinery. “According to factory officials, a wire mesh fence around the 

robot would have shut off the unit’s power supply when unhooked. But 

instead of opening it, Urada had apparently jumped over the fence.”5

3�The Tesla Team (June 30, 2016). www.tesla.com/blog/tragic-loss [accessed on 
March 8, 2020].

4�www.nytimes.com/1983/08/11/us/around-the-nation-jury-awards-10-
million-in-killing-by-robot.html [accessed on March 8, 2020]. Latter articles 
about the event claim that the robotic system was acting too slowly, and Mr. 
Williams “… was reported to have climbed into the storage rack to retrieve parts 
manually” (www.forbes.com/sites/theopriestley/2015/07/02/is-this-a-
killer-robot-uprising-hardly/#2ebc7f7d2396 [accessed on March 8, 2020]).

5�From the archive, 9 December 1981: Robot kills factory worker.  
www.theguardian.com/theguardian/2014/dec/09/robot-kills- 
factory-worker [accessed on March 8, 2020].
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More recently, in 2015 Wanda Holbrook, a maintenance technician 

for Ventra Ionia Main, was killed while performing routine activities when 

she was trapped and crushed to death by robotic machinery. The lawsuit 

filed by her husband named five robotics companies, FANUC, Nachi, and 

Lincoln that made the robots and Flex-N-Gate and Prodomax that helped 

with installation and servicing. The lawsuit claimed that the company’s 

safety systems had failed: the robot should not have been able to enter that 

area of the factory, and the “safety doors that were installed specifically to 

prevent robot movement were not effective.”6

Several patterns emerge from these disasters: (1) data from sensors 

and databases can contain errors that lead to fatal decisions by humans 

and machines; (2) except in the case of Tesla Model S, the machines had 

little ability to detect and self-regulate their behavior when humans were 

nearby; and (3) humans need to be vigilant when robots are nearby or in 

charge, and workers need training on safe and appropriate procedures 

(including how to shut down the robot). Unfortunately, as of 2020, the 

Occupational Health and Safety Administration (OSHA) “currently [has] 

no specific OSHA standards for the robotics industry.”7

In addition to physical injuries, other forms of injury may occur.  

A robot might incorrectly classify an employee’s behavior as dangerous, 

video record the instance, and send the embarrassing video to the 

6�Courthouse News Service (March 8, 2017), www.courthousenews.com/work-
robot-blamed-michigan-womans-death/ [accessed on March 8, 2020]. See 
also E. Livni (March 13, 2017). A rogue robot is blamed for a human colleague’s 
gruesome death, Quartz, https://qz.com/931304/a-robot-is-blamed-in-
death-of-a-maintenance-technician-at-ventra-ionia-main-in-michigan/ 
[accessed on March 8, 2020].

7�Occupational Health and Safety Administration (accessed on March 8, 2020), 
Robotics, www.osha.gov/SLTC/robotics/standards.html. However, the 
American National Standards Institute (ANSI) and the International Organization 
for Standardization (ISO) have been developing guidelines, for example, https://
webstore.ansi.org/preview-pages/RIA/preview_RIA+TR+R15.606-2016.pdf, 
and Collaborative Robot Safety, www.iso.org/standard/62996.html.
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employee’s manager. Depending on the circumstances, this might be a 

privacy violation, and even if it is not considered illegal, it would certainly 

raise issues of trust. These possibilities suggest the need for government 

statutes and regulations and corporate policies that go beyond typical 

safety standards.

�Can Robots Be Ethical and Self-Regulating?
Ethics can be defined as “the study of what is morally right and wrong, or 

a set of beliefs about what is morally right and wrong.”8 To act ethically, 

individuals or organizations must monitor and regulate their own behavior.

One approach to regulating the behavior of robots proposes that robots 

should be programmed with a set of ethical principles that govern their 

decision-making, or that they acquire ethics through experience and human 

coaching. The most famous rule-based approach is from Isaac Asimov’s 

Three Laws of Robotics, first described in 1942 short story, Runaround:

First law: A robot may not injure a human being or, 

through inaction, allow a human being to come to 

harm.

Second law: A robot must obey the orders given to it 

by human beings, except where such orders would 

conflict with the first law.

Third law: A robot must protect its own existence as 

long as such protection does not conflict with the 

first or second law.

8�Definition of ethics from the Cambridge Academic Content Dictionary, 
Cambridge University Press. https://dictionary.cambridge.org/us/
dictionary/english/ethics [accessed on March 30, 2020].
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As Asimov explored through his fiction, the flaws and contradictions 

that arose from the application of these laws, a fourth, or 0th law, were 

added:

Zeroth law: A robot may not harm humanity or, by 

inaction, allow humanity to come to harm.

These laws are the source of many fictional accounts of 

anthropomorphic robots, but we are not aware of any attempt to embed 

these specific laws into working robotic systems. Indeed, these laws 

were designed to fail in interesting ways, enriching Asimov’s brilliant 

storytelling. They are inherently adversarial, vague, and based on flawed 

theories of ethics9: adversarial because they implied that without these 

laws, robots might intentionally harm or dominate humans; vague because 

the term harm is inherently vague—how much risk is considered harmful 

and how are harms and benefits balanced? Humans frequently engage 

in activities that are beneficial but involve risk, for example, playing 

competitive sports or caring for ill.

Inspired by Asimov, others have tried to propose models of ethics 

that could be implemented in a machine.10 These approaches suffer from 

two basic flaws: (1) categorizing behavior as ethical or unethical can be 

difficult—is it sometimes okay for a collaborative robot to lie to a medical 

patient or team member for their own good?—and (2) rules for complex 

systems are typically incomplete and are difficult to maintain or evolve 

when confronted with unexpected situations.

Regarding the first flaw, for millennia philosophers have been 

attempting to systematize ethics into a single unambiguous philosophical 

model, it is unlikely we will achieve a breakthrough in the next fifty. Deep 

9�Dvorsky, G. (2014). Why Asimov’s Three Laws Of Robotics Can’t Protect Us. 
Gizmodo.

10�Arkoudas, K., Bringsjord, S., & Bello, P. (2005, November). Toward ethical robots 
via mechanized deontic logic. In AAAI fall symposium on machine ethics 
(pp. 17-23). Menlo Park, CA: The AAAI Press.
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wisdom has been achieved in religious and secular explorations, but there 

is no single system that everyone agrees to, across all identity groups and 

for all contexts. Specifying the rules for ethical behavior for a machine that 

is physically (and perhaps logically) more powerful than humans and that 

obeys the rules literally and at scale (millions of robots following the same 

logic) is a frightening challenge.11

The second flaw, which addresses the inherent limits of the rule-based 

systems, applies not only to ethics but to many situations that require 

complex social interactions and that involve unexpected variations. We 

saw this in our earlier discussions of RPA, chatbots, and collaborative 

robots. Even in relatively simple business process applications, such as 

payroll or database security, where the rule-based systems might contain 

thousands of rules and exceptions to those rules, the sequence in which 

the rules are applied is critical—inserting a new rule or deleting an old 

rule can have unintended consequences. It is unlikely that any set of rules, 

which are to be literally and unambiguously interpreted, can cover every 

circumstance or consider every side effect.12

If rule-based systems are not enough for ensuring ethical and 

appropriate behavior, what about deep-learning systems? AlphaZero, a 

deep-learning system, has taught itself to play two very different board 

games, Go and chess, at superhuman levels.13 Can deep-learning systems 

acquire ethics on par or even superior to humans?

11�See Muehlhauser and Helm’s delightful discussion of the Golem Genie which 
is super-powerful and literal-minded, in Muehlhauser, L., & Helm, L. (2012). 
The singularity and machine ethics. In Singularity Hypotheses (pp. 101-126). 
Springer, Berlin, Heidelberg.

12�Yampolskiy, R. V. (2013). Attempts to attribute moral agency to intelligent 
machines are misguided. In Proceedings of Annual Meeting of the International 
Association for Computing and Philosophy, University of Maryland at College 
Park, MD.

13�The Straits Times (March 15, 2016). “Google’s AlphaGo gets ‘divine’ Go ranking.” 
www.straitstimes.com/asia/east-asia/googles-alphago-gets-divine-go-
ranking [accessed on March 8, 2020].
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Unlike current AI systems, humans learn ethics and good behavior 

through experience and from parent, peers, and teachers. Humans are 

not general-purpose computers, and our cognitive ability in certain 

domains (such as linguistic communication) is equal or superior to Turing 

machines.14 Human evolution occurred with specific memory, sensory, 

and attentional limits and with specialized neurophysiology for surviving 

in a dangerous world. Our brains and intelligence are specialized for social 

interaction and survival and, at the same time, are capable of general-

purpose analysis, generalized learning, and empathy. How this is achieved 

is still a mystery.15

For current deep-learning systems to learn, they must be provided with 

an objective function that specifies how to recognize correct or incorrect 

outcomes (such as winning a game of Go) so that their behaviors can be 

positively or negatively reinforced. Defining moral behavior as an objective 

function is an interesting challenge for machine-leaning researchers, but 

as we argued earlier, philosophers cannot agree about those principles. 

There are differences in ethics across cultures, and there are many edge 

cases that are difficult for humans in the same culture to agree upon.

Moreover, current machine-learning approaches will not help prevent 

the scenario described in the beginning of the chapter, involving a vacuum 

robot. Nor will it address the issues surrounding liability or overcome 

14�Chomsky’s analysis of the cognitive requirements needed for language suggests 
that Turing machines, “the pinnacle of all possible mathematical machines … 
is also the minimum needed for human cognition.” Waldrop, M. M. (2001). 
The Dream Machine: JCR Licklider and the Revolution That Made Computing 
Personal. Viking Penguin. p132.

15�Thomas, J. I. (2019). Current Status of Consciousness Research from the 
Neuroscience Perspective. Acta Scientific Neurology, 2, 38-44.; Grossberg, S. 
(2019). The resonant brain: How attentive conscious seeing regulates action 
sequences that interact with attentive cognitive learning, recognition, and 
prediction. Attention, Perception, & Psychophysics, 81(7), 2237-2264.
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the fundamental flaws—the vacuum robot lacked the sensory abilities to 

detect the effect of its actions and the reasoning abilities to infer causal 

connections between its actions and environmental changes. Humans and 

other animals evolved to survive in a natural and largely uncontrollable 

environment and, through evolution, have gained the sensory and causal 

reasoning abilities necessary for that survival. Humans muddle through 

complex situations using heuristics and constant readjustments.16

A practical approach to the problem of regulating robot behavior is 

to focus on guidelines and policies for robot manufacturers, distributors, 

owners, and users, placing accountability and liability with these 

stakeholders, and not with the robots.

�Legal Remedies
Laws, regulations, and policies are based on theories of justice and ethics, 

social convention and expectations, and the ever-evolving moral (and 

sometimes immoral) responses of juries, judges, business executives, 

journalists, and other social influencers to novel circumstances. In 

common law countries such as the United Kingdom and the United 

States, the universe of case law expands through analogy—new legal 

circumstances are typically interpreted through the lens of legal precedent. 

Legal decisions that involve new technologies, in particular, are often 

guided by analogies to older, better understood technologies. In the case of 

robotics, laws, regulations, and policies will evolve according to the ways 

in which different types of robots are viewed as tools or as autonomous 

16�Hollnagel, E. (1992, March). Coping, coupling and control: the modelling of 
muddling through. In Proceedings of 2nd interdisciplinary workshop on mental 
models (pp. 61-73).
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agents and, according to the unique differences between robots, older 

forms of technology (such as animal domestication),17 and other emerging 

technologies (such as cloning and genetic modification). Just as the 

Internet challenged privacy, property, and commerce laws that had been 

based on jurisdiction and geography, robots will also challenge our current 

notions of liability, foreseeability, and intentionality.18

Over the past decade, there has been much legislative creativity 

regarding the domestic use of drones and autonomous vehicles.19 In 

the United States, each state has discretion over transportation within 

its boundaries, over and above the rules set by the US Department of 

Transportation (US DOT). In 2011, Nevada became the first state to permit 

17�There is an interesting debate on the extent to which laws concerning 
autonomous robots should be modeled on laws regarding the legal status of 
animals and the consequences of their actions. Much of the discussion concerns 
the autonomy of the animal and whether its actions were foreseeable by the 
owner. Animals with wild unpredictable histories confer a different level of 
obligation on owners, but specifics vary from nation to nation, as noted by, 
Kelley, R., Schaerer, E., Gomez, M., & Nicolescu, M. (2010). Liability in robotics: 
an international perspective on robots as animals. Advanced Robotics, 24(13), 
1861-1871. In contrast, it can be argued that the analogy to animals provides 
little benefit. Although key issues such as foreseeability, experience, training, and 
control are important for both robots and animals, the differences in how these 
are achieved limit the value of the analogy; see Johnson, D. G., & Verdicchio, M. 
(2018). Why robots should not be treated like animals. Ethics and Information 
Technology, 20(4), 291-301.

18�Calo, R. (2015). Robotics and the Lessons of Cyberlaw. California Law Review, 
513-563.

19�Demiridi, E., Kopelias, P., Nathanail, E., & Skabardonis, A. (2018, May). 
Connected and Autonomous Vehicles–Legal Issues in Greece, Europe and 
USA. In The 4th Conference on Sustainable Urban Mobility (pp. 756-763). 
Springer, Cham.
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autonomous vehicles, and in 2012 several other states passed their own 

laws. As an example, California’s 2012 law20 set forth conditions for:

•	 Testing: There must be proof of insurance, and an agent 

of company must sit in the driver’s seat, monitor its 

activities, and be able to take full control of the vehicle 

in an emergency.

•	 General operation: The vehicle must be insured, meet 

all safety standards, successfully complete all tests on 

public roads, and must comply with all state standards.

Of interest to our discussion is that the law defines operator as the 

person in the driver’s seat or as the person who initiates the operation of 

the autonomous technology, and defines the manufacturer as the entity 

or person that equips the vehicle with autonomous technology. The 

manufacturer must ensure that

•	 The operator can visually confirm that the autonomous 

technology is engaged

•	 The operator can easily disengage the autonomous 

technology

•	 If a failure is detected, the system requires the operator 

to take control or, if that’s not possible, to come to a 

safe, complete stop

•	 The vehicle contains a “black box” device that records 

at least 30 seconds of sensory data prior to a collision

20�Codified into state transportation law as Vehicle Code, DIVISION 
16.6—Autonomous Vehicles [38750], https://law.justia.com/codes/
california/2012/veh/division-16.6/section-38750/ [accessed on March 
5, 2020]. For information on The Federal Automated Vehicles Policy which was 
initiated in 2017 as a set of recommendations to the states, see www.ncsl.org/
research/transportation/regulating-autonomous-vehicles.aspx
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We expect this pattern to continue as robotic technology evolves—a 

clear chain of responsibilities from manufacturers to owners to human 

operators. The humans that work with and especially those that operate 

robots will need to understand their obligations for monitoring and at 

times controlling robotic behavior. Most importantly, under current law, 

humans or organizations (of humans) are solely responsible. Robots are 

considered as property with no independent responsibility (or rights), 

regardless of its inherent intelligence or autonomy from human beings.21

For decades, software has played an essential role in our economy, 

entertainment, legal systems, and daily life. However, in most cases, 

decision-making that has real-world, irreversible consequences has been 

the domain of humans. Unlike pure software applications (such as search 

algorithms or recommendation systems), robots can manipulate things in 

the world—they can construct buildings, move heavy objects, and cause 

harm. As robots become integrated into our physical world, there will 

be a corresponding increase in accidents and injuries involving robots,22 

from malicious intent by humans to use robots to injure other people to 

intended and unintended harms created by robots.

�Are Robots Exceptional?
Robots vary in their degree of autonomy and in how they interact with the 

world. Robots built for warfare are very different from industrial robots 

that are meant to operate in isolation, and these in turn are different 

from cobots that work alongside humans. Moreover, the context in which 

humans and robots encounter each other vary widely: a person who has 

21�Pepito, J. A., Vasquez, B. A., & Locsin, R. C. (2019). Artificial Intelligence and 
Autonomous Machines: Influences, Consequences, and Dilemmas in Human 
Care. Health, 11(07), 932.

22�Kelley, R., Schaerer, E., Gomez, M., & Nicolescu, M. (2010). Liability in robotics: 
an international perspective on robots as animals. Advanced Robotics, 24(13), 
1861-1871.
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consented to, and is aware of the risks of, robotic surgery is in very different 

context from a pedestrian who encounters an autonomous, driverless 

vehicle.

How does the law consider negligence, obligations, and liability in all 

these different situations? Can a robot be liable, or should responsibility 

always be attributed to a human, such as the manufacturer, distributor, 

owner, or operator? Should we create a new type of law to handle these 

questions? And, what can businesses do to manage the risk of employing 

robots?

Legal frameworks must balance competing concerns and rights of 

individuals and society.23 On the one hand, they must protect the rights 

of human consumers and employees, and on the other hand, they must 

provide incentives and flexibility so that businesses can use and extend 

robot technology to produce innovations that are desired by consumers.

Legal codes throughout the world generally discriminate between 

different areas of application, such as criminal, maritime, military, and 

civil laws. In response to the unique social challenges created by the 

Internet and autonomous vehicles, some legal scholars have proposed a 

strict exceptionalism in which cyberlaw (i.e., laws regulating the Internet) 

and robotics are considered new legal domains, each with distinct laws.24 

The argument for strong exceptionalism rests on the belief that the 

Internet and robotics are transformative technologies that will create (or 

have created) novel situations that are not handled by current statutory or 

common law. The Internet, for example, challenges accepted notions of 

jurisdiction: if a California company’s website is accessed in Pennsylvania, 

can it be sued in Pennsylvania for violating that state’s trademark or 

commerce laws?

23�Ibid.
24�Although the Internet and robotics share many qualities, they present distinct 

legal challenges. See Calo, R. (2015). Robotics and the Lessons of Cyberlaw. 
California Law Review, 513-563.
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In contrast to the Internet, robots have a physical location (although 

they might access and receive instructions through the Internet). Because 

of their physical embodiment, robots combine the unconstrained and viral 

nature of information with the capacity to physically harm people and 

property. “… Robots, more so than any technology in history, feel to us like 

social actors—a tendency so strong that soldiers sometimes jeopardize 

themselves to preserve the ‘lives’ of military robots in the field.”25

Strong exceptionalism is a legal perspective that argues that certain 

technologies or situations create legal conflicts that are so strikingly 

different from legal precedent that a new legal framework is needed. 

Some legal scholars, for example, have suggested that just as maritime 

law has distinct rules and institutions, the Internet and virtual worlds are 

independent legal entities, “separated from doctrine tied to territorial 

jurisdictions.”26 However, according to Greg Lastowka and Dan Hunter:

The Internet, despite early predictions, never became an inde-
pendent community. Websites and other prior technologies of 
cyberspace served as remarkable tools for communication, 
but they did not build truly independent and self-governing 
communities. By contrast, avatar existence and avatar com-
munity only occurs [sic] within virtual worlds, making the 
emergence of virtual law within those worlds much more 
likely.27

In contrast to the legal arguments for exceptionalism, many legal 

scholars argue that exceptionalism is typically the wrong way to teach and 

evolve law. Just as you would not have a special code of law dedicated 

25�Calo, R. (2015). Robotics and the Lessons of Cyberlaw. California Law Review, 
513-563.

26�Johnson, D. R., & Post, D. (1996). Law and borders: The rise of law in cyberspace. 
Stanford Law Review, 1367-1402.

27�Lastowka, F. G., & Hunter, D. (2004). The laws of the virtual worlds. Calif. L. Rev., 
92, 1.
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to horses, that is, “The Law of the Horse,”28 we should not have a Law of 

the Drone, or a Law of the Internet, or a Law of the Robot. According to 

this view, society should develop through statutes and case law, sound 

principles of privacy, property, and liability and then apply it to Internet 

transactions, robotics, and other new technologies. The result will 

be deeper, more general legal concepts that are refined through legal 

challenges, rather than a collection of potentially inconsistent legal rulings. 

Or, to put it in terms of horses, “Only by putting the law of the horse in the 

context of broader rules about commercial endeavors could one really 

understand the law about horses.”29

Some legal scholars, such as Ryan Calo,30 recommend a moderate 

version of exceptionalism that is halfway between strong exceptionalism 

and no exceptionalism. As he points out, there are already specific statutes 

dealing explicitly with drones and autonomous vehicles. He argues, 

however, that new technologies sometimes create imbalances or conflicts 

that can only be systematically resolved through fundamental changes 

to law or the introduction of new regulatory institutions. We share this 

perspective: Robotics does not present a complete discontinuity with the 

past—fundamental notions of liability and privacy still apply, for instance. 

Rather we can make sense of, and adapt, our current legal framework 

to the evolving robotics industry. For example, just as the introduction 

and massive adoption of radio led to a new regulatory institution (what 

evolved into the US Federal Communications Commission), legal conflicts 

regarding autonomous robots might motivate the formation of a Federal 

Robotics Commission.

28�Calo, R. (2015). Robotics and the Lessons of Cyberlaw. California Law Review, 
513-563.

29�Easterbrook, F. H. (1996). Cyberspace and the Law of the Horse. U. Chi. Legal F., 
207. The quotation maintains the italicized word, “law.”

30�Calo, R. (2015). Robotics and the Lessons of Cyberlaw. California Law Review, 
513-563.
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�Can a Robot Be Biased?
There are many different types of robots. At one extreme are robots whose 

behavior is deterministic—its errors are due to design, manufacturing,31 

or maintenance flaws, or because the operator/owner did not read the 

warning labels and used the robot incorrectly. For example, if the product 

warnings indicated, “dry use only,” and the owner placed the vacuum 

in an outdoor pool, the ensuing damage would likely be the owner’s 

responsibility.

At the other extreme are robots whose behaviors are based on in vivo 

deep learning or other stochastic processes that are not deterministic—

each response to a given situation might not be foreseeable by its designer, 

manufacturer, software programmer, trainer, owner, or operator. An 

inappropriate response could be based on unforeseeable experiences 

that occurred after product delivery and training, and therefore not under 

the control of the agents typically involved in product production and 

consumption. For example, let’s assume that a robot is trained as a greeter 

in a bank. During its training phase, the robot asked each bank visitor 

their name and how they were feeling. During the week of training, most 

of the bank visitors just happened to be white men from North America. 

As a result, the robot’s face and affect recognition abilities were biased and 

31�Robot design and manufacturing flaws can be introduced by hardware, firmware, 
or software providers. Design defects affect all the instances of a product—the 
product is manufactured as intended. Design defects reflect conscious choices 
by the manufacturing, although with unintended consequences. In contrast, 
manufacturing flaws occur randomly and are not detected during standard 
and reasonable quality inspections. They may be introduced though flawed 
materials or during production and may be limited to a single instance or to only 
a those produced during a production run. See Tietz, G. F. (1993). Strict products 
liability, design defects and corporate decision-making: greater deterrence 
through stricter process. Vill. L. Rev., 38, 1361.
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some visitors who do not meet that description were ignored or treated 

incorrectly.32

Who is responsible for this bias and the resulting indignities? Possible 

answers might be the software manufacturer, the company that oversaw 

training, the company that oversees maintenance and quality assurance, 

or the bank and its employees who are trained on proper care and 

monitoring of the robot.

�Who Is Responsible?
Under current law, robots and the software/firmware that direct their 

behavior are commercial products and considered property—they have 

human owners. They are introduced and traded in the marketplace by 

humans. Humans bear responsibility and liability for these commercial 

transactions.33 In most US jurisdictions, manufacturers or sellers of a product 

can be strictly liable for harm caused by design defects, manufacturing flaws, 

and inadequate information about proper use (e.g., warning labels).34

32�This example is not a fanciful construction. There are many real-world examples, 
of bias in machine-learning algorithms and training data. In some case, the bias 
is intentionally created through product use by hate groups. The book, Algorithms 
of Oppression (Noble, S. U., 2018) recounts, for example, how the actions of white 
supremacist groups influence Google’s search results for the search term, “Jew,” 
and how unmoderated racist discussions bias the results for “black girls” vs. 
“white girls.” Microsoft’s chatbot, Tay, was intentionally corrupted by hate groups 
creating racist dialogue during its in vivo training. But bias can also be created 
unintentionally through sampling errors, as in the example of the bank’s robot.

33�Johnson, D. G., & Verdicchio, M. (2018). Why robots should not be treated like 
animals. Ethics and Information Technology, 20(4), 291-301.

34�The application of strict liability for design defects and warnings may vary from state 
to state. Some states apply a consumer expectations test in which allows plaintiffs 
to argue that the product was unsafe for reasonably foreseeable uses and abuses 
(in addition to its intended use). Alternatively, a risk-utility test allows defendant 
to argue that no alternative design could have reduced the foreseeable harm and 
maintained the product benefits; see Abeyratne, R. (2017). Artificial Intelligence and 
Air Transport. In Megatrends and Air Transport (pp. 173-200). Springer, Cham.
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However, assuming no product defect or that the owners assume the 

risk of defect, then the owners might be liable if they are negligent in their 

duty of care to those who might be affected by the robot’s behavior. This 

might be caused by neglecting proper maintenance, training, or usage.

An injured person might bear proportional responsibility if they interacted 

with the robot in a dangerous or intentionally abusive manner, for example, 

if someone knowingly made themselves difficult to detect and entered the 

predictable path of a robot, or (as mentioned earlier) if they jumped over a 

security fence, they should bear some responsibility for the consequences.

Under US tort law, a malfeasant could be liable for any of the harms to 

other humans and property if their actions generated significant foreseeable 

danger35 as could happen during the beta test of a collaborative robot.

According to the European Union directive on product liability, 

manufacturers must assume responsibility for assuring “that its products 

are suitable for their intended use when they are placed on the market.”36 

However, robotics technology will likely complicate the definition of 

manufacturer. Manufacturers are the person or business that places their 

name or trademark on the product, or the importer of the product, or any 

person supplying the product in a transaction.37 However, in the case of 

robots, we should differentiate between:

	 1.	 The hardware manufacturer who produces or 

integrates components into an independent, 

movable, unified object that can interact with its 

environment through sensors and actuators.

35�Shavell, S. (2018). The Mistaken Restriction of Strict Liability to Uncommon 
Activities. Journal of Legal Analysis, 10.

36�Pepito, J. A., Vasquez, B. A., & Locsin, R. C. (2019). Artificial Intelligence and 
Autonomous Machines: Influences, Consequences, and Dilemmas in Human 
Care. Health, 11(07), 932.

37�Zornoza, A., Moreno, J. C., Guzmán, J. L., Rodríguez, F., & Sánchez-Hermosilla, 
J. (2017). Robots Liability: A Use Case and a Potential Solution. Robotics: Legal, 
Ethical and Socioeconomic Impacts, 57.
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	 2.	 The software manufacturer or programmer who 

provides the logical apparatus for storing and 

discarding information, image processing, decision-

making, and so on.

	 3.	 The data provider/trainer who provides any data 

and training required prior to the original sale of the 

robot.

	 4.	 The seller of the robot, usually one or more of the 

preceding three categories of manufacturers, who 

assumes strict liability for design, data, production, 

and marketing defects in the original product 

transaction.

	 5.	 The owner of the robot (typically a business entity).

	 6.	 The user or operator of the robot (typically an agent 

of the owner of commercial robots). Notably, the 

operator will likely be trained in how to operate and 

shut down the robot, as well as in a specialty, such 

nursing, search-and-rescue, warehouse operations, 

logistics, trucking, and so on.

	 7.	 Bystanders who may or may not be expected to 

behave in certain ways and have the necessary 

knowledge or experience.

Lastly, as artificial intelligence technologies allow more autonomy, 

perhaps we should also consider the culpability of the robots, themselves 

and any collective machine learning that is aggregated and redistributed 

through the cloud. When deep-learning systems are used, the results are 

not always foreseeable. The robot system may learn the wrong things, such 

as misclassifying a pedestrian carrying a flashlight as a threat, because in 

the training data most intruders carried a flashlight. Or, a random choice 
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is made in the robot’s classification decision and the downstream effect 

is denying parole to a convict. Is there a point at which we will need to 

consider autonomous robots as something different than property and 

hold them liable?

In this chapter we have taken the view that intelligent, autonomous 

machines should not be considered moral agents, at least for the time 

being. They are property and their manufacturers, owners, and operators 

have moral obligations to provide and maintain robots that behave safely 

in all foreseeable circumstances.

�Robots in Corporations, Corporations 
in Robots

Participation of users in the design of robots can also allow 
multiple perspectives on technology and society to be expressed 
in the course of deciding on the uses and technological capa-
bilities of robotic artifacts. The explicit and systematic explo-
ration of the feedback between social and technological 
choices can inspire reflection by robot designers, analysts, and 
users on the social norms and values robots embody and 
enable us to mindfully create more socially robust, responsive, 
and responsible robots. 38

—Šabanović, S. (2010)

Modern software engineering is guided by best practices, such as agile 

development and engineering practices,39 and each product is defined by 

38�Šabanović, S. (2010). Robots in society, society in robots. International Journal of 
Social Robotics, 2(4), 439-450.

39�Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2017). Agile software 
development methods: Review and analysis. arXiv preprint arXiv:1709.08439.
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its functional and nonfunctional requirements. Functional requirements 

define the capabilities or features of a product. The nonfunctional 

requirements define attributes such as scalability, usability, reliability, 

performance, and privacy. Although they may not be directly reflected 

in the user stories, features, or capabilities of a product, nonfunctional 

requirements strongly influence system architecture and act as constraints 

on how features or capabilities are designed. They may not be achievable 

in the first prototype, or the first minimally viable version of a product, 

but professional software and hardware architects are cognizant of these 

constrains from the beginning of product development.

In this subsection, we argue that ethical constraints, including privacy, 

should be integrated into software design and development practices. We 

begin by discussing privacy as a nonfunctional requirement that needs to 

be considered in the initial phase of product design.

�Privacy by Design
Ann Cavoukian, a seminal privacy rights advocate, was Ontario, Canada’s 

Information and Privacy Commissioner, from 1997 to 2014. In 2010, her 

privacy by design concepts achieved international recognition.40

Privacy by design is an engineering practice that provides a framework 

for assuring that data and software applications maintain reasonable 

levels of privacy. Cavoukian’s radical idea was that security and privacy 

are not a zero-sum game. Rather, the legitimate objectives of both can be 

accommodated, especially if privacy is incorporated into the technology 

and architecture and not added on as a post hoc business practice.

40�Landmark Resolution passed to preserve the Future of Privacy (2010). www.ipc.
on.ca/english/Resources/News-Releases/News-Releases-Summary/?id=992 
[accessed on February 21, 2020].
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Privacy by design stipulates seven basic systems engineering 

principles:

	 1.	 Proactive not Reactive; Preventative not Remedial

	 2.	 Privacy as the Default

	 3.	 Privacy Embedded into Design

	 4.	 Full Functionality—Positive-Sum, Not Zero-Sum

	 5.	 End-to-End Security—Lifecycle Protection

	 6.	 Visibility and Transparency

	 7.	 Respect for User Privacy

Although these were designed to proactively embed privacy into IT 

design and business practice, the principles can be abstracted and applied 

as a framework for ethical governance. These will be reflected in the next 

section.

Privacy by design is incorporated into the EU General Data Protection 

Regulation (GDPR) that was adopted by the European Parliament and the 

Council of the European Union in April 2016 and enforced as law in May 

2018. In contrast, as a leading indicator of what the United States might do, 

the California Consumer Privacy Act, which became effective on January 1, 

2020, does not mandate privacy by design principles.41

�Ethics by Design
Nonfunctional requirements such as privacy, ease of use for all users 

(including those with disabilities), fairness and lack of bias, and the welfare 

of the affected communities are ethical requirements. Security, reliability 

and performance requirements protect the integrity of a software system; 

41�OneTrust (December 19, 2019). The CCPA vs. the GDPR. www.onetrust.com/
the-ccpa-vs-the-gdpr/ [accessed on February 21, 2020].

Chapter 7  Robots in Society

http://www.onetrust.com/the-ccpa-vs-the-gdpr/
http://www.onetrust.com/the-ccpa-vs-the-gdpr/


233

ethical requirements protect the welfare of the people and the community 

that contains and interacts with the system.

AI ethics is a matter of significant concern. The public, AI and legal 

professionals, and businesses are all rightfully concerned about ethical 

errors in judgment, bias, and liability that might occur with the application 

of AI-enabled robots and automation. An insightful paper by Hagendorff, 

concludes that although much effort has been invested in developing 

guidelines, “… the practice of development, implementation, and use of 

AI applications has very often little to do with the values and principles 

postulated by ethics.”42

There are many well-documented failures, but there is no clear 

evidence that ethical guidelines are intentionally incorporated into 

decision-making practice by developers, software manufacturers and 

retailers, and the software itself. In short, ethics by design is at the same 

stage that privacy by design was at in the mid-1990s: concepts embraced 

by a well-meaning professional community but unenforced by technology 

and with uncertain legal consequences (unless there is a specific violation 

of existing law).

Nonetheless, it is worthwhile to explore how ethics by design might 

positively impact robot design and how that impact might be realized 

through best practices and law. The objective is to reduce the risk and to 

optimize the benefit for the well-being of the community, the enterprises 

that build and distribute robotic systems, and its workers.

42�Hagendorff, T. (2019). The ethics of AI ethics—an evaluation of guidelines. arXiv 
preprint arXiv:1903.03425.
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Recent discussions on AI ethics focus on43

•	 Embedding ethics into machine-learning and decision-

making algorithms, including specific problems in 

specific domains (such as decisions by autonomous 

vehicles that will injure its passengers or, instead, injure 

nearby pedestrians)44

•	 Meta-analytic or expert-based derivations of general 

principles to guide design, development, and 

deployment

Hagendorff (2019)45 systematically reviewed 21 of the most influential 

ethical guidelines for building AI systems proposed by academics, 

nonprofits, and industry. This review identified 22 characteristics; many of 

which were shared across guidelines. For example, accountability, privacy, 

and fairness each appear in 17 out of 21 guidelines, and transparency/

openness, cybersecurity/safety, and common good appear in 15 of the 21 

guidelines.

Hagendorff warns that the lists have biases. The most mentioned 

characteristics are already the focus of industrial and academic research. 

He also notes that most of the guidelines are authored primarily by men 

(roughly two-thirds of the collective authorship) and that most of these 

analyses tend to focus on characteristics that can be isolated, transactional, 

and defined as technical problems with technical solutions. In contrast, 

43�Ibid.
44�Nyholm, S., & Smids, J. (2016). The ethics of accident-algorithms for self-driving 

cars: An applied trolley problem? Ethical theory and moral practice, 19(5), 
1275-1289.

45�Hagendorff, T. (2019). The ethics of AI ethics—an evaluation of guidelines. arXiv 
preprint arXiv:1903.03425.
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the reports of AI Now46 (in which women were the primary co-authors) 

do not frame “AI applications in isolation, but within a larger network of 

social and ecological dependencies and relationships,”47 with an emphasis 

on the ethics of care and social well-being. This difference in emphasis 

underscores the importance of gender, ethnic, and cultural diversity in the 

definition of any ethics guideline.

The 22 characteristics identified by Hagendorff can be clustered 

into five major categories, as shown in Table 7-1.48 These five categories 

generalize the privacy by design principles. The categories are not meant 

to be mutually exclusive perspectives, rather they inform one another. The 

number in the brackets identifies how many guidelines mentioned that 

characteristic.

46�Whittaker (2018).
47�Hagendorff, T. (2019). The ethics of AI ethics—an evaluation of guidelines. arXiv 

preprint arXiv:1903.03425.
48�This clustering was not provided by Hagendorff; we found it is useful for the 

present discussions and any flaws are the responsibility of the present authors.
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Table 7-1.  Ethics by Design Categories

Categories Characteristics identified in published AI Ethical Guidelines

  1. � Design 

representative of 

diversity

•	 Diversity in the field of AI [6]

•	 Cultural differences in the ethically aligned design of 

AI systems [2]

  2. �A ccountability, 

explainability, and 

transparency

•	 Accountability [17)

•	 Transparency, openness [15]

•	 Human oversight, control, auditing [12]

•	 Explainability, interpretability [10]

•	 Legislative framework, legal status of AI systems [9]

•	 Certification for AI products [4]

  3.  Governance •	 Science-policy link [10]

•	 Responsible/intensified research funding [8]

•	 Public awareness, education about AI and its risks [8]

•	 Field-specific deliberations (health, military, mobility, 

etc.) [7]

•	 Protection of whistleblowers [2)

  4. S afety •	 Privacy protection [17]

•	 Safety, cybersecurity [15]

•	 Dual-use problem, military, AI arms race [7]

  5. �S ocial Impact—

well-being

•	 Fairness, nondiscrimination, justice [17]

•	 Common good, sustainability, well-being [15]

•	 Solidarity, inclusion, social cohesion [10]

•	 Future of employment [8]

•	 Human autonomy [7]

•	 Hidden costs (e.g., environmental and energy costs) [1]

The number in the brackets identifies how often that characteristic was identified in 
the AI Ethics Guidelines reviewed by Hagendorff (2019).
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The next five subsections discuss the significance of each of the five 

categories identified in Table 7-1.

�Design Representative of Diversity
Who will the robot interact with, directly and/or indirectly, during its 

design, development, and use? AI systems and robots in particular 

may affect many different kinds of people varying in gender and sexual 

orientation, racial, cultural, linguistic and ethnic backgrounds, gender, 

cognitive and physical abilities, socioeconomic status, and age.

The robotic system must not discriminate against any of the people 

affected by the system during its design, development, and deployment. 

This doesn’t mean that it treats all users in the same way, but rather that 

it treats all stakeholders (programmers, trainers, users, and bystanders) 

appropriately and fairly—it may need to perform its tasks differently for the 

elderly and young, for the physically challenged, and so on, but must do so 

in a way that respects their dignity and supports their social wellness. To 

accomplish this the design must be:

Proactive, preventative, and adaptive: This is important in all AI systems, 

but it is especially true in robotics where nonreversible actions on the physical 

world can occur. The systems must be designed to interact with and anticipate 

the needs and challenges of all user classes. If a face recognition system is 

used, it must perform well, for example, across all racial and age groups.

Designing for all classes of user must be mindful of intersectionality.49 

Designing a system that is fair and appropriate for all genders and for 

all ages must consider the intersection (or interaction) between these—

designing a robotic system for use by a young boy is different than simply 

considering the individual needs of children and the needs of males; the 

way in which women, minorities, and the disabled are treated within the 

49�Crenshaw, K. (1990). Mapping the margins: Intersectionality, identity politics, 
and violence against women of color. Stan. L. Rev., 43, 1241.
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US culture is different and not entirely predictive of how minority women 

with disabilities are treated. Designers must carefully consider the different 

groups that are affected by their designs.

Ethics embedded into design, development, and deployment: One 

of the key approaches to reducing harm to a demographic group is 

having representatives of that group directly involved in the design, 

development, testing, and deployment of the product. Many AI systems 

and robots are developed without careful ethnographic studies of 

the current practices that they are seeking to replace or transform. 

Unfortunately, many of the systems are designed, developed, and tested 

by a homogenous group of 20-to 30-year-old white males. For Ethics 

by Design, there should be more woman and minority representation, 

and age diversity, in the AI and robotics workforce, at all levels of 

management and decision-making.50

In addition, care should be taken to examine the social impact of these 

robots. Will they affect jobs across all industries, or will they create more 

benefit or harm to certain communities? Representatives from various 

affected communities should be consulted throughout the product life 

cycle. This will improve the benefits, decrease the harms, and increase 

community acceptance.

�Accountability, Explainability, and Transparency
In 2016, ProPublica provided strong statistical evidence that Northpointe’s 

software was biased in their recommendations to sentencing judges about 

50�The negative impact of software designed by an ethnically homogenous group 
is well documented in Noble, S. U. (2018). Algorithms of oppression: How search 
engines reinforce racism. NYU Press; and Chang, E. (2019). Brotopia: Breaking Up 
the Boys’ Club of Silicon Valley. Portfolio.
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the likelihood of recidivism.51 The manufacturer claimed that the statistical 

evidence was misinterpreted, but they refused to disclose details about the 

algorithm or data handling processes, arguing that the algorithm and data 

were competitive advantage and proprietary.

Under what conditions should manufacturers or trainers (of machine-

learning systems) be required to disclose the data and algorithms used in 

a decision? Should this only happen after demonstrated bias or a tragic 

outcome? When someone is declined a loan, they should be provided 

an explanation for the denial, but should they be given details about the 

algorithm?

We have already argued that a human or organization (e.g., a 

corporation or government) should always be liable for the actions of 

their robotic systems; robots should never be considered inscrutable, 

independent moral agents. When harm occurs or an undesirable decision 

is made, those who are negatively affected should be able to know the 

causes.

One approach to understanding the cause of a decision or action is to 

construct algorithms that are self-explaining—they provide explanations 

for their behavior either in real-time or upon request after the action has 

occurred. Another approach is to require transparency—manufacturers 

would disclose their algorithm and training data prior to deployment in 

order to receive certification that ethical standards have been met, or they 

would be required to allow forensic inspection of their software and data, 

by court order.

51�Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias: There’s 
software used across the country to predict future criminals. And it’s biased 
against blacks. ProPublica, 23. Northpointe and others have disputed 
ProPublica’s findings; see, for example, Flores, A. W., Bechtel, K., & Lowenkamp, 
C. T. (2016). False Positives, False Negatives, and False Analyses: A Rejoinder 
to Machine Bias: There’s Software Used across the Country to Predict Future 
Criminals. And It’s Biased against Blacks. Fed. Probation, 80, 38.
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Explainable AI can be defined as the methods and policies that allow 

the results of an algorithm to be explained by experts or even by another AI 

program. The explanation may be the output of a forensic investigation to 

examine a system failure or bias, or it can be delivered as part of the initial 

decision, as in “Loan approval is recommended for the following reasons 

….” One common method for achieving explainability is to use rule-based 

algorithms which can report the weight or risk value associated with each 

rule used in the decision. If self-reporting is not possible, data analysts 

can attempt to examine the data and deep-learning system (layer by layer, 

region by region) to discover what data were used and what impact that 

had on the results.

However, whether the algorithm is explainable automatically or 

through rigorous inspection by the manufacturer, the explanation must 

be verifiable by independent agencies. Some form of transparency is 

required. The challenge is that the data and algorithm are intellectual 

property of the manufacturer. If manufacturers can be compelled to 

expose data and code to public scrutiny, they might lose the competitive 

advantages gained by years of investment and research.

One proposal is to form public governance boards that can certify 

or inspect confidential algorithms and databases.52 These boards would 

operate independently of the manufacturer that created the algorithm but 

would uphold confidentiality. In order to conduct a reasonable audit, the 

board could review the source code and the data provided during training 

and during its deployment. However, this is not only tedious, but static 

methods provide little insight into how machine-learning algorithms 

interact and adapt to data or to its real-time environment. Conducting 

dynamic analyses on the machine-learning algorithm after it has been 

52�The AI Now report (2018) recommends, “Governments need to regulate AI by 
expanding the powers of sector-specific agencies to oversee, audit, and monitor 
these technologies by domain.” Whittaker, M., Crawford, K., Dobbe, R., Fried, 
G., Kaziunas, E., Mathur, V., ... & Schwartz, O. (2018). AI now report 2018. AI Now 
Institute at New York University.
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trained but before it’s deployed also has limits. The test data will be a 

subset of the potential interactions with the environment. If the machine-

learning process utilizes randomization in its training or application, 

repeatability is not possible—the same data inputs will lead to different 

outcomes because of random differences in the outcome of intermediate 

algorithmic decisions. However, for forensic purposes, software systems 

can store the randomization that were used in vivo, and these can be 

reused when the algorithm is analyzed. Consistent with this approach, 

some researchers have suggested a black box requirement in which 

robots and autonomous systems are required to store all the relevant data 

(sensory data, interim decisions, etc.) in a write-only, secure repository.53

Manufacturers are likely to resist requests to share their code 

with government or third-party reviewers. One proposal is to build 

accountability into the software architecture, so that indicators of bias, 

risks, and other influences can be analyzed forensically.54 This would 

enable review boards to operate without having manufacturers fully 

expose confidential data and algorithms.

In response to corporate reluctance to partly or fully expose their 

algorithms and data, legal scholars have argued that existing legal 

doctrine should be used to make vendors of AI and robotic systems 

more accountable, especially in systems used by the government. As 

Crawford and Schultz (2018) note, “…as AI systems rely more on deep 

learning, potentially becoming more autonomous and inscrutable, the 

accountability gap for constitutional violations threatens to become 

broader and deeper.”55 The blame for violations of policies or law must 

53�Winfield, A. F., & Jirotka, M. (2017, July). The case for an ethical black box. 
In Annual Conference Towards Autonomous Robotic Systems (pp. 262-273). 
Springer, Cham.

54�Kroll, J. A., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & Yu, H. 
(2016). Accountable algorithms. U. Pa. L. Rev., 165, 633.

55�Crawford, K., & Schultz, J. (2019). AI SYSTEMS AS STATE ACTORS. Columbia 
Law Review, 119(7), 1941-1972.
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target manufacturers and data providers. Blame should never apply to some 

inscrutable algorithm that no one fully understands, and that plaintiffs 

cannot inspect or hold financially accountable.

Accountability laws and policies have implications for the workforce. 

As noted by Wilson et al.,56 machine learning will create many new job 

categories including ethics compliance managers that focus on automated 

decision-making. These managers will need advanced certifications and 

multiple skill sets. They will be tasked with evaluating and monitoring 

robotics systems during design, development, and after deployment. 

They will have to be able to explain to plaintiffs, lawyers, and juries why 

certain behaviors were exhibited and whether certain biases or errors were 

foreseeable. They will also need to be skilled at generating edge cases for 

testing various scenarios.

�Governance
Industry, health services, and governments (including the military) are 

rapidly expanding the use of robots and automation in their decision-

making. Robots can be, or will soon be, involved in manufacturing, 

transportation, surgery and diagnostics, surveillance, search-and-rescue, 

and warfare. Some businesses are installing procedures and oversight 

to assure transparency and auditability, and the input of stakeholders, 

but many are not. The robotics and AI industry needs government and 

nonprofits that can develop, certify, and enforce standards compliance 

and well-defined policies.57 This has worked reasonably well in other 

industries, such as food safety which is monitored through government 

56�Wilson, H. J., Daugherty, P., & Bianzino, N. (2017). The jobs that artificial 
intelligence will create. MIT Sloan Management Review, 58(4), 14.

57�Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., ... & 
Schwartz, O. (2018). AI now report 2018. AI Now Institute at New York University.
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agencies (e.g., the US Food and Drug Administration) and through 

nonprofits (e.g., Green Seal, a nonprofit that certifies products and services 

that meet health and environmental impact standards).

The 2018 AI Now Report recommends that governments should 

expand sector-specific nonmilitary agencies to oversee, audit, and monitor 

AI technologies.58 We agree with this approach and recommend that it 

be expanded to include robotics, including military robots. These efforts 

must balance the need for innovation with the need for worker and public 

safety.

Governments should also apply pressure through existing legal 

doctrine, to encourage companies to disclose when AI is used in 

automated processes, such as loan decisions. Consumers and employees 

respond well when companies are transparent about how data is used and 

what ethical guidelines they follow.59

This need for governance though public and nonprofit organization 

suggests that corporate ethics committees should be created at the 

C-suite level, and not within the IT department. To be effective they 

will need to work with suppliers, unions, and employees and with 

communities and consumers. We expect that many corporations will 

soon designate Chief Ethics Officers who will oversee the incorporation 

of ethical principles into workplace robots and automation, in addition 

to other responsibilities.60

58�Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., ... & 
Schwartz, O. (2018). AI now report 2018. AI Now Institute at New York University;

59�Clement-Jones, T.L., joined by Thomas E. (September 3, 2019). Future regulation 
for artificial intelligence. DLA Piper TechLaw Podcast Series [audio accessed on 
February 6, 2020].

60�Insights Team (March 27, 2019). Rise of the Chief Ethics Officer. Forbes Insights. 
www.forbes.com/sites/insights-intelai/2019/03/27/rise-of-the-chief-
ethics-officer/#5b1f5c105aba [accessed on April 3, 2020].
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�Safety
Silicon Valley is known for its “move fast and break things” 
mentality, whereby companies are pushed to experiment with 
new technologies quickly and without much regard for the 
impact of failures, including who bears the risk.61

—Whittaker, M., et al. (2018)

With the exception of autonomous vehicles where state regulations 

must be followed, AI systems are deployed without consulting with 

communities and workers that are directly or indirectly impacted. Workers 

have good insights into the errors and unsafe conditions that might occur 

within their environment and their participation in design can promote 

innovations that create safe technologies and improved processes.62

Governance regarding safe operations should be automated through 

proper onboard and external controls. Robotic systems should shut 

down systems or revert to a safe configuration when a robot behaves out 

of bounds, for example, entering an area with humans. Likewise, robots 

and AI programs that attempt to evaluate the affect or health of a human 

should not perform a nonreversible decision or action without human 

supervision. The likelihood of false classifications and the inflexibility of the 

consequences, in today’s systems, suggests the need for careful governance 

and not efficiency. For example, a police drone should not apprehend or 

question pedestrians if they look suspicious, but rather should maintain 

privacy standards and log its concerns with nearby police officers.63

61�Whittaker, M., et al. (2018). AI now report 2018. AI Now Institute at New York 
University.

62�See Biddle, R., Brown, J. M., & Greenspan, S. (2017). From Incident to Insight: 
Incident Responders and Software Innovation. IEEE Software, 36(1), 56-62, for a 
careful discussion on how operations staff can help product designers.

63�McNeal, G. S., Goodwin, W., & Jones, S. (2017). Warrantless Operations of Public 
Use Drones: Considerations for Government Agencies. Fordham Urb. LJ, 44, 703.
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As a society we have moved from pedestrian policeman patrolling 

a neighborhood to police cars navigating a neighborhood, to webcams 

surveilling a neighborhood, and now to semi-autonomous drones and 

other robots traversing and protecting the neighborhood,64 guided by 

algorithms that predict where the next crimes are most likely to occur. 

With each step there are efficiency gains—fewer police can do more, but 

in the process they may lose core skills,65 increase the distrust between 

police and community, and decrease the safety of some communities (in 

particular, minority or poor). We should learn from this history—industry, 

government, and local communities should work together to create safe 

and effective applications of robots.

The concerns for safety are especially noteworthy in military 

applications. The Campaign to Stop Killer Robots is a coalition of NGOs 

formed in 2012 to persuade the UN to adopt a legally binding ban on fully 

autonomous weapons. The push for such weapons is based on myths 

suggesting that autonomous weapons will not tire or act irrationally, they 

won’t rape or seek revenge, they will obey the conventions of war, and 

they will save soldiers’ lives and kill fewer civilians.66 However, as we have 

argued earlier, autonomous robots make mistakes, just a humans do, 

but they do it faster, with greater precision and at scale. Their errors can 

be more difficult to stop. What if the wireless signal intended to stop the 

autonomous weapon is jammed and not received? They may not be able 

to discriminate between soldiers and civilians; they may be used in ways 

64�Stephen Rice (October 7, 2019). 10 Ways That Police Use Drones To Protect And 
Serve. Forbes. forbes.com/sites/stephenrice1/2019/10/07/10-ways-that-
police-use-drones-to-protect-and-serve/#4bc4688e6580 [accessed on April 
3, 2019].

65�Joh, E. E. (2019). The Consequences of Automating and Deskilling the Police. 
UCLA L. Rev. Discourse (2019 Forthcoming).

66�N. Sharkey (November, 2017). Killer Robots: The Race for Autonomous Weapons. 
New Internationalist. https://newint.org/sections/agenda/2013/10/01/
killer-robots [accessed on March 10, 2019].
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that circumvent conventions and ethics—robots are unlikely to refuse an 

order or inform on a nation that engages in illegal or unethical behavior. As 

in all robot applications, but with far greater urgency, humans must have 

complete situational awareness of how and why military robots are used 

and must have full governance and control over their real-time activities.67

�Social Impact and Well-Being
Installing new automation or robotic processes can affect workplace 

morale and well-being. As noted in Chapter 1, “Will Robots Replace 

You?”, the key issue for the original Luddite movement was not the new 

technology, per se, but rather the manner in which the technology was 

used and incorporated into the workplace.

The Luddites were skilled, highly paid workers who were proud 

of their products and who were angered that the new technologies (1) 

lowered the quality of the textiles, (2) replaced skilled with less-skilled 

labor, (3) applied without consulting the skilled labor, and (4) increased 

the power asymmetry between management and labor. The same issues 

concern us today. Robotics scientists, engineers, and experience designers 

should understand and report the potential risks, harms, and benefits of 

installing a robotic system into the workplace or consumer market. These 

reports should address questions such as: How does it affect the current 

workers? Are the current workers expected to train their replacements? 

What happens when robots and humans interact—are there physical 

dangers that must be avoided? What happens if the robot is hacked into, 

or misbehaves? Is there a potential bias in the robot’s decision-making 

or behavior that could introduce power and benefit asymmetries into the 

workplace?

67�Sharkey, A. (2019). Autonomous weapons systems, killer robots and human 
dignity. Ethics and Information Technology, 21(2), 75-87.
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Within this context, we need guidelines and protections for 

whistleblowers, employee unions, or other forms of organizing, and 

grassroots community coordination with employees. The intent is 

not to halt or delay innovation, but rather to guide innovation choices 

so that industry, workers, and the community are all protected and 

strengthened—a win-win scenario.

�Summary and Conclusion
In this chapter we considered the complexity of robotic interactions in an 

unpredictable social environment and some of the ways in which humans 

could be harmed, physically, emotionally, and legally (such as privacy 

violations and bias). The harm might be due to design, development, 

training, or communication flaws or because of erroneous or imprecise 

data. Humans make mistakes and so will robots.

When human manufacturers err or when service providers cause 

damage, there are well-defined legal remedies that can be adjudicated 

through the courts. When a robot makes an error, who is to blame? In this 

chapter, we have taken the position shared by many others in the legal 

and AI community that robots are products and property. As with other 

categories of products, there is a standard of responsibility and liability, 

from manufacturers and owners to trainers and operators.

However, legal statutes, regulations, and standards are needed to 

promote ethics in the design, development, and deployment of robotic 

systems. It is highly unlikely that robots can be embedded with an 

algorithmic, general model of ethics. Instead, the practices adopted by 

industry and enforced by law must promote ethics. Today, AI and robot 

designer and developers are largely from a single demographic group. To 

create ethical robotic systems, tomorrow’s workforce needs to be far more 

diverse.
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In order to fairly resolve legal disputes involving the actions of 

robots and other automated processes, the underlying algorithms need 

to be more transparent or designed to be more auditable. Legislative 

frameworks must balance the desire for innovation with the need for safety 

and ethical decision-making, but these need not be viewed as a zero-sum 

struggle. Safety and ethical decision-making principles must be designed 

into the algorithms and data pipelines from the start, and not tacked on at 

the end of the manufacturing process.

Governance through legislation, certification processes, and internal 

corporate controls will emerge as the industry matures. In preparation and 

to facilitate the processes, governments should promote public awareness 

of AI and robotics. Lastly, the social impact of robotic applications needs to 

be studied more extensively. As society evolves to more sophisticated and 

powerful machine-learning algorithms and robots, industry, government, 

academia, and communities need to work together to promote human 

safety and autonomy, and fairness in the decisions that affect them. 

Software engineering practices and legal frameworks must evolve to 

support these ethical goals.
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CHAPTER 8

Work in the Future
A Summary and Conclusion

There has never been, nor will there ever be, a technological 
innovation that moves us away from the essential problems of 
human nature … When we rely exclusively on computation 
for answers to complex social issues, we are relying on artifi-
cial unintelligence.

—Brousard, M. (2018). Artificial Unintelligence: How 
Computers Misunderstand the World. MIT Press.

As we conclude this book, the world is beset by a crisis of historic 

proportions. COVID-19, the disease caused by the SARS-CoV-2 virus, has 

rapidly spread throughout the globe, leaving death, sorrow, and economic 

hardship in its wake. Medical professionals and scientists the world over 

are trying to use their expertise to help monitor, make sense of, diagnose, 

prevent, and treat this infection.

The first indications of the epidemic were raised by AI software. 

Early in the morning on December 31, 2019, BlueDot’s outbreak risk 

software alerted its customers that a cluster of pneumonia cases had 

been reported in Wuhan, China.1 Other AI services that quantify the 

risk of infectious diseases noticed this anomaly as well, for example, 

1�www.wired.com/story/ai-epidemiologist-wuhan-public-health-warnings/.

https://doi.org/10.1007/978-1-4842-5964-1_8#ESM
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HealthMap and Metabiota.2 These algorithms use natural language 

processing algorithms to monitor news and government reports and 

utilize “global air travel patterns around transit hubs, livestock health 

reports, among other sources to estimate risk.”3

On January 9, 2020, the World Health Organization issued its first 

notice, “Chinese authorities have made a preliminary determination of 

a novel (or new) coronavirus, identified in a hospitalized person with 

pneumonia in Wuhan.”4 The technology exists to identify clusters of 

infections, to validate these identifications through additional monitoring 

and blood tests, to quickly ascertain travel vectors of all of the inhabitants 

flying from nearby airports, and to monitor the destinations for similar 

symptoms. The problem is not technology. The issues are public policy, 

privacy, and cooperation among national and international jurisdictions. 

The technical issues having to do with data quantity and quality can be 

reasonably solved; the social issues require international cooperation, 

political will, trust, and money.

Despite the obstacles, the medical and scientific community have 

shown great courage and dedication in tracking the epidemic and in 

providing assistance and advice throughout the world. In addition to 

detecting and predicting the spread of infection, AI and robotics provide a 

spectrum of potential applications that could be used to predict, diagnose, 

and mitigate the impact of infectious diseases and other massive social 

2�www.technologyreview.com/2020/03/12/905352/ai-could-help-with-the- 
next-pandemicbut-not-with-this-one/

3�Inn, T. L. (2020). Smart City Technologies Take on COVID-19. World Health.
4�www.who.int/china/news/detail/09-01-2020-who-statement-regarding-
cluster-of-pneumonia-cases-in-wuhan-china
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disruptions (such as famine).5 These applications can be roughly classified 

into five main categories as shown with examples in Table 8-1.6

5�Bullock, J., Pham, K. H., Lam, C. S. N., & Luengo-Oroz, M. (2020). Mapping the 
Landscape of Artificial Intelligence Applications against COVID-19. arXiv preprint 
arXiv:2003.11336.

6�Yang, G. Z., Nelson, B. J., Murphy, R. R., Choset, H., Christensen, H., Collins, S. H., 
... & Kragic, D. (2020). Combating COVID-19—The role of robotics in managing 
public health and infectious diseases.

Table 8-1.  Application Categories

Application Categories Examples

1. � Monitoring, 
detection, and 
analytics

•  Monitor communication and information flows

• �I dentify and validate useful information and curb the 

spread of misinformation

• � Monitor news sources and the flow of people and 

animals

•  Monitor and predict disease transmission vectors

2. � Clinical care •  Diagnosis and screening

• �A utomate the processing and distribution of patient 

data

• A utomate blood tests

•  Disease prevention

• � Decontaminate and clean infected surfaces, clothing 

and bedding

• P atient care and disease management

• P rovide bedside care to hospital and remote patients

(continued)
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Some of the applications such as using social robots to ease social 

isolation and to automate the processing of new patient data are in 

use today.7 The pandemic has fast-tracked the introduction of these 

technologies. For example, the Connecticut-based Maplewood Senior Living 

facility has introduced robots to help residents maintain social distancing 

and isolation, and at the Mater Misericordiae University Hospital in Dublin, 

a pilot RPA project speeds COVID-19 test results, “enabling staff to quickly 

put infection prevention and control measures in place where necessary.”8

7�Developed by the Dublin unit of UiPath Inc., the robotic software application 
distribute test results from the on-site lab in minutes, “enabling staff to quickly 
put infection prevention and control measures in place where necessary.” Loten, 
Angus (April 6 2020). Wall Street Journal (Online) [New York, N.Y].

8�Ibid.

Table 8-1.  (continued)

Application Categories Examples

3. � Logistics and 
communication

• O ptimize communication flows

• �U se chatbots and RPA to provide public access to 

health services and to automate fulfillment of those 

services

• A utonomous transport services

• �T ransport infected or possibly infected individuals to 

care facility

• T ransport contaminated specimens and wastes

4. � Continuity of work 
and maintenance 
of socioeconomic 
functions

• T eleoperation and Automation

• � Continue manufacturing and utility operations 

through robots and remote control

• �P rovide automation to order supplies, and robots to 

delivery and restock them in local stores
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However, automating venipuncture and subsequent blood analysis is 

a research challenge, but a solution is currently under assessment for use 

with humans.9 If successful, automated or robotic methods for drawing 

and then immediately test blood samples would both protect health 

works and greatly facilitate screening. Applications such as this one may 

someday transform healthcare and disease control.

�The Transformation of Work
With increasing regularity AI, automation and robotic systems are 

transforming the way we work and play. They are altering our expectations 

about what humans and machines can achieve. These technologies 

enable us to discover correlations in data and thereby discover new 

pharmaceuticals or new uses for existing pharmaceuticals, to conduct 

thousands of experiments in parallel, to have greater success in search-

and-rescue missions, and to explore planets through semi-autonomous 

rovers and satellites. Its impact on surgery, job screening, and customer 

care is more complex with both positive and negative outcomes. And, the 

potential of military robots is frightening.

AI and robotics are the result of deep yearnings within society and 

humanity for help—someone or something that can provide wise guidance 

or accomplish tasks that are too difficult, dangerous, or undesirable. We 

have also long known about the dark side of these yearnings: the danger 

of a malevolent superintelligence, the damage caused by an out-of-control 

wish to a Genie, or the slow self-destruction created by too much idleness 

(because others are doing the work and making the decisions).

9�See, for example, Leipheimer, J. M., Balter, M. L., Chen, A. I., Pantin, E. J., 
Davidovich, A. E., Labazzo, K. S., & Yarmush, M. L. (2019). First-in-human 
evaluation of a hand-held automated venipuncture device for rapid venous blood 
draws. Technology, 7(03n04), 98-107.
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In this book, we have taken the middle path, examining the benefits, 

disruptions, and misfortunes, but with the conviction that proper diligence 

and human governance can create a better society in which tasks that 

are too dangerous, difficult, dull, or dirty are done by robots with human 

guidance; that by applying ethics-by-design principles, manufacturers 

can design and develop collaborative robots that operate alongside, 

symbiotically, with humans.

�Artificial Unintelligence
When discussing the potential of robots and automation to transform 

work and culture, the question of artificial intelligence is often raised: Will 

machines become as intelligent as we are? Or, more intelligent? Will they 

take over the world and rule humanity? And how soon?

In this book, we have not focused on general artificial intelligence, 

which is defined as the hypothetical capacity of a machine to learn and 

reason about any cognitive task, as well as or better than a human. This 

hypothetical capability can be contrasted with the domain-specific 

capabilities of current AI systems. These current systems can acquire 

remarkable skills at playing two-person games or six-person Texas 

Hold’em, accurately predicting the weather or modeling the shape of a 

molecule. An algorithm designed to win poker against humans would 

not likely be able to predict the weather. Each algorithm is tuned to the 

parameters of its “game.”

Discussions about artificial intelligence and its limits often lead to 

discussions about the Turing test. The Turing test is the iconic test of a 

machine’s intelligence and, in particular, its conversational ability.  

The test is typically constructed to be “game” in which an AI software 

contestant attempts to be indistinguishable from a human. As illustrated in 

Figure 8-1, during the test an interrogator communicates with a machine 

and a human through text. No one can see the other, and the interrogator 
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must decide who is the human. The interrogator sends a text message and 

the machine and human each send their separate replies. From the point 

of view of the machine and the human, the conversation is dyadic—they 

only know about their dialogue with the interrogator.

As we write this, in March 2020, one of the authors asked Amazon’s 

Alexa, “Alexa, can you talk to more than one person at a time?” Alexa 

answered, “Sorry I don’t know that one.” This was followed by, “Alexa, can 

you pass the Turing test?”, to which Alexa replied, “I don’t need to. I am 

not pretending to be a human.” Conversational interfaces currently have 

limited ability to track the conversational flow in complex conversations 

and they typically cannot recall or make of use of prior conversations. 

Clearly, the version of Alexa that we accessed cannot pass the Turing test.

The developers of several conversational interfaces have claimed that 

their software has passed the Turing test, arguing that the Turing test is 

passed if a computer is mistaken for a human more than 30% of the time.

On June 7, 2014, Eugene Goostman, a software program that simulates 

a 13-year-old Ukrainian boy, was said to have passed the Turing test, 

Figure 8-1.  A diagram of the classic Turing test
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a University of Reading competition.10 On May 9, 2018, Google’s CEO 

declared in reference to Duplex, Google’s conversational voice technology, 

“In the domain of making appointments, it passes the Turing test.”11 The 

premier demonstration of Duplex was very impressive—it paused before 

responding, elongated certain vowels as if it were thinking, and inserted 

“uh” and “um,” when appropriate.

Did these conversational interfaces pass the Turing test? We don’t 

think so. As suggested by Harnad in 1992, the Turing test was not intended 

as a 5-minute game that can be won through clever distractions. The 

likely intent that was expressed through three variations of the “Imitation 

Game” was not to propose a 5-minute test of the ability to mimic human 

reasoning, conversation, or some other form of performance. The 

intent suggested by Harnad was that the Imitation Game was a thought 

experiment to demonstrate that the attribution of intelligence (human or 

otherwise) is not based on any deep intrinsic knowledge of other minds 

that is available after a short interaction, but is rather built up over many 

experiences. We cannot read minds, we can only judge behavior.

We bring this up, at the conclusion of this book, for three important 

reasons:

Firstly, the ability to mimic humans to confuse a judge about who is 

human and who is machine should not be the goal of collaborative robots 

or automation. Attempting to fool a human associate might be a serious 

ethical violation—it should always be clear when a decision or action is 

solely based on an algorithm; whether its investment advice, the reporting 

of a newsworthy event, or the far more serious judgment about someone’s 

10�BBC News (June 9, 2014). Computer AI passes Turing test in “world first.”  
www.bbc.com/news/technology-27762088 [accessed on March 25, 2020].

11�Richard Nieva (May 10, 2018). Alphabet chairman says Google Duplex passes 
Turing test in one specific way. CNET. www.cnet.com/news/alphabet-chairman-
says-google-duplex-passes-turing-test-in-one-specific-way-io-2018
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innocence or guilt, it should always be clear to those that are impacted that 

the decision or action was the result of machine-based decisions.

Secondly, organizations and institutions often err in thinking that 

a machine intelligence would make better decisions or more objective, 

less biased decisions. Machine-based decision-making works best when 

the rules of the game are clear, as in a machine-learning system that 

plays chess or Go, or as in RPA where a business process is well defined, 

and each decision point has been considered by the process architect. 

The immediate danger of AI is not general superintelligence, but that 

institutions and businesses are “outsourcing” important decisions to 

machine-learning systems that are biased and limited by the data they 

process and by the domain-specific, single-purpose algorithms that drive 

their decision-making.

Thirdly, the algorithms that are hyped because they pass the Turing 

test often fail on closer inspection. As we worked on this book, it became 

clear that perceived progress in the domains discussed in the book has 

been greater than actual progress. This is supported by the research 

conducted by our colleagues in projects, other researchers around the 

world, and our own research. According to the media, autonomous 

vehicles are only a few years away, smart buildings are being constructed 

at a great rate, business processes are being supported by automation, 

and we will soon see customer facing and frontline operatives being 

completely replaced by conversational software robots.

These so-called advances also include medical robots that can replace 

doctors, robots managing end-to-end supply chains, and robot pickers in 

agriculture. A parent that one of the authors met described how scared she 

is for her 5-year-old daughter’s future because of all the jobs being lost to 

robots and automation. Her anxiety was easy to see and appreciate and in 

part provided some motivation for the book.
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�Working with Automation and Robots
Work in the future will change for many people and some areas of 

employment will be radically different over time. We see work being 

immediately affected by fewer jobs in transport, supply chain, and clerical 

tasks. This pressure is starting to be felt and will only increase.

Job losses are already being felt in repeatable clerical tasks and the use 

of tools like RPA is only going to accelerate this trend. One of the reasons 

for this is that RPA has a low cost of entry that is attractive to small- and 

medium-sized businesses. Training costs are comparatively low. A process 

can be automated more easily than a programmer can write a script. RPA 

is also attractive because of its ability to repeat a process in the same way 

every time without getting tired or bored and without making a mistake. 

Looking at literature online, it is clear that RPA has moved out of the lab, 

through testing, and is now an increasingly mature solution that is being 

sold to support business processes. In the RPA chapter we also discussed 

the strategy of keeping the solution either in the IT department or separate 

from the IT department and this can also have an effect on staffing levels. 

The pace of change has been accelerated by the COVID-19 pandemic and 

the work-only-from-home restrictions—hospitals, food distributors, and 

manufacturers are more willing to start pilot projects that introduce robots 

and automation.

However, there will also be new jobs created as people are released 

from menial tasks and are allowed more creative and sophisticated work. 

Work practices will also change, with a change in the balance of home 

working and commuting to new purpose-built smart buildings.

Artificial intelligence, machine learning, and deep learning are tools 

that can develop automation to the next level. Currently RPA can only 

execute existing processes. According to Serge Mankovski who was 

interviewed for the RPA chapter, AI tools will come into their own when 

process automation moves to process optimization. Intelligent automation 
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should be able to examine both the business processes and their 

supporting infrastructure and optimize the whole process from end to end. 

This would cause disruption to the workforce since it would be able to take 

decisions in a more flexible way.

Successfully integrating robotic systems into the workplace requires 

careful examination of the goals and attitudes of those impacted by the 

new processes. Altering a business process may create efficiency in one 

area of concern but might create other logistical and social problems. 

When workers work alongside collaborative robots, they must be 

convinced that cobot is not recording every action and utterance or, if 

so, that the data will be kept private unless there is an extraordinary and 

compelling legal reason to analyze and expose it. This applies not only 

to social cobots that move and directly interact with humans but also to 

autonomous vehicles and smart buildings, and to robotic software that 

sifts through emails. Transparency and commitment to ethics is essential 

to a healthy work environment.

Creating a successful application takes time, patience, and money. 

It does not happen at “Internet speeds.” A good example is self-driving 

cars and trucks. The expectation that they will be driverless and on the 

roads in just a year or so has been replaced by the understanding that 

change takes time. Due to regulation and technical difficulties, they will 

need a supervisor/driver for some years to come. An entire ecosystem of 

laws and regulations, of road-service providers, and of containers that are 

easily managed by mechanical hands needs to be created alongside the 

machine-learning algorithms.

In this new ecosystem, jobs may be lost, for example, in delivery and 

supply chain after automation, and robots are fully integrated. The job 

losses in these domains are frequently offset by productivity boosts and 

new work opportunities. When driven vehicles are replaced with driverless 

vehicles, opportunities will open up for more sophisticated servicing and 

maintenance. Computer engineers will be in demand to fix problems with 

the technology of the driverless car as well as mechanical engineers to fix 
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the engine and brakes. Retraining will be an important factor in preparing 

for a driverless future.

Commuters in the future will have the chance to change their working 

practices. If you can work in a driverless vehicle, not being affected by 

motion sickness, you can leave your smart office earlier than normal 

and work all the way home. Suburbs will be pushed farther out as a long 

commute is the equivalent of working times. Changing these working 

practices may well result in better work/life balances and fewer stress-

related illnesses as well as a reduction in road rage.

Employee health is a concern in some organizations that have a 

high rate of sickness absence. Smart buildings can provide personalized 

environments for workers, reducing the incidence of sick building 

syndrome. Smart buildings will also be able to remove the stress of parking 

at work by transmitting parking information to staff who are in driverless 

vehicles and on their way to work, assuming that the staff need parking 

information.

Data fusion is one of the tools that will allow all of this technology to 

deliver an integrated view of the work environment that can be understood 

by all stakeholders. Progress in high-quality machine learning and real-

world models is still in the laboratories, but there are many research 

organizations working on this problem. The question of how the mix of 

digital, video, audio, radar, and GPS data can be gathered and fused into 

a single view is complex and the presentation of data fusion results will 

also be a challenge. Some of these solutions will take time to develop and 

commercialize, and the effects will not be felt in the next few years but over 

a much longer term.

Collaborative robots have the potential to increase the effectiveness 

of their human collaborators. Awareness of the autonomous entities in a 

collaborative team by its members will enable collaboration at a distance 

as well as in the immediate vicinity. For example, a collaborative team 

of robot and human bartenders and servers in a small space will use 

the same technology as a search-and-rescue team working over large 
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distances. Simple robots such as robot vacuum cleaners will evolve to 

collaborate with human occupants, kitchen appliances, and waste disposal 

robots to manage a home, an office, or a factory. There are still complex 

technology problems to solve in maintaining safety and exercising 

judgment in decision-making. Many of these problems are, again, in 

the more distant future, but they will be solved. Society will evolve as 

collaborative robots evolve. In the future we will face as many societal 

challenges as there are technical challenges.

�Final Thought
At talks about machine learning and robotics, we are often asked, “What 

advice can you give to those who are entering the workforce?” The answer 

is that work has been transformed by computers, by the Internet, and 

now by automation and tomorrow by AI-based robots. This does not 

mean that humans should compete with machines, rather we should be 

more human—the skills that are needed more than ever by industry from 

humans are curiosity, sociability, adaptability in thought and perspective, 

creativity, ethical judgment, and natural intelligence.
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