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Abstract  
 

We conduct a systematic and interdisciplinary review of empirical literature assessing 

evidence on induced innovation in energy and related technologies. We explore links between 
demand-drivers (both market-wide and targeted); indicators of innovation (principally, patents); and 
outcomes (cost reduction, efficiency, and multi-sector/macro consequences). We build on existing 
reviews in different fields and assess over 200 papers containing original data analysis.  

Papers linking drivers to patents, and indicators of cumulative capacity to cost reductions 
(experience curves), dominate the literature. The former does not directly link patents to outcomes; 
the latter does not directly test for the causal impact of on cost reductions). Diverse other literatures 
provide additional evidence concerning the links between deployment, innovation activities, and 
outcomes.  

We derive three main conclusions. (1) Demand-pull forces enhance patenting; econometric 
studies find positive impacts in industry, electricity and transport sectors in all but a few specific 
cases. This applies to all drivers - general energy prices, carbon prices, and targeted interventions 
that build markets.  (2) Technology costs decline with cumulative investment for almost every 
technology studied across all time periods, when controlled for other factors.  Numerous lines of 
evidence point to dominant causality from at-scale deployment (prior to self-sustaining diffusion) to 
cost reduction in this relationship. (3) Overall Innovation is cumulative, multi-faceted, and self-
reinforcing in its direction (path-dependent). We conclude with brief observations on implications 
for modeling and policy.  

In interpreting these results, we suggest distinguishing the economics of active deployment, 
from more passive diffusion processes, and draw the following implications. There is a role for policy 
diversity and experimentation, with evaluation of potential gains from innovation in the broadest 
sense. Consequently, endogenising innovation in large-scale models is important for deriving 
policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation to the 
qualitative socio-technical transitions literatures could be a fruitful area for future research. 
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1. Introduction 
 
The last few decades have seen a huge growth of literature around the economics of technological 
innovation from diverse perspectives. A common theme is that innovation is at least partly entwined 
with, not separate from, economic and policy conditions - it can be induced by these factors. This could 
have important implications for the economic effects of, and policy strategies towards, deep 
decarbonisation - as suggested most powerfully by the rapid development of modern renewable 

energy technologies.1

 
However, innovation processes are complex and hard to model. Most national energy-economy 
models, and large-scale global Integrated Assessment Models (IAMs) that seek to represent global 
energy systems and their economic and environmental interconnections, often take energy 
technology cost developments as exogenous. In this case, any projected improvements are input 
directly in assumptions, arriving like ‘manna from heaven’ in terms of modelled future cost reductions. 
In addition (and perhaps, partly in consequence), there is often also controversy over the use of 
innovation-related arguments to justify policies which promote (currently) more expensive 

technologies (OECD, 2013).2  
 
This is partly because of complexity, in both modelling and policy appraisal, but also because the 
evidence base on induced innovation remains diverse and sometimes disputed, and quite poorly 
characterised. Gillingham, Newell, & Pizer (2008) concluded a decade ago, following an extensive 
review of the representation of innovation dynamics across a range of IAMs that “our ability to 
conceptually model technical change has outstripped our ability to validate models empirically.” 
 
It is almost a decade since Kemp & Pontoglio (2011) described studies of the innovation effects of 
environmental policies in terms of the “blind man and the elephant”, and called for mixed-methods 
approaches to try get a fuller picture of innovation processes. This paper aims to answer that call, 
through a systematic review of the empirical literature on induced innovation in low-carbon and 
energy-efficient technologies: specifically, the evidence on the extent to which ‘demand-pull’ forces 
induce technological innovation. Such literatures tend to be quite disparate, using sometimes radically 
different methodologies to look at different aspects or metrics of innovation processes. 
 
Most of the studies included in well-known reviews such as Popp, Newell, & Jaffe (2010), extended in 
Popp (2019) use patents as the major indicator of innovation, as does the widely-cited analysis of the 
automobile sector by Aghion et al (2016). These represent the tip of iceberg of hundreds of studies, 
which in this review we note now constitutes an emerging literature quantifying the ‘elasticity’ of 
patent generation with respect to market prices.  
 
There is little overlap between these studies and the more engineering-based experience curve 

literature which maps correlation between cumulative deployment3 and cost reduction, as reviewed 
for example for energy supply technologies by Rubin, Azevedo, Jaramillo, & Yeh (2015) and Samadi 
(2018), and for energy-demand-side technologies by Weiss et al (2010). We do not seek to duplicate 

                                                        
1 By 2017 solar PV costs had fallen below what experts had earlier predicted for the year 2030 (Nemet, 2019). 
Auctions in many countries since then have seen prices below the cost of conventional power generation 
(Bloomberg/CFLI, 2019). See also Section 6. 
2 “Market-based approaches like taxes and trading systems consistently reduced CO2 at a lower cost than other 
instruments. Capital subsidies and feed-in tariffs were among the most expensive ways of reducing emissions.” 
(OECD, 2013) 
3 Cumulative deployment is generally interpreted as the total capacity manufactured or installed over time. 
Much literature also uses the terms deployment and diffusion almost interchangeably; this paper suggests a 
distinction between these (Sections 2 and 9). 
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these reviews, but rather, to complement them by exploring also evidence around cause-and-effect 
from disparate sources, including quantitative (econometric), qualitative and mixed-methods studies. 
 
In covering these other literatures, and by setting both patent and experience curve metrics  in a wider 
view of innovation in our discussion (section 8), we also explain the limited overlap between these 
two disparate quantitative literatures, arguing that to a significant degree they measure different 
parts of overall innovation processes. 
 
Other reviews explore the impacts of different energy-climate policy instruments on varied outcomes 
including innovation, such as Peñasco, Anadon, & Verdolini (Accepted) and del Rio & Bleda (2012). Our 
topic also has some overlap with reviews of the Porter Hypothesis – the idea that environmental 
regulation could stimulate improved corporate performance (e.g. reviews by Cohen & Tubb, 2018; 
Ambec, Cohen, Elgie, & Lanoie, 2013**)– but only to the (limited) extent that those reviews cover 
studies that assess the ‘weak’ and ‘strong’ forms of Porter Hypothesis for technologies (as opposed to 
business practice) in energy (Section 8, note 32). 
 
Our review thus aims to provide a uniquely broad coverage of findings from disparate areas that have 
so far mostly been studied in isolation. It offers a first attempt to systematically review the empirical 
evidence for energy technology innovation induced by demand-pull factors across these literatures. 
We also explore the major factors that give rise to demand-pull phenomena. From this, we seek to 
provide a much fuller picture of the nature, drivers and potential implications of induced innovation, 
with particular relevance to the challenges of modelling and policy for deep decarbonisation.   
 
We start by outlining a general framework for understanding some of the different ‘parts of the 
elephant’ in Section 2. Section 3 describes our focus and methodology, and Section 4 the broad 
characteristics of the literature found. Section 5  presents our findings concerning the impact of 
market-wide drivers (focusing upon energy prices and carbon pricing). Section 6 summarises the main 
findings concerning the role of targeted demand-pull policy instruments, in the context also of 
literature on experience curves, delving into the specific conclusions concerning different component 
influences; Section 7 considers the cross-cutting and survey literature on policy mixes. Section 8 
considers emerging literature on macro-economic dimensions. In Section 9 we draw together these 
findings into broader integrated conclusions about the evidence on induced innovation, and finally in 
Section 10, we discuss the primary conclusions and implications for energy system decarbonisation 
modelling and policy. 

2. Context: innovation processes in energy technologies  
 
Innovation is generally understood to be the outcome of a system of interacting actors, technologies 
and institutions  (Freeman, 1987; Gallagher et al., 2012; Hekkert, Suurs, Negro, Kuhlmann, & Smits, 
2007). Within that systemic context, new technologies typically undergo a process of maturation, from 
invention, through innovation and diffusion: in this broad characterisation, we interpret innovation as 
the multiple processes that improve the realised characteristics of a technology (including cost) as it 
evolves from invention to widespread diffusion.  
 
The resulting concept of an ‘innovation chain’ is depicted in Figure 1. This emphasises the different 
stages, the feedbacks between them, and the way that innovation in a given technology is situated 
within the broader innovation system context comprising the knowledge processes, adoption stages, 
actors, and financial resources involved, all of which of course also interact.  
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Figure 1: The innovation chain, with feedbacks and broader context  

Source: Adapted from Grubler & Wilson (2013), with authors’ permission 
 
Innovation studies traditionally distinguish between ‘technology-push’ policies (for example, research 
grants that directly aim at increasing the supply of innovation) and ’demand-pull’ factors that create 
a market for innovations. Figure 2 represents schematically the shift from technology-push to 
demand-pull as a technology matures, and correspondingly, often from mainly public to primarily 
private funding (this simplified linear form does not capture the feedbacks, but the fact remains that 
any technology needs to pass through all these stages to reach maturity).   
 

 

Figure 2 Innovation chain from novel to mature technology, technology push and market pull   

 
The impact of demand-pull on innovation likely varies across sectors and will reflect, to an important 
degree, how well the stages – the ‘push’ and ‘pull’ - are connected in each sector depending on their 
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characteristics. Sectors that are commonly recognized as highly innovative, like IT and 
pharmaceuticals, typically spend 10-15% of their turnover on R&D (though in practice they still draw 

heavily on underlying public R&D).4  Grubb et al. (2014)** suggest that in these sectors, demand-pull 
is intrinsically a powerful force for innovation because there is high product differentiation, with huge 
profits for successful new products. Moreover, for IT at least, the ‘technology-push’ is (or at least was) 
relatively cheap and rapid. The profits from the Apple Mac and iPhone alone, with product innovation 
and expansion through rapid cycles, were enough to propel Apple to being one of the biggest 
companies in the world.  
 
Energy is different.  Some of the major energy-using sectors, notably industry and transport, have R&D 
intensities typically around 3-5% of turnover; the energy supply sector itself has traditionally spent 
less than 1% of its turnover on R&D, a huge discrepancy underlined by Grubb, Hourcade, & Neuhoff 

(2014, Chapter 9)**.5  In these sectors, more efficient energy-using technologies generally have to 
compete on the basis of energy cost, rather than offering new and better functionality. Energy supply 
technologies tend to be big, complex, expensive and slow to develop; and new entrants must sell into 
established markets dominated by incumbent industries selling the same product – electrons, or 
hydrocarbon molecules. Neither has scope for supernormal profits. A broad literature exists on energy 
supply technologies and the ‘technology valley of death’, reflecting large risks and much reduced 
incentives for private innovation.  
 
This specificity of the energy sector does not make demand-pull forces irrelevant - indeed, that same 
literature cautions against the state simply trying to substitute with stronger technology-push (for a 
recent review, of literature and case studies on both the ‘valley of death and the technology pork 
barrel’, see Nemet et al., (2018))**.  It does, however, justify the need for a detailed evaluation of the 
evidence around how and when demand-pull forces have influenced innovation in energy specifically, 
and the role of varied forms of public demand-pull policy. 
 
The classic innovation chains as presented in Figure 1 suggests a simple step from market formation 
to diffusion and justifies a focus on the ‘RD&D’ stages – addressing the classically recognized market-
failure of spillover – assuming that the market can then take over. In Figure 2, however, we indicate 
between these, a discrete step of deployment (and to enhance clarity, suggest the preceding step as 
the commercialization dimension of market formation). The literature often treats deployment and 
diffusion as almost synonymous. In drawing conclusions from the literature (notably, sections 6 and 
8), we articulate why it seems useful to distinguish a distinct step in which a technology is deployed 
at scale, before it is cost-competitive with incumbents (without targeted support) . As a technology – 
perhaps in combination with changes in the surrounding system – becomes more inherently 
competitive, it thus enters the phase of self-sustaining diffusion.  

3. Focus and Methodology  
 
Systematic reviews use a clear a priori strategy for obtaining literature, and standardised process of 
extracting and synthesising findings (Uman, 2011). The requirement for transparent research design 
and justification of study exclusion criteria aims to improve replicability and rigour of the review 
(Pullin, Frampton, Livoreli, & Petrokofsky, 2018; Tranfield, Denyer, & Smart, 2003). In this section we 

                                                        
4 In The Entrepreneurial State (Mazzucato, 2012))** underlined that in fact government spending has had a 
hugely important role in contributing, for example, to the technologies underpinning the iPhone.   
5 Literature comparing innovation across sectors seems limited, but the observation goes back at least 20 years; 
Frank et al (1996)** observed that energy/environmental technologies received barely 2% of US Venture Capital, 
compared to over 15% in each of biotech, health, and telecoms – remarkably similar to the data on R&D spend 
reported in Grubb et al. (2014)**. 
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clarify the focus, and the three stages of review as guided by Pullin et al. (2018) guidelines for evidence 
synthesis: search strategy; screening; and data extraction. 

 
Against the background sketched above, we made four choices regarding the scope of this review:  
 
First, our focus is on innovation in low-carbon and energy-efficient technologies including both new 
products and new production processes, with ‘innovation’ reflected by ‘indicators’ of innovation 
activities and ‘technology outcomes’ mainly in terms of cost reduction and energy-efficiency 
improvements. Although the set of potential indicators of innovation activities in the scope of our 
review is wide, the available literature is heavily skewed towards a rather narrow range of indicators 
of innovation processes. There is a need to develop data on wider range of innovation activities, 
including those related to private R&D, finance, technology characteristics, firm entry and exit 
dynamics, and others. This is important for developing a clearer picture of the diverse processes that 
underpin energy innovation, as discussed in Sections 9 and 10. We do not consider other ways in which 
innovation may generate qualitative changes in the services provided by energy technologies (e.g. 
‘smart’ energy appliances). 
 
Second, we explore the role of ‘demand-pull’ factors in driving innovation, including both energy 
prices and policy instruments, ranging from those correcting broad market failures (e.g. carbon 
pricing) to more targeted instruments (e.g. feed-in tariffs). We have not sought to include studies that 
focus solely on the impacts of ‘technology push’ (i.e. publicly-funded RD&D) – for which the purpose, 
of driving innovation, is self-evident and evaluated in other literatures - nor do we attempt to weigh 
the relative importance between ‘demand-pull’ and ‘technology-push’ influences. 
 
Third, we have not directly examined the impact of demand-pull drivers on the simple diffusion of 
technologies, nor on changes to firm-level competitiveness (the Porter Hypothesis literature), to 
maintain our core focus on innovation in technologies and technological systems, and avoid conflation 
with issues of individual and organisational behaviour.  
 
Finally, beyond the usual scope of energy-innovation studies, we also review the literature that 
examines macro-level indicators of innovation induced by demand-pull factors, to explore whether 
innovation in specific technologies has produced a measurable impact at sector and economy-wide 
levels. 
 
Because a primary interest of this review is to explore how, as well as if, demand-pull factors induce 
technology innovation, we include econometric, qualitative and mixed methods empirical studies in 
our review. Whilst the econometric literature may demonstrate correlations or connections between 
factors, it is less suited to empirically exploring why they are connected. For the qualitative and mixed-
methods literature, the opposite is generally the case. 
 
Relational components of the innovation process 
 
We structure our review based on the framework shown in Figure 3. We delineate Demand-pull 
Drivers, Innovation activities and Innovation Outcomes as numbered nodes in the innovation process. 
The focus of the review, and consequently on our literature search strategy, is on the nature of the 
links between these nodes. We term these links ‘Search-Links’, and denote them using numerals. The 
search links are described as follows. 
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Figure 3. Innovation interactions: drivers, activities and outcomes 

• Search-Link I (SL-I): the impact of demand-pull drivers (1) on innovation activities - the 
compressed innovation chain represented by (2) - and outcomes (3). The literature on the former 
is large and dominated by patent-based studies; fewer look at outcomes such as cost.  The Drivers 
cover both market-wide (energy and carbon) prices (1a) and targeted policies and instruments 
(1b); the links covered include how these drivers impact both activities (SL-I(i)), and innovation 
outcomes (SL-I(ii)).   

• Search-Link II (SL-II): The impact of (often cumulative) deployment, the final element of (2), on 
innovation outcomes (3), in particular cost reduction, drawing most directly from the ‘experience 
curve’ literature, along with other literatures which examine cost decompositions, and qualitative 
studies.   

• Search-Link III (SL-III): Sector- or economy-wide ‘macro’ outcomes (such as energy productivity) 
(4) that can be attributed to technology innovation induced by demand-pull drivers (1a and 1b) 

 
These distinctions inform the design of our literature search methodology. Our review is limited to 
published, English-language, peer-reviewed, academic journal articles that report empirical analysis 
of the relationships described above. The review did not impose any geographical or temporal 
constraints, nor is the review restricted to any particular form of analysis. 
 
Search Strategy  
 
Search terms for each of the three Search-Links described in Section 3 were developed iteratively 
through author suggestions, trial database searches, and consultation with external subject-matter 
experts (principally Lead Authors in the IPCC’s 6th Assessment Report, through an information 
meeting in April 2019). Terms for each Search-Link were tested individually, and those which either 
had no impact on the number of returned articles, or resulted in a large number of irrelevant results, 
were substituted or excluded.  Specific points about the Search strategy to note:  
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Search-Link I: Demand-pull drivers to innovation activities and technology outcomes. The major 

market-wide drivers comprise energy prices and carbon prices.6 Targeted demand-pull policies 
identified through author consultation were dominated by feed-in-tariffs, renewables portfolio 

standards and auctions7.  
 
Search-Link II: Deployment to technology outcomes. Due to the high volume and low specificity of 
results pertaining to searches of technology deployment/diffusion and innovation outcome and 
indicator terms, our approach to Search-link II focused on energy and decarbonisation technologies 
directly, using a similar consultation and testing process, which we combined with ‘learning’ process 
terms to capture relevant experience curve literature.  
 
Search-Link III: Demand-pull drivers to macro outcomes. This extends the Search-Link I terms to include 
macro-level outcomes and related terminology using the ‘OR’ and ‘AND’ Boolean functions, with 
results largely a sub-set of results from Search-Link I, though ‘macro’ studies that were retrieved by 
Search-Link I but were not included in this sub-set were subsequently transferred during screening (a 
total of 40, of which 17 were retained).  
 
Table 1 presents example search terms for each link. For a full list of search terms, see Appendix I. 
 
Table 1: Structure of literature search strategy with example terms 

Search-Link Search string structure Example search termsa,b 

SL-I: Demand-pull drivers (1a & 1b) → 
innovation activities (2) & technology 
outcomes (3)  
 

[market-wide drivers OR demand-pull 
policies] 

AND 
[innovation activities OR innovation 

outcomes] 

• energy regulat* 

• carbon trad* 

• oil pric* 
• cost reduc* 

• increase* productivity 

• patent 

SL-II. Deployment & diffusion (2) → 
innovation outcomes (3) 

[energy generation, efficiency OR 
decarbonisation technologies] 

AND 
[Technology innovation processes] 

• wind 

• carbon capture 
• fuel cell 

• batter* 

• learning-by-doing 

• experience curve 

SL-III: Demand-pull drivers (1a & 1b) → 
macro- outcomes of technology 
innovation (4) 

[market-wide drivers OR demand-pull 
policies] 

AND 
[innovation activities OR innovation 
outcomes OR macro-level innovation 

indicators] 
AND  

[macro-level terms] 

• aggregate technology stock 

• capital accumulation 

• structural change 

• absorption capacity 
• endogenous growth 
 

a full search strings given in Appendix I 
b ‘*’ indicates truncation 

Searches were conducted for each link between April and June 2019 in the Web of Science Core 
Collection database, selected for its comprehensive coverage of science and social science literature. 
Terms were formulated into Boolean search strings, using term truncation where appropriate to allow 

                                                        
6 Our original search included terms regarding market structures (particularly related to liberalisation and the 
degree of competition).  We concluded that the literature in this area was too diverse, as were the results 
(showing no consistent relationships of market structure to innovation partly because of national specificities), 
to draw useful conclusions in the context of this review.   
7 The following energy-related demand-pull policies were explicitly searched: auctions, efficiency and 

technology standards, renewables certificates, renewables portfolio standards, time-of-use pricing, taxes and 
trading, feed-in-tariffs, network regulation, capacity mechanisms, consumer subsidies, though any returned 
demand-pull policy was considered in-scope during article screening. 
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for flexible word permutations. In total, 4,798 results were generated (dominated by SL-I, which 
returned 3,431 results).  
 
Literature Screening  
 
Studies were considered in-scope if they i) related to energy generation technologies, the energy use 
or efficiency of energy-using technologies, technologies for energy efficiency, or low carbon 
technologies, ii) examined the influence of demand-pull drivers on innovation, iii) were based on 
empirical evidence and presented original analysis, and iv) were published in an English-language 
peer-reviewed academic journal. For SL-II, studies on demand-side technologies were considered in 
scope if the deployment and diffusion of the technology may be reasonably considered an intentional 
result of government policy targeting decarbonisation or energy efficiency. This allows the link 
between demand-pull drivers of innovation, and innovation outcomes, to be maintained. 
 
Studies were screened against these criteria (applied in parallel) first by title, then abstract, 
then whether or not they had been subject to peer review, and finally by full text. If at any stage at 
least one of the criteria was found not to be met, the study was screened out. In cases of uncertainty, 
a precautionary approach was taken and articles were retained to the next stage. Literature screening 
was carried out by two of the principal authors. These authors worked closely together and conduced 
double-coding of a random selection of studies to ensure consistency of approach. The final pool of 
studies were then distributed for data extraction and synthesis to different author sub-teams 
(depending on specialisation and interests), facilitated by the sub-division of demand-pull drivers into 
market-wide (energy and carbon) prices (1a) and targeted policies and instruments (1b). Owing to the 
very different nature of their research approach, qualitative and mixed method studies were 
separated and reviewed independently from quantitative literature. This left five categories of studies 

that were evaluated separately by the author sub-teams, as summarised in Table 2.8  
 
Table 2: Screening statistics  

 
 

Screening Stage 

Search-
Link  

Evaluation Group Initial 
results 

Titles Abstracts Peer 

review9 

Full 
texts 

SL-I(i) Energy and carbon prices → 
innovation indicators & 
outcomes (SL-I quantitative) 

1181 133 85 77 30 

SL-I(ii) Targeted policies → 
innovation indicators & 
outcomes (SL-I quantitative) 

2250 320 189 166 36 

SL-II Deployment → cost reduction 
(experience curve and related 
quantitative literature) 

1082 205 92 92 63 

                                                        
8 Studies relevant to a particular evaluation group that were picked up by an alternative Search-Link were 
transferred for evaluation as appropriate. In cases where a study was relevant to more than one evaluation 
group, it was reviewed under both groups though only the distinct relevant data was extracted by each in order 
to avoid duplication. 
9 This explicit step was added to remove studies that are contained within Web of Science, but were not 
published in a peer-reviewed academic journal (e.g. conference proceedings). 
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SL-I and 
SL-II 

Qualitative and mixed-
method literature 

(identified 
from 

above) 

129 107 107 50 

SL-III Demand-pull drivers (1a and 
1b)  → macro-level indicators 
of technological change 

285 67 62 60 26 

 Total 4798 854 535 502 205 

 
Table 2 shows how the various screening stages reduced the initial pool of 4,798 results to 205 
satisfying the inclusion criteria at the final screening stage. More than 80% of the studies initially 
retrieved across all searches were excluded during the title screening stage, mostly because they were 
not related to energy or decarbonisation technologies (especially for SL-I, where the search terms 
contained no specific constraint for energy generating, energy efficient or low carbon technologies). 
A further 7% of the initial pool were excluded following the review of abstracts, frequently due to 
either a lack of focus on innovation, or on the influence of demand-pull drivers. The remainder of 
exclusions were generally due to the lack of empirical evidence or (in a few cases) unclear 

methodologies, discovered when reviewing full texts of the remaining studies.10 Accounting for 
studies included in more than one Search-Link, a total of 197 unique studies were included in the final 
review. 
 
Studies that were bought to the attention of the authors during the course of the review, and which 
satisfied the inclusion criteria but did not appear in the initial search results, were subsequently added. 
An additional 31 studies were added this way, producing a final pool of 227 studies (with a total of 

239 results across the five Search-Link categories, including overlaps).11 
 
Data Extraction  
 
Following standard practice (Cohen & Tubb, 2018; Pullin et al., 2018), publication-level information 
(authors, title, year of publication), scope of analysis (geographical, technological, temporal), 
methodological description (data source and observations, key variables, methodology, utilisation of 
instrumental and lagged variables, robustness) and results (description, effect sign, effect size, 
significance), were extracted for each study considered to be in in scope. Cross-author consistency 
was tested through trial data extractions for a common set of studies, and the coding strategy was 
clarified or modified accordingly.  

 

4. Overall characteristics of the literature  
 

                                                        
10 Our initial search also included studies around energy market liberalisation and competition, later excluded 

(see  Note 6). Seven further studies were subsequently screened out on this basis (from SL-I), and are excluded 
from the ‘Full Texts’ values in Table 2. 
11 From Section 5 onwards, single asterisks (*) indicate studies added to the review in addition to those produced 
by our systematic search, through subsequent review and discussion with co-authors and others, and which 
satisfy the eligibility criteria outlined above. These studies are included in the statistics presented in Figure 4, 
below. Studies denoted by a double asterisk (**) are studies that fall outside the formal scope of the review, but 
which are cited to provide wider context to the discussion. Such studies are not included within the statistics 
reported in Figure 4. 
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Figure 4 provides a summary of the characteristics of the resulting literature included in the review. 

Figure 4: Characteristics of studies reviewed  

Notes: acumulative number of studies across Search-Links, including overlapping studies; btotal number 
of unique studies, excluding overlaps; cvalue represents total number of results for geographies shown, 
excluding overlaps between Search-Links. Geographies with <5 results are excluded from this chart. 
The total number of geographies examined is higher than the number of studies, as some studies 
examine more than one geography. For experience curve studies that examine global-level dynamics, 
geography is associated with the source of the cost data used. 
 
As illustrated by Figure 4a, studies most commonly examined SL-I (76), with a reasonably even division 
between drivers 1a and 1b. The vast majority of these used indicators of innovation (rather than 
outcomes) – and particularly patent activity – as the dependent variable. 76 studies examined SL-II, 
with a dominant focus on experience curves in renewable energy technologies. Just 34 studies 
examined SL-III. In total, around a quarter of studies (53) across all search-links employed qualitative 
or mixed-method approaches. Analysis of OECD countries accounted for around three-quarters of all 
studies, with Europe and the USA dominant, and with non-OECD country studies overwhelmingly 
concentrated on China (for which studies examining SL-III had a particular focus). Over 40% of all 
studies reviewed examined innovation surrounding renewable energy technologies, with the 
remainder examining innovation across a range of sectors and technologies – but with particular 
attention on the manufacturing, automotive and buildings and appliances sectors. 
 
Figure 4b shows that the majority of studies were published within the last decade (with almost half 
published since 2016), with studies examining SL-I driving this trend (although studies examining LIII 
increased substantially since 2016, with little earlier literature apparent, implying a nascent yet 
expanding field). Studies were published in 82 different journals (73 of which published four or fewer 
of the studies reviewed, and 53 of which published just one). As illustrated by Figure 4d, Energy Policy 
was by far the most common, publishing over 20% all studies reviewed. 
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The following sections present our specific findings. From a standpoint of modeling and policy, the 
issues of greater interest concern which factors influence innovation. Consequently, Section 5 
assesses the evidence concerning the impact of sector/market-wide drivers (1a: specifically, energy 
and carbon prices), whilst Section 6 explores the conjoined evidence around the impact of targeted 
policies and deployed scale (1b and SL-II). Section 7 considers policy packages and Section 8 considers 
the macro impact of induced innovation in the energy sector (SL-III). 
 

5. The impact of energy and carbon prices on energy-related innovation 
 

5.1. Overview  
 
In a relatively early study of the effects of the substantial rise in energy prices during the energy crisis 
of the 1970s, (Lichtenberg, 1986, p.75) found that “Energy price increases appear to have induced 
innovation [measured by private R&D expenditure] both directly, via their impact on the [U.S 
manufacturing firms’] own energy costs, and indirectly via their impact on customers’ costs”.  
 
Subsequent research has tended to focus more on patent generation as an indicator of innovation 
induced by energy price dynamics. Relative to data on private R&D, patent data are both more widely 
available and provide greater detail on the types of innovative activity (Popp, 2019)**. The greater 
variety and granularity of such data, over a broader range of technologies and longer time periods, 
has buttressed and elaborated the broad conclusion that increasing energy prices induces greater 
levels of innovative activity surrounding demand-side technologies. 
 
In addition to expanding patenting across fossil fuels and many energy using technologies, the past 
quarter century has seen an explosion of patenting across most low carbon technologies, which as 
indicated in Figure 5 grew almost exponentially (except for nuclear) from the late 1990s to 2010. The 
overall volume was dominated by PV and electric vehicles, with wind, batteries and biofuels patents 
also rising sharply 2005-2010 (to the range 1000-2000 patents/year). Oil and gas exploration patents 
followed a somewhat similar pattern. Since peaking in the early 2010s, patent counts for most energy 

technologies have fallen, although they remained at higher levels than in 2005.12   
 
Compared to the twenty-seven studies (quantitatively) analysing the impact of energy and carbon 
prices on patents, we identified only three which examined explicitly their impact on innovation 

outputs (i.e. technology cost or performance), namely Taghizadeh-Hesary et al. (2019); Kim et al. 

(2017); and Newell et al. (1999).  
 
 

                                                        
12 Patenting for oil and gas exploration & development technologies (drawn also from OECD patent stats, but a 
different database) was higher until the early 2000s (rising from about 400/yr to 750/yr over 2000-2005), and 
also then increased but not to the same extent; after a peak in 2013 they also declined sharply. While a few 
recent working papers consider possible explanations for the recent decline in energy patenting (e.g. Acemoglu, 
Aghion, Barrage, & Hemous, 2019; Ko, Simons, Adams, Popp, & Sanderson, 2020; Popp, Pless, Haščič, & 
Johnstone, 2020)**, the literature does not yet offer definitive conclusions. 
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Figure 5: Low carbon patents from 1990 by technology. The figure shows patent families (family size ≥ 2) by priority date, 
with technologies identified using the CPC-Y02 classes. The data was taken from the OECD database of indicators of 
innovation in environment-related technologies.   

Source: (OECD, n.d.) 

 
Patent elasticities: an emerging metric  
 
A common metric reported in the literature is the price elasticity of patent activity - the ratio of change 
in patents (either granted or applied for, depending on the study), to the change in energy price (i.e. 

a value of 0.5 indicates a 5% increase in patents for every 10% increase in price).13  
 
Popp (2002) examined the effect of energy prices on patent applications in the US from 1970 to 1994. 
Across six supply- and five demand-side technologies he estimated a short-run price-to-patents 

elasticity (epp) of 0.03-0.0614 on aggregate, with a long-run price elasticity five to ten times larger 
(0.35) in his preferred specification. Verdolini & Galeotti (2011) extended such analysis to 17 OECD 
countries for 1979-1998, also adding wind energy, finding consistent positive short-run (1-year lag) 

effects with epp averaging 0.04-0.06.15 The largest study, by Kruse & Wetzel (2016), covered patent 
applications over 1978-2009 for 11 ‘green’ technologies in 26 OECD countries, yielding a total of over 
175,000 patent counts, but found a statistically significant aggregate epp (0.53 for a 1-year lag, rising 
to 0.85 for a 3-year lag) only for the period since 1998. 
 
Most studies examining the influence of energy prices on patent activity (including those deriving 
elasticities) find that results differ substantially between technologies, and many studies focus on the 

                                                        
13 All energy prices are final (end-user) prices (i.e. including taxes and levies), unless otherwise stated. Studies 
vary in the type of patents (e.g. applied or granted). For studies examining ‘clean’ or ‘green’ patents various 
definitions are used, with one important reference point being the OECD Indicator of Environmental 
Technologies (see Haščič & Migotto, 2015). 
14 All values are presented to two significant figures. 
15 Note that in China, Li & Lin (2016) find a statistically insignificant relationship between energy prices and 
patent applications across energy supply technologies over 1999-2013, which the authors suggest is a result of 
energy prices being regulated to artificially low (and relatively constant) levels. 
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dynamics within a specific sector. We therefore organise discussion of the findings around three 
sectors: transport; electricity and industry; and buildings and appliances. Table 3, below, presents the 
key elasticities of patent activity for the first two of these three; the one study identified that 
attempted to generate relevant elasticities for the building and appliances sector Noailly (2012) found 
an insignificant connection for their primary, aggregate specification (but positive results for specific, 
‘portable’ technologies – see Section 5.4). 
 

 

Table 3 – Energy price-to-patent elasticities (epp ) (notes: values presented are from the primary or preferred 
specification of each study, as either explicitly stated or inferred, unless otherwise indicated. Only statistically 
significant results are presented. ‘(A)’ denotes patent Applications, ‘(G)’ denotes patents Granted.  
* Within their study covering data across 26 countries 1978-2009, Kruse & Wetzel (2016) also tested the more 
recent period 1998-2009. The result for biofuels changed from a negative influence to insignificant, whilst ocean 
and CCS technologies changed from a positive to an insignificant influence. However, results for solar and 
geothermal increased in the value and significance, and energy efficiency in transport and energy storage both 
moved from insignificant, to positive. The result for all technologies on aggregate also changed from 
insignificant, to positive. **Peru, Netherlands, Turkey, Italy, Belgium, France, Indonesia, Brazil, Luxembourg, 
Russia, Netherlands Antilles, Greece, Venezuela, Argentina, Mauritius, Malta, Spain). ***Bermuda, Hong Kong, 
Belize, Dominica, Thailand, Singapore, South Africa, Israel, UK, Australia, India, USA, Ireland, Sri Lanka, Cayman 
Islands, New Zealand, Barbados 
 

5.2. Transport  
 
Using a methodology similar to Popp (2002), Crabb & Johnson (2010) found an epp elasticity for energy 
efficient vehicles in the USA (1980-1999) of 0.24 for the cost of domestic oil production, and 0.36 for 
retail gasoline price. Using a panel of 12 countries from 1990 to 2012, Kim (2014) find that higher 
gasoline prices promoted patents in automotive technologies and discouraged it on oil extraction. 
However, countries with larger oil endowments generated comparatively less patent activity on 
efficient or alternative vehicle technologies.  
 

Study Geography Years Independent Variable Dependent Variable
Patent 

Elasticity

Kruse & Wetzel (2016) 26 (OECD) Countries 1998-2009 Average Energy Price Ratio: Green Patents (11 technologies) : All Patents (A) 0.53*

Verdolini & Galeotti (2011) 17 (OECD) Countries 1979-1998 Patents (12 technologies) (G) 0.4

Popp (2002) USA 1970-1994 Patents (11 technologies) (G) 0.35

'Clean' Patents (G) 0.97

'Grey' (Fuel Efficiency) Patents (G) 0.28

1998-2009 Ratio: Energy Efficiency in Transport Patents: All Patents (A) 0.77*

1978-2009 Ratio: Biofuel Patents : All Patents (A) -0.64*

Guillouzouic-Le Corff (2018) 22 (OECD) Countries 1985-2009 Household Oil Price Biofuel Patents (A) 1.5

French Civil Law Countries** 2.32

Common Law Countries*** 1.2

Kessler & Sperling (2016) 1976-2013 Biofuel (2nd Generation) Patents (A) 0.25

Jang & Du (2013) 1977-2010 Ethanol Patents (A) 0.04

Gasoline Retail Price Markup 0.45

Gasoline Price 0.36

Domestic Wellhead Oil Cost 0.24

Ratio: Solar Patents: All Patents (A) 1.12*

Ratio: Energy Storage Patents : All Patents (A) 1.08*

Ratio: Ocean Energy Patents : All Patents (A) 0.61*

Ratio: CCS Patents : All Patents (A) 0.56*

1998-2009 Ratio: Geothermal Patents : All Patents (A) 0.37*

Ratio: 'Green' Patents : All Patents (A) 0.48

'Green' Patent (A) 0.34

Electricity Price 0.87

Ratio: Biomass : Light Fuel Oil Price -0.33

Vincenzi & Ozabaci (2017) 11 (OECD) Countries 1990-2008 Electricity Price Solar Patents (A) 0.12

'Clean' (Utility) Patents (A) 0.61

Ratio 'Clean' Patents : All (Invention) Patents (A) 0.51

'Clean' (invention) Patents (A) 0.38

Lin & Chen (2019) 2006-2016 Renewable Patents (G) 0.78

Biomass Patents (A) -0.41

Renewable (Wind, Solar, Geothermal, Ocean, Biomass) Patents (A) -0.72

Wind Patents (A) -0.72

Solar Patents (A) -0.8

Ye et al  (2018) 2008-2014 Energy Price Energy Conservation & Emission Reduction Patents (A) 0.14

Bioenergy Patents (A)

Lin et al  (2018) 2000-2012 Industrial Energy Price

Electricity Price

Ley et al  (2016) 18 (OECD) Countries 1980-2009 Industrial Energy Price

Brolund & Lundmark (2014) 14 (OECD) Countries 1978-2009

1986-2005 Fuel Price

Fuel Price

Electricity & Industry

Average Energy Price26 (OECD) CountriesKruse & Wetzel (2016)

Oil Price

Kruse & Wetzel (2016) 26 (OECD) Countries
1978-2009

Average Energy Price

He et al  (2018)

China

2006-2013

Crabb & Johnson (2010)

USA

1980-1999 Automotive Energy Efficiency Patents (A)

Multi-sector

Oil & Transport

Fredriksson & Sauquet (2017) 1986-2005 'Clean' Patents (G)

Industrial Energy Price

Aghion et al  (2016) 80 Countries
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Alternatively-fuelled vehicles. The impact of gasoline prices on innovation in alternative fuelled 
vehicles appears particularly strong, and path-dependent. (Aghion et al., 2016) find almost unitary 
elasticity (epp=0.97) between end-user fuel prices and such patent generation; innovation in 
conventional technology, including fuel efficiency, was also stimulated, but to a lesser degree. They 
also find evidence of innovation path dependency; firms previously engaged in ‘clean’ innovation are 
much more likely to continue to do so in response to fuel price stimuli. Fredriksson & Sauquet (2017) 
find that this effect is strongest for firms located in countries with French civil law, rather than those 
(mainly Anglophone countries) with common law, suggesting that the relative ‘rigidity’ of civil law may 
provide greater certainty regarding future legislation and lessen incumbents’ lobbying, increasing the 
incentive to innovate. 
 
Barbieri (2015) finds a positive effect of EU transport fuel prices on global ‘green’ patenting by the 
automotive sector worldwide (1999-2010) but with the effect lower within the EU, where he argues 
that vehicle taxation in the EU (inclusive of ownership and circulation taxes, which increasingly 
reflected CO2 intensity) was instead the primary driver of vehicle innovation. Barbieri (2016) builds on 
this to conclude, from a wider international dataset, that such ‘green’ patenting induces by fuel prices 
occurs at the expense of, rather than in addition to, patenting in ‘non-green’ (gasoline) vehicle 
technology (though the form and magnitude of the coefficients produced by these two studies are 
difficult to interpret from the information provided). 
 
Biofuels. Jang & Du (2013) and Kessler & Sperling (2016) examine how oil price increases enhanced 
biofuel-related patenting in the USA, between the late 1970s and early 2010s, Jang & Du (2013) found 
epp elasticities of 0.04 (for ethanol-related technologies), while Kessler & Sperling (2016) find a value 
of 0.24 (for 2nd generation biofuels only, using their preferred patent classification method, but up to 
0.64 using a different method, and 0.4 for 1st generation biofuels). However, both studies highlight 
the important role of directed policy support (see Section 6). Expanding to 22 OECD countries over 
1985-2009, Guillouzouic-Le Corff (2018) finds (household) oil prices to be a huge driver for biofuel-

related patenting (epp =1.5), but Kruse & Wetzel (2016) find a far more complex picture.16  
 
In terms of innovation outcomes, studies that explore the relationship between fuel prices and vehicle 
efficiency (e.g. Li et al. 2009**) tend to measure improvements in the average efficiency of new sales 
– a function of technological improvement, but also consumer choice – which are often not 
disentangled. An exception is Knittel (2012)*, who finds gasoline prices to have been the principal 
driver behind a 60% improvement in fuel efficiency in passenger cars and trucks sold in the USA over 
1990-2006, once the counteracting influence of increasing vehicle weight and engine power is 
controlled for (he concludes that fuel economy standards played a small or insignificant role during 
that period, when fuel economy standards were unchanged – see Section 6.3).  
 

5.3. Electricity and industry 
 
Energy prices 
 
Electricity generation. Many electricity sector studies investigate induced innovation in renewable 
generation technologies. Bayer et al. (2013) find that for 1990-2009, for each $2 increase in oil price, 

                                                        
16 Kruse & Wetzel (2016) find negative epp =  -0.64 for biofuels (across 26 OECD countries, for 1978-
2009) – perhaps reflecting continued expansion of biofuel activities in some countries whilst oil 
prices declined from peak in 1980 to 2000 - but this turns positive (but insignificantly so) for the 
subsequent period of rising environmental stringency and then rising prices (1998-2009). Their 
results for vehicle energy efficiency patents also move from insignificant to positive (and significant), 
for this period. 
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patents filed for solar PV and wind technologies increased 13% on average over the following year 
(across 74 countries, with the impact greatest outside the OECD). Within the OECD, Cheon & 
Urpelainen (2012) demonstrate that the marginal effect of increasing oil prices on renewable patent 
applications increases with existing share of renewables in electricity generation, which (as with 
alternate vehicle technologies) suggests an important role for the existing knowledge stock and path 
dependency in innovative activity, found also by Kruse & Wetzel (2016), who in their primary 
specification (1983-2009) find highly varied energy price to patent elasticities across a range of eleven 
(low carbon) supply and energy efficiency technologies, including epp =1.12 (Solar PV); 0.56 (CCS); 0.37 
(geothermal), and 0.61 (ocean energy). Under their alternative specification (for the period 1998-
2009), energy prices also become influential for energy storage technologies, and more so for solar 
and geothermal, but insignificant for ocean energy and CCS. 
 
Vincenzi & Ozabaci (2017) find an impact of electricity prices on patent applications for solar PV (epp = 
0.11-0.12) across several EU countries, Japan and the USA, 1990- 2008. In China, Lin & Chen (2019) 
find for renewable energy patents over 2006-2016, epp = 0.78.  However He et al. (2018) find a negative 
relationship for 2006-2013 (up to -0.8 for PV), , which they attribute to inframarginal effects in 

electricity pricing.17 Brolund & Lundmark (2014) find that across 14 OECD countries for 1978-2009, 
the electricity price was a major determinant of patent applications for biomass electricity 
technologies, with epp=0.87. 
 
Industry.  Ley et al. (2016) examine energy price-induced patenting for 10 manufacturing sub-sectors 
(chemicals, basic metals and paper, pulp and print, to wood and wood products), across 18 OECD 
countries. These industries account for over 95% of all ‘green’ patents granted worldwide, for 1980-
2009. Patent elasticities increase with the lag period: for ‘green’ patents granted, epp reached 0.34 at 
a five year lag, and  0.48 when considering green patents as a proportion of all patents granted. 
Adopting the same methodology, Lin et al. (2018) find ‘clean’ patent applications across 29 industrial 
sectors in China reaching epp = 0.61 (2000-2012), however Ye et al. (2018) find positive results only 

after an in-year negative impact, attributable to short-term budgetary constraints.18  
 
Triguero et al. (2014) find that on aggregate for over 5,000 SMEs based across 27 EU countries in 2011, 
energy prices were not a significant determinant for in-house innovation. However, as might be 
expected, the influence was found to be much greater on firms that are energy-intensive, have strong 
management and technological capacities and capabilities, and engage with wider ‘knowledge 
networks’ (e.g. collaborate with research institutions). Garrone et al. (2017) come to a similar 
conclusion on the role of energy intensity on response to fuel price stimuli (although they do not 
distinguish between development and adoption of innovations).  
 
Energy taxes and carbon prices 
 
Several studies have explored the impacts of energy-related taxes and carbon pricing on 
manufacturing in different European countries. In Austria, Germany and Switzerland, Stucki et al. 
(2018) find that although energy-related taxes are positively associated with investments in internal 
process innovation in energy efficiency and renewable technologies, they are negatively associated 
with the propensity to create and sell new energy-efficient or renewable products or services. The 

                                                        
17 Specifically, they suggest lower prices increase the relative profitability of low-marginal cost renewables 
(and thus incentive to innovate), compared to a system heavily dominated by fossil fuel incumbents, as 
electricity prices reduce (and vice versa).   
18 For industries across China in 2008-2014, Ye et al. (2018) find in-year negative impact on patent applications 
for energy conservation and emissions reduction technologies, turning to +0.14 The authors suggest that R&D 
budget is initially diverted to pay energy bills, but then firms begin to compensate and innovate to reduce the 
additional cost burden, increasing the elasticity. 
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authors explain this as the incentive to invest in process innovations draws resources away from 
investment in product and service innovations, and indeed find this effect is reduced for firms 
operating at the technological frontier or have larger financial resources. Costa-Campi et al. (2017)  
find the role of general energy taxes negligible in driving private environmentally-related R&D in the 
manufacturing sector in Spain (2008-2013), however they find an elasticity of 0.28 for more targeted 
pollution-related taxes.  
 
Many studies examine the influence of the European Union Emissions Trading System (EU ETS), which 
from 2005 created an EU-wide carbon price for electricity generation and heavy industry. Calel & 
Dechezlepretre (2016) found that the EU ETS increased patent applications for technologies or 
applications for mitigation or adaptation to climate change by 9.1% (and 0.8% for other technologies, 
suggesting no crowding-out), by firms accounting for 80% of regulated emissions, for 2005-2009. 
However, Bel & Joseph (2018) find that the oversupply of emission permits in the transition from 
Phase 1 (2005-2007) to Phase 2 (2008-2012) of the EU ETS, reflected in repeated price collapses, 
dampened patent applications for mitigation-related technologies. 
 
Six studies examine whether and how firms realigned innovation activities in response to the EU ETS 
using a qualitative or mixed-methods approach. Most of these studies (Borghesi et al., 2015; 
Hoffmann, 2007*; Rogge & Hoffmann, 2010; Rogge, Schneider, & Hoffmann, 2011*) reported that the 
introduction of the EU ETS did indeed accelerate R&D activities within regulated firms, particularly 
those reliant on coal, but a radical shift in innovation strategy did not occur. Increased R&D activity 
was largely focused on CCS and efficiency, rather than renewables. Schmidt et al. (2012)* found that 
the perceived stringency of Phase 3 (2013-2020) increased RD&D investment in low-carbon 
technologies by firms who perceive it as a threat to their business (no such effect was found for Phases 
1 and 2). Similarly, Gulbrandsen & Stenqvist (2013) found the EU ETS to have influenced firm 
innovation strategies, increasing focus on energy efficiency, but it had not generated a sufficiently 
strong investment signal to scale up or deploy radical new technologies. Interestingly, most of these 
studies note that the EU ETS induced organisational changes in firms, giving CO2 emissions greater 
managerial attention.  
 
Similar results have been found by studies examining other carbon pricing instruments. Christiansen, 
(2001) observations of the Norwegian carbon tax suggest it contributed to incremental, rather than 
radical, innovation in the oil and gas sector, such as development and adoption of efficient processes 
and measures to reduce flaring. Scordato et al. (2018) note that the Swedish CO2 tax had an influence 
on innovation leading to higher energy efficiency in the domestic pulp and paper industry, though it 
was perceived to have been minor relative to other drivers (such as rising power prices). Kim et al., 
(2017)  found that carbon pricing has had an insignificant influence on patent applications for wind 
and solar PV across 16 OECD countries (for 1991-2006 and 1992-2007, respectively). Zhang et al. 
(2019) examined the role of the seven carbon pricing pilot schemes introduced in China in 2013 on 
‘green’ patent applications by regulated firms, and found a significant positive correlation (over 2013 
and 2014), however the link was less strong for sectors in which there is high levels of competition 
between regulated firms, which the authors suggest reflects such firms having fewer resources to 
invest in R&D. 
 
One likely explanation for diverse findings concerning the impacts of general energy taxation, and 
particularly carbon prices, on renewables innovation is the impact of other factors, and differences in 
the degree to which they have been controlled for in the studies examined. For example, aside from 
targeted policies (considered in Section 6), Hoppmann et al. (2013) found that increasing silicon prices 
drove the direction of PV-related R&D towards interest in thin-film technologies.  
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These findings appear to be partially echoed by the few studies which attempt to explicitly examine 
the link between energy and carbon prices and technology cost reduction, of which only two explore 
renewables. Taghizadeh-Hesary et al. (2019) find that oil price rises are linked to reducing solar 
module prices in the USA, Japan and China (but not Germany and South Korea). However, they again 
found that existing knowledge stock, along with interest and currency exchange rates, to be of greater 
influence in all five countries (from 1992 in Germany, Japan and the USA, 1993 in South Korea, and 
2007 for China, to 2015 in all cases). However Kim et al. (2017), despite finding carbon taxes to have 
an insignificant impact on patent applications for wind and solar PV, found they had a significant 
influence on reducing installed system costs for these technologies (for wind power, in particular). 
 
Finally, we note that our review did not find a literature on the innovation effects of carbon pricing 
via technology standards for carbon emissions, such as a New Source Performance Standard (NSPS) 
for power plant emissions. Compliance with standards of this type often requires the installation of 
technology (e.g., a carbon capture system) whose cost imposes a carbon price indirectly. To date, 
however, standards of this type have not yet been imposed on carbon emissions. Nonetheless, 
evidence from studies of other power plant emission controls suggests that indirect pricing of this 
type, were it to be adopted, could have a significant impact on energy technology innovation (e.g., 
Rubin, Yeh, Antes, Berkenpas, & Davison (2007))**.  
 

5.4. Buildings and appliances  
 
Just three studies focus on the impact of energy prices or taxes on patenting in buildings-related 
technologies and appliances. Noailly (2012) found that end-user energy prices of across 9 European 
countries did not have a statistically significant impact on aggregate patenting across the sector; 
however patent applications for visible, ‘portable’ technologies that may be modified with relative 
ease by the building’s occupant (e.g. boilers, lighting and air conditioning technologies), showed 
statistically significant elasticities of 0.7 to over 1.15 (depending on the specification). This contrasted 
sharply with the less visible and ‘non-portable’ technologies that cannot be easily modified by the 
occupant such as heat distribution, ventilation and building materials. The authors suggest that 
principal-agent issues may give rise to this disparity, a conclusion echoed in other studies covering 
energy efficiency technologies (e.g. Kruse & Wetzel, 2016).  
 
The second study, Costantini, Crespi, & Palma (2017a), found taxation on residential energy 
consumption to be strongly linked to patent applications for energy-efficient technologies in buildings 
across 23 OECD countries (1990-2010) when controlling for a range of other factors (including public 
R&D), which they found to be significantly less influential. By contrast, Girod et al. (2017) found taxes 
on residential energy consumption to be a negligible factor in the patent applications in the 
construction and lighting sector (1980-2009). The difference between these results may be in part 
explained by the design of the individual studies. Whilst Costantini et al. (2017) considered the ratio 
of energy tax to total price over time, Girod et al. (2017) employed a high-level proxy indicator for the 
presence of energy taxes (and other policy variables). 
 
We identified only one, twenty-year-old study of the impact of energy prices on cost reductions in 
appliances. Newell et al. (1999) found that electricity and natural gas end-user price increases induced 
cost reduction in (room and central) air conditioners but not in gas water heaters., although overall 
energy efficiency improvements were induced in all three technology groups (5-16% between 1973 
and 1993 – up to half of the efficiency gains experienced over the period). However, these conclusions 
are complicated by the fact that the introduction of labelling requirements appears to have increased 
apparent price-responsiveness.   
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5.5. Market-wide impacts on innovation – Qualitative insights and conclusions 
 
From the econometric literature there is clear and unambiguous evidence that energy and carbon 
pricing can substantially influence innovation, primarily as measured by patents. Specifically, rising 
energy prices and the introduction of carbon (and other) environmental pricing has generally 
enhanced patenting in low carbon and energy efficient technologies, but the impacts vary 
substantially by technology and sector. 
 
Other aspects of the econometric literature are also striking. The impact of prices on patents tends to 
be lagged, sometimes by several years, and those studies which include knowledge stock as a variable 
find innovation to be path dependent – the propensity to patent is greater when sectors have grown 
and accumulated more knowledge on which to build. The impact of energy prices and carbon pricing 
on innovation in industrial efficiency (particularly for more energy-intensive sectors) is clear, but 
incremental; influence on more radical innovation appears lacking. Studies on patenting in renewable 
energy usually find positive results (with higher elasticities found for studies using electricity prices as 
the independent variable, rather than a broader energy price definition). 
  
Other contextual conditions influencing innovation could include the existence and/or credibility of 
transparent information (e.g. product labels), national targets, and the wider political environment: 
Kruse & Wetzel (2016) for example suggest that the higher patent elasticities they generally found 
after 1998 might reflect the adoption of legally-binding emission targets under the Kyoto Protocol the 
year before, thus sensitizing industry and enhancing the likelihood that low carbon innovation would 
prove strategically valuable, as well as cost-saving given higher energy prices.  
 
In the econometric literature, the evidence linking to innovation outcomes is far more skeletal. The 
relative paucity of such literature is perhaps a surprise. Especially for energy efficiency, it relates in 
part to the challenge of attributing sector-wide energy intensity changes to technology innovation 
specifically, as discussed more broadly in Section 8. For energy supply technologies, examining 
innovation outcomes is complicated by the range of interconnected influences that contribute to cost 
reduction (in particular), as illustrated in the next two sections. 
 
Whilst econometric studies (whether on innovation indicators or outcomes) aim to disentangle 
different influences, the qualitative and mixed-methods literature tends to view the forces driving 
innovation inherently as a mix of factors, of which energy and carbon prices are just two examples. 
Many qualitative and mixed-methods studies focus on the actions of actors, and the (often multiple) 
rationales for those actions, in which the distinction between innovation ‘indicators’ and ‘outcomes’ 
(see Section 3) may also be less clear-cut.  A further complication is that several such studies ascribe 
changes in the policy environment to moves in energy prices (e.g. Bergquist & Soderholm (2016)), or 
policymaker expectations about future energy prices (Nemet, 2009b). Price shocks are often reported 
to have influenced subsequent energy and innovation policies, which then have more direct effects 
on innovation – particularly regarding energy efficiency (e.g. Borghesi, Crespi, D’Amato, Mazzanti, & 
Silvestri, 2015; Gulbrandsen & Stenqvist, 2013; Scordato et al., 2018), but also energy-environmental 
policy more broadly. 
 
An important finding from such studies is that the institutional context can influence the innovation 
response to price changes. Institutional factors that may inhibit innovation responses include an 
absence of clear quality standards (e.g. M. Taylor, 2008); unclear regulatory regimes with weak 
compliance (Kivimaa, Kangas, & Lazarevic, 2017); and weak networks between innovators, users and 
finance (Skold, Fornstedt, & Lindahl, 2018). Christiansen described a case in which the presence of an 
intermediary organisation to facilitate innovation boosted the innovation response to a carbon tax 
(Christiansen, 2001). These findings about the importance of the institutional context are aligned with 
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the large literature that describes innovation as the outcome of a socio-technical system (Gallagher et 
al., 2012**; Geels, Sovacool, Schwanen, & Sorrell, 2017**; Hekkert et al., 2007**)  

 
 

6. The impact of targeted demand-pull policies and deployed scale on 
innovation 

 

6.1 Introduction 

 
This section probes the evidence on the interrelationships between targeted demand-pull policies (Ib), 
deployment (2), and the indicators and outcomes of innovation (see Figure 3). Assessment is 
complicated by multiple factors, including the sheer diversity of types of policy intervention, and the 
interrelationship of the elements, including the bi-directional nature of their relationships. 
 
We take the approach, however, that it is precisely by considering these aspects together that 
important insights can be gained from the literature. The assessed literature is large and diverse.  Our 
search (after screening) identified around 150 studies, divided approximately equally between studies 
assessing targeted policies, and those estimating experience curves. For the former, the large majority 
evaluated impacts on patents, and our analysis complements a major review of the impact of ten 
policy instruments (Peñasco et al., Accepted)**, which also included innovation. The next largest 
estimating the impact various measures of eco-innovation, many of which are more to do with 
business model rather than hard technology innovations. A small group of other studies, both 
econometric and mixed-method, shed light on the processes involved in other ways.  
 
In this section, we evaluate first the quantitative literature on how targeted policy interventions, 
grouped between economic incentives and regulatory measures, have affected patenting. We then 
assess the limited literature around the impacts of these interventions on innovation outcomes, 
before turning to the experience curve literature. We seek to fill out the picture by looking at 
additional evidence, including feedback between deployed scale and indicators of innovation, cost 
decomposition, and other evidence gleaned from considering the feedbacks involved (as illustrated 
generically in Figures 1-3). 
 
Many of these examine evidence relating to wind and solar electricity. Because these draw on by far 
the largest renewable energy resources globally, in recent decades these have been a major focus of 
targeted interventions in energy-climate policy, with impressive developments in cost and capacity as 
shown in 

Figure 6. Over the past two decades, these technologies have emerged from relative obscurity and 
high costs, to being a major part of national and global strategies, based upon this rapid growth and 
increasing competitiveness in many markets (note that the biggest drop in PV prices corresponded to 
the period of fastest exponential growth, and followed the commodity boom of the 2000s which drove 
up material (especially silicon) prices until the 2008 financial crisis). They correspondingly dominate 
much of the relevant literature (most of all, for experience curves) and learning the right lessons is 
important. 
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Figure 6: Evolution of global installed capacity and global weighted-average installed costs for onshore wind (panel (a)) and 
global installed capacity and cost of modules for utility-scale solar PV (panel (b)), 2000-2019   

Source: (International Renewable Energy Agency (IRENA), 2020.; Lafond et al., 2018)** 

 

6.2 Targeted economic incentives – impacts on patents 

 
The dominant instruments which create a direct economic incentive to deploy clean energy sources 
have either fixed the price (usually for 10-20 years), or set a target quantity. In electricity, the former 
has comprised feed-in-tariffs (FiTs), accompanied more recently and for larger generators by 
auctioned contracts. The latter comprise renewable obligations, often known as renewable portfolio 
standards (RPS) implemented with tradeable certificates, widely used for electricity particularly in the 

US, and more widely, as mandates for biofuels.19 Instruments for demand-side technologies have 
usually differed, with regulatory instruments as considered in section 6.3 more prevalent.  
 
Most (though not all) of the literature finds that targeted economic incentives have increased 
patenting for solar PV and wind, and (echoing the literature on overall energy and price impacts) has 
begun to estimate elasticities of response (e.g. the percentage increase in patent applications for 
every percentage increase in the FiT support level). One major foundational study (Johnstone et al., 
2010), using a panel of 25 countries over 1978–2003, found that many factors enhanced patenting, 
with some clear patterns: in general, the broader the application of a measure (including overall public 
energy R&D expenditure, and the adoption of the Kyoto Protocol), the more statistically significant 
the result on aggregate renewables patenting. However, more targeted instruments proved more 
important for particular technologies. Intriguingly, they found specifically that the (more broad-based) 
RPS enhanced patenting in wind but not solar, whilst FiTs had a large impact on solar but negative 
correlation with wind patenting (which the authors describe as an unexpected result, but don’t 
elaborate further). 
 
In one of the largest subsequent studies, covering 13 countries over 1978-2008, Palage et al. (2019) 
found that FiTs positively influenced solar PV patent applications with elasticities ranging from 0.11 to 

                                                        
19 A variety of terms are used, all of which refer either to obligations to secure a certain proportion of energy 
from renewables, or the instrument used to implement this, variously terms tradeable green certificates (TGCs) 
or renewable energy certificates (RECs). We use the generic terms renewable portfolio standards (RPS) for 
electricity and biofuel blending mandates for biofuels. 

(a) Onshore Wind (b) Solar PV (utility-scale) 
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0.20 (with the larger values found when employed in combination with public R&D support), with a 
lower but still statistically significant elasticity of RPS stringency to patent applications of 0.03. Nicolli 
& Vona (2016), based on 19 EU countries (1980-2007), and Vincenzi & Ozabaci (2017), with 9 EU 
countries plus Japan and US, similarly find FiTs increased patenting in solar PV, though the latter found 
greater impact from changes in electricity prices (Section 5). The former also found that FiTs negatively 
influenced patent applications for wind, whilst RPS had a positive effect (also for solar thermal). Like 
Johnstone et al. (2010) they suggest that an RPS may stimulate greater innovation in more mature 
technologies. However, also as with Johnstone et al. (2010), Nicolli & Vona (2016) used a dummy 
variable found that expectations on the future policy context after signing  the Kyoto protocol appears 
to take the place of the positive effect of RPS. Horner et al. (2013) find that RPS in California, Texas 
and Minnesota were significant drivers of wind-related patenting, where an increase in the RPS annual 
obligation of 1 TWh would be associated with an increase of around 2% in wind patenting. 
 
Schleich et al. (2017) and Grafstrom & Lindman (2017) found no impact of FiTs on patent applications 
for wind technologies across 12 OECD countries (1991-2011) and 8 EU countries (1991-2008), 
respectively). However, in contrast to these two studies, along with Johnstone et al. (2010) and Nicolli 
& Vona (2016), Lindman & Soderholm (2016) conclude that for Denmark, Germany, Spain and Sweden 
over 1977-2009, FiTs increased patent applications for wind energy, with an elasticity of 0.3-0.4. The 
difference to Johnstone et al. (2010) may be explained, as the authors suggest, by the extended 
assessment horizon; since the early 2000s, European countries have reduced their FiT levels as costs 
have reduce. The difference with Schleich et al. (2017) may be explained by their use of a dummy 
policy variable that does not adequately capture design features, such as level or duration of support. 
As Lindman & Soderholm (2016), Nicolli & Vona (2016) and Grafstrom & Lindman (2017) all use a more 
detailed policy variable representing actual levels of support provided by FiTs, the difference could be 
explained through the difference in geographic scope. 
 
The results for other technologies are mixed. For bioenergy, biofuels and fuel from waste 
technologies, Brolund & Lundmark (2014), across 14 OECD countries (1978-2009), found that FiTs have 
increased patent filing, with elasticities increasing with contractual agreement length, reaching 0.10-
0.24 for agreements longer than 10 years, but found RPS to be an insignificant influence. Lundmark & 
Backstrom (2015), across 13 OECD countries (1979-2008), conclude that each $1 (US) per MWh 
increase in FITs tariff increased the patenting for biotechnologies by 0.2%. Unlike Brolund & Lundmark 
(2014) – perhaps due to different definition of the policy variable - they also found a positive (though 
modest) impact of RPS, with countries with RPS having double the rate of bioenergy-related patent 
applications than those without. Nicolli & Vona (2016) found both instruments to have been an 
insignificant influence on biofuels and waste patenting. 
 
Johnstone et al. (2010) & Nicolli & Vona (2016) found FiTs and RPS to have been insignificant in 
encouraging patenting for geothermal. Johnstone et al. (2010) find both measures to have been 
insignificant with regard to marine energy patenting, but Nicolli & Vona (2016) find them to have be 
negatively associated. Although Boehringer, Cuntz, Harhoff, & Asane-Otoo (2017) find FiTs to have 
had a positive influence on aggregate across range of technologies in Germany, they find negative or 
insignificant influences at the individual technology level (including for solar PV and wind) – although 
when they test the effect of the interaction between the average and technology-specific coefficients 
of FIT support, the effect becomes positive (and significant) for all technologies examined, except 
biomass. 
 
For liquid biofuels, Guillouzouic-Le Corff (2018) found biofuel blending mandates (equivalent to RPS, 
requiring a certain percentage of biofuels in fuel sold) in 22 OECD countries over (1985-2009) to have 
increased production of the dominant first generation biofuels (ethanol), rather than stimulating new 
innovation. Costantini, Crespi, Martini, & Pennacchio (2015) find blending mandates in (mostly) OECD 
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countries (1990-2010) to have had an impact on patenting for first generation technologies, but not 
on the overall rate of biofuel patenting. For the USA (1997-2011), Jang & Du (2013) found biofuel 
mandates to be an insignificant influence on patent activity. However, following this, Kessler & 
Sperling (2016) found that fuel mandates in the USA (1995-2010) enhanced patenting in both first and 

second generation biofuels, but with lesser effect on the latter.20 Together, these studies suggest that 
blending mandates have potentially rewarded incremental (but not radical) innovation, akin to some 
of the findings for RPS. 
 
Qualitative and mixed-methods studies on FiTs have frequently observed that they induced firms to 
increase innovation efforts (e.g. Borghesi, Crespi, et al., 2015; Reichardt & Rogge, 2016). They highlight 
that the simplicity of FiTs enables entry of new and diverse of market players. This serves to (a) help 
foster the social legitimacy of the technology (e.g. Chowdhury et al., 2014; McDowall et al., 2013), 
facilitating future policy support; and (b) support the development of a nascent industry and related 
advocacy coalition (Hendry & Harborne, 2011). Another key attribute of FiTs, highlighted by Reichardt 
& Rogge (2016), is that they reduce uncertainty faced by investors. 
 
The qualitative and mixed-method studies focussing on RPS find mixed results. Breetz et al (2018) 
describe how they enabled the development of firms that wielded political influence, thus developing 
the advocacy coalition required to sustain policy and thus reward innovation. However, Fevolden & 
Klitkou (2017) and McDowall et al. (2013) provide examples of RPS policies that failed to generate 
durable innovation, for reasons of both policy design and policy framework instability, respectively in 

Norwegian biofuels, and the UK non-fossil fuel obligation.21   

 
The econometric evidence in the literature on the effect of other specific types of economic 
instruments, such as grants, excise duties and tax credits – again, largely confined to OECD experience 
- is small and tentative. Investment incentive schemes are found by Johnstone et al. (2010) to have 
increased renewable energy patent applications overall, however, within the sample, results are only 
statistically significant for geothermal, and biomass and waste. Brolund & Lundmark (2014) similarly 
find an insignificant effect on wind and solar PV patents, but conclude that targeted investment 
policies increase patent applications for biofuel and waste. Costantini et al. (2015) find that exempting 
biofuels from fuel excise duties was the main factor inducing biofuel-related patenting in OECD 
countries. Horner et al. (2013) find tax credits, either production or investment, not to have induced 
patent grants for wind technology. 
 
Beyond supply technologies, for the household sector Girod et al. (2017)  find that investment support 
schemes in the form of grants for efficient appliances and fiscal subsidies in the form of tax reductions, 

                                                        
20 Driven by the introduction of the 2005 Renewable Fuel Standard, and the subsequent requirements of the 
2007 Energy Independence Security Act – RFS2. 
21 In the case of Norwegian biofuels, the market support mechanism (a biofuel mandate) was lower than the 
industry had expected, and contained no sustainability criteria that would have supported advanced biofuels. It 
was also introduced alongside a phasing-out of the prior tax break for biodiesel. This shift led to a market 
preference for imported corn- or sugar-derived ethanol, which, coupled with the uncertainty induced by the 
conflicting policy signals, prevented companies developing advanced biofuels from raising capital. McDowall et 
al. (2013) report the failure of the UK’s Non-Fossil Fuel Obligation (NFFO) to drive significant innovation activity 
in wind power. This introduced unfettered auctions, leading to ‘winner’s curse’ – almost half the winning bids 
never proceeded to construction - with high investor risks and high barriers to entry, undermining the 
establishment of a viable innovation system for wind power technologies. Having invested in wind R&D during 
the 1980s, the UK effectively lost its stake in onshore wind manufacturing as Denmark and Germany established 
more stable support systems. These examples illustrate the importance of policy design, and its suitability to 
technologies at particular stages of maturity. 

 

Page 26 of 76AUTHOR SUBMITTED MANUSCRIPT - ERL-109249.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 27 

together with labelling instruments, have been the most important driver for energy efficiency 
patenting. However, in general, economic instruments have been rarely applied on the demand-side, 
with direct regulation much more prevalent. 
 
Qualitative and mixed-method studies describe a wide range of other instruments that were reported 
to have positively influenced innovation activities by firms, or outcomes of such activities. These 
include tax incentives for production or investment (Fevolden & Klitkou, 2017; Kamp, Smits, & 
Andriesse, 2004; Nemet, 2009b); eco-labelling (Borghesi, Crespi, et al., 2015; Ruby, 2015); public 
procurement (Fevolden & Klitkou, 2017) and programmes providing tax exemptions in exchange for 
engagement in a set of eco-innovation related activities (e.g. Scordato et al. 2018). 
 
Conclusions regarding impact of targeted incentives on patents 
 
A decade on from the seminal study of Johnstone et al. (2010), the literature appears to have 

reinforced their broad conclusion22, and added a significant dynamic element to their insights. The 
security and specificity provided by feed-in tariffs – particularly for solar PV - created a strong incentive 
for innovation and patenting particularly when combined with wider trends in electricity and 
environmental policy, including (energy and carbon) pricing and emission targets as discussed in 
Section 5. Other incentives like RPS or investment supports play a more modest, or relatively negligible 
role for those technologies ‘new to market’. However, these broader instruments like RPS tend to 
encourage innovation - usually more incremental - in the more mature technologies best placed to 
capture the biggest share of this support at least cost. Without an equivalent for FiTs for some other 
technologies, including most obviously biofuels, other instruments tended to play a stronger role. 
 
Less clear in this account is the role of sector-wide measures, notably renewable energy targets. Whilst 
Johnstone et al. (2010) and Nicolli & Vona (2016)’s inclusion of a dummy variable for signing of the 
Kyoto Protocol suggested it had a clear impact on overall clean energy patenting, Nesta, Vona, & 
Nicolli (2014) concluded that it had no impact on renewable energy patenting in the OECD. Vincenzi 
& Ozabaci, (2017) conclude that neither renewable energy targets nor emission targets for Europe, 
Japan and the US had impact on PV patenting. 

 

6.3 Regulatory instruments – impact on patents 
 
Efficiency and CO2 emissions standards establish limits for energy and CO2 intensity for a given 
technology or technology group, and have been largely applied in the building and transport sectors. 
For the building sector, Kim and Brown (2019) conclude that minimum energy performance standards 
(MEPS) for lighting across 18 OECD countries consistently induced an increase in both domestic and 
foreign patent activity (1992-2007). For MEPS contained in building codes, Noailly (2012) concludes 
that across 7 EU countries, a 10% increase in the stringency of insulation induced an increase in energy 
efficiency-related patenting by 3% (1981-2004). However, Girod et al. (2017) found MEPS for 
appliances and buildings across 21 EU countries to be statistically insignificant in inducing patent 
applications in energy efficiency-related technologies (with other instruments found to be more 
important, as discussed below). The authors state the reason for the difference with the finding form 
Noailly (2012) requires further research, but suggest the reason may be the difference in policy 
variable definition. 

                                                        
22 Johnstone et al. (2010), as also quoted in Brolund & Lundmark (2014) – ‘Targeted subsidies such as feed-in 
tariffs are more efficient in stimulating innovations in newly-emerged and less developed technologies with high 
operating costs, while more general policies such as quota obligations with tradable green certificates stimulate 
innovations in mature technologies that have already been subject to innovation and learning-by-doing cost 
improvements’. 
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Results for vehicles appear to differ in particular between US and European studies, reflecting very 
different policy regimes. Barbieri (2015) concludes that announcements introducing planned 
increases in the stringency of CO2 standards for vehicles in the EU intensified the generation of green 
patents in the transport sector, by firms based both within and outside the EU (1999-2010). On 
average, each 1% reduction in maximum CO2 intensity permitted generated an increase in patent 
applications by 0.56% (increasing to 1.39% for firms based in the EU). However, for the US (1980-
1999), Crabb & Johnson (2010) found fuel prices to be substantially more influential than Corporate 
Average Fuel Efficiency (CAFE) in stimulating patents, echoing the findings of (Knittel, 2012)* on 
efficiency improvements; however both of these reflect a period in which regulatory standards were 

largely static and the conclusions are challenged by other evidence.23 Sierzchula and Nemet (2015) 
highlight that firms are heterogeneous in their innovation response to technology-forcing regulations. 
They found that the stringency of the California Zero Emission Vehicle mandate was a significant factor 
in driving both patenting and prototypes, but the picture is complicated by the diversity of 
commercialisation strategies of the global automotive companies subject to the regulation.   
 
Literature on other environmental standards, noted in our concluding discussion (Section 9), sheds 
additional light on regulatory impacts.  
 
Qualitative and mixed-method studies have explored several cases in which technology standards 
have driven innovation responses in various sectors, including buildings (Gann, Wang, & Hawkins, 
1998), vehicles (Calef & Goble, 2007; Wesseling, Farla, & Hekkert, 2015), and in energy efficiency 
(Ruby, 2015). All those examined observe innovation responses to regulation—though the risk of 
publication bias should be noted (studies are more likely to be conducted on regulations perceived to 
have had an innovation outcome). 
 
Conclusions regarding impact of regulations on patents 
 
The econometric literature linking patents to regulations is more limited than for prices, presumably 
because regulation is more specific and harder to quantify in general for econometric purposes. This 
more limited evidence base suggests regulations to a major driver for buildings-related innovation, 
and generally (though not universally) significant in vehicles.  
 
In general, the regulatory studies place greater emphasis on case studies. Aside from reinforcing the 
econometric findings, these illustrate some of the mechanisms – and diversity – of responses. They 
also shed light on the co-evolutionary dynamics, with innovation driving regulation as much as the 
other way around. Ruby (2015) observed that firms that had developed high-efficiency circulator 
pumps sought to establish a market by establishing a (government-supported but voluntary) labelling 
scheme. This was sufficiently successful to induce competitors to invest in R&D to develop similarly 
highly-efficient pumps. All these firms anticipated future regulation, and this anticipation drove 
innovation efforts. Policy makers became interested in the opportunity to drive increased efficiency, 
and regulation—when it eventually came—drove both diffusion of the higher-efficiency products and 
further innovation in higher-performing pumps. Similarly, Wesseling et al. (2015) observed how the 
lobbying activities of specific automotive firms were influenced by their innovation capabilities with 

                                                        
23 Between 1984 and 2010, US CAFE standards remained essentially static. A broader study of the impact of 
vehicle emissions regulation (Lee et al, 2010)**, covering the impact of US legislation adopted from 1970 to 
1998,  finds that standards did have a substantial impact on both vehicle patenting and performance in the US.  
The fact that the EU maintained high gasoline prices through taxation for most of the period, whilst US gasoline 
prices reflected much more strongly the fluctuations in international oil prices, could also explain some 
differences between US and EU findings concerning the relative importance of price compared to regulatory 
changes. 
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regard to cleaner vehicles. Firms worked to shape the regulatory environment to suit their technology 
strengths, and as a result firms with good low-emission vehicle technology became more supportive 
of the policy. 
 

6.4 The policy-deployment nexus: innovation indicators and cost reductions  
 
Compared to the extensive literature on how policies have influenced patents – and equally extensive 
literature on experience curves summarised in the next section - a much smaller literature tries to 
trace the explicit impact of policies on innovation outcomes (particularly cost reduction), and the 
feedback from deployment itself to patenting.  
 
Kim et al., (2017) also examined the specific impacts of RPS, FiTs and the combined effect of the public 
procurement of renewable electricity and public investment in facilities, infrastructure and 
systems, on the installed cost of solar PV (1992-2007) and wind (1991-2006), for up to 16 OECD 
countries. They find that public procurement and investment reduced the installed cost of both 

technologies; RPS reduced PV costs; and FiTs did not have significant influence on costs of either.24 
They also found that cumulative capacity had a positive impact on patent applications across the range 
of OECD countries (particularly for wind); and also influenced (but to a lesser degree) installed costs 
(particularly for solar PV). The results imply an increase in patent applications for solar PV and wind of 
15.7% and 43.5% for each doubling of installed capacity (as a proportion of all patent applications), in 
turn implying “that the more the renewable energy technologies diffuse, the more learning and 
knowledge from customers or stakeholders are undertaken, which broadens the scope of new ideas 
and facilitates inventions faster and easier” (ibid, p.221). The results also imply learning rates of 12.9% 
and 6.1%, respectively, which the authors attribute to ‘learning-by-doing’ effects. 
 
Tang (2018) found that both RPS and generation-based tax credits had a positive influence on the 
average capacity factor of wind farms in the USA (2001-2012), whilst capital investment incentives 
were insignificant. Note also a close relationship of experience curve studies, reviewed in the next 
section, with the implied impact of quantity-based policies (RPS and biofuel blending) on cost 
reductions (clearest where national targets dominated an industries’ development, as with Brazilian 
bioethanol). 
 
For demand-side technologies, as noted in Section 5, (Knittel, 2012)* found gasoline prices rather than 
CAFE standards to be a substantial driver of increasing fuel economy for passenger cars and trucks in 
the USA over 1980-2006. Newell et al. (1999) found energy efficiency regulations in the USA to have 
had an insignificant influence on the cost of air conditioners and gas water heaters, but as with energy 
prices (discussed in Section 5), they induced energy efficiency improvements of 7.1% and 7.6%, 
respectively, for room air conditioners and water heaters between 1973 and 1993 (24% and 68% of 
the total increase in efficiency over this period). By contrast, Van Buskirk, Kantner, Gerke, & Chu 
(2014), Wei, Smith, & Sohn (2017b) and Smith, Wei, & Sohn (2016) discussed in the next section, all 
find increases in learning rates for lighting and various appliances (largely in the USA) to be strongly 
correlated to the introduction of energy efficiency standards (see note 23 concerning US auto 
standards). 
 
Some studies use technology deployment as a proxy for policy presence or stringency on innovation 
indicators or outcomes. For example, Dechezleprêtre & Glachant (2014)* find annual additional wind 
power production, as a proxy for deployment support, clearly enhanced wind patent filing across 
OECD countries (1991-2008), with the time lags in realized innovation making the causal direction 

                                                        
24 The authors suggest this is result of market competition induced by RPS, stimulating cost reduction in 
technologies with the greatest potential for it, such as solar PV. 
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unequivocal. Both domestic and foreign deployment positively affect innovation, but the marginal 
effect of domestic policies is 12 times higher than that of foreign policies. However, since for most 
countries the total market is dominated by foreign deployment, each 100 MW of wind energy capacity 
deployed, on average, induced the development of one domestic patent and two patents abroad.  
 
Similarly, Peters et al. (2012)** used annual deployment of new PV capacity as a measure of the level 
of PV deployment support policies, and found that both domestic and foreign demand-pull policies 
were important for the patenting in solar PV across 15 OECD countries (1978-2005). Nemet (2009b) 
documents an interesting absence of correlation between investment in new wind capacity (a proxy 
for demand-pull policies) and the number of high-quality patent filings over the period 1975-2005. In 
other words, deployment policies might induce more incremental innovation, but not more radical 
innovation. 
 
Relatively few studies explicitly attempt to examine the link between deployment and patent activity 
in its own right. Boehringer et al. (2017) finds increasing installed capacity of a range of renewable 
electricity technologies to have a substantial influence on patent applications, both in Germany and 
the wider OECD. De Freitas & Kaneko (2012)* finds a causal relationship between ethanol diffusion in 
Brazil (measured by Brazilian consumption) and the number of ethanol-related patents filed at Brazil’s 
National Institute for Industrial Property. 
 
Conclusions from econometric analysis of policy-deployment with patent-cost reduction feedbacks 
 
A major challenge to interpreting innovation-related data is the bidirectional nature of interactions, 
which is a fundamental insight of the systems innovation literature as discussed in Section 2. This 
poses some particular challenges for interpreting the impact of demand-pull policies which, in one 
way or another, drive deployment, but may also have wider influences on innovation processes. 
Nevertheless, the predominant findings of literature in this section clearly support positive bi-
directional interactions, with demand-pull policies associated with cost reductions, and consequent 
deployment clearly associated with enhanced patents – all of which contributes to interpreting the 
more extensive, but simpler, literature on correlations explored in next section.  
 

6.5 Experience curves and beyond 
 
While a substantial literature demonstrates the links between demand-pull policies and patents, these 
studies provide less evidence on the effects of greater patenting on innovation outcomes, such as cost 
reductions. This section summarises the main findings from literature on ‘experience curves’ which 
chart the relationship between cumulative deployment and cost reductions. We then consider the 
various types of evidence around causality in this relationship.  
 
Context 
 
Stemming from techniques originally used by Wright (1936)**, who observed that every time aircraft 
production volumes doubled, the time required to produce new aircraft reduced by 20%, ‘experience 
curves’ (and their implied ‘learning rates’, defined as the percentage reduction in costs for every 

doubling of cumulative installed capacity)25 have been used to examine the relationship between 
production volumes and costs for numerous technologies (e.g. Boston Consulting Group, 1972) and 
further extended to map costs as a function of cumulative deployment, usually at a global level. The 

                                                        
25 We apply the term ‘experience curve’ rather than the often-used ‘learning curve’, to avoid the inference that 
all cost reductions observed may be attributed to ‘learning’. However, we continue to apply the term ‘learning 
rate’ as defined above, but with the caveats discussed below. 
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studies reviewed in this paper derive experience curves and subsequent learning rates for different 
combinations of technologies, and use a range of deployment measures, cost measures, and 
methodologies. 

 
Although Wright (1936)** concluded from his observations that we ‘learn by doing’, the causal 
(inverse) relationship between cumulative deployment and technology cost remains somewhat 
contested in economics, and is not often applied within energy-economy system modelling, for at 
least three reasons. Firstly, in contrast to the grounding of patent elasticities in the theoretical basis 
of directed technical change by Hicks (1932)** there is less obvious, well established theoretical 
underpinning for this relationship in mainstream economics. Secondly, it introduces increasing returns 
to scale, which can create path dependence and challenge the uniqueness of economic equilibria, thus 
for example vastly complicating the operation of optimising models. Thirdly, the causality is 
unarguably bidirectional – deployment may drive cost reductions, but the reverse may also be 
expected. We take the view that these factors only increase the value in probing the evidence 
carefully. 
 
Studies examining ‘single-factor’ experience curves and learning rates derived from them are common 
(e.g. Garzon Sampedro & Sanchez Gonzalez, 2016; Junginger et al., 2005), however they do not 
attempt to disentangle the threads of the relationship between deployment/diffusion and cost 
reduction, which as illustrated by Figure 3, is not simple or closed (or unidirectional, as noted). Simple 
interpretations of the results of such studies therefore run the risk of attributing all cost reductions in 
a given technology to ‘learning-by-doing’ induced by cumulative deployment. Two- or multi-factor 
experience curves (Miketa & Schrattenholzer, 2004; Soderholm & Klaassen, 2007; Y. Yu, Li, Che, & 
Zheng, 2017; Zhou & Gu, 2019) – although less prevalent – attempt to separate one or more of these 
threads, which may include economies of scale, changes in key resource costs, ‘learning-by-searching’ 
(the fruits of continued public or private R&D) and spillovers from other technologies or sectors, to 
measure their relative influence. The major factors that contribute to uncertainty and variability in 
learning curve formulations are elaborated in Yeh & Rubin (2012)**. 
 
Overview of experience curve literature characteristics  
 
We limited our search for experience curves (Search-Link II) to conventional electricity generation 
technologies, and other technologies for which deployment may reasonably be considered to be the 
result of (or substantially encouraged by) targeted-demand pull policy interventions (see Appendix II). 
Of the initial pool of 1,082 results, we retained 63 for review. The majority of the studies excluded 
were so because they either reported previous results produced by other authors (as part of a 
literature review or as input to further work), or projected experience curves into the future, rather 
than empirically deriving results from historic data (and in many cases, both). A further 12 studies 
were added to these results as they came to light through reviewing the initial results, for this and 
other Search-Links. Figure 7 presents the technology coverage of the 75 studies that presented 
original empirical results. 
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Figure 7: Technology coverage of experience curve studies, for all technologies (Panel A) and the electricity 
generation technology subset (Panel B).  
Note: The total count of coverage for all technologies (87) exceeds the number of studies, as some studies 
examine more than one technology 
 
Of these 75 studies, 58 examine electricity generation technologies. Of these, 23 were also included 
within a review by Rubin et al. (2015)**, and 45 were reviewed by Samadi (2018)**. The remainder 
were not covered in these reviews largely due to their more recent publication. We also draw on the 
review of experience curves of several demand-side technologies by Weiss et al (2010)**, and review 
(the few) relevant studies published since, for selected technologies. 
 
This section summarises and builds upon the lessons learned in these previous reviews. The vast 
majority of studies for electricity generation technologies derive learning rates based on cumulative 

production of capital stock (e.g. MW of installed capacity),26 whilst technology cost is represented 
most commonly by the production cost or purchase price per unit of installed capacity (52), followed 
by the cost of per unit of electricity generated (usually a derived Levelised Cost of Electricity - LCOE) 

(16)27. Most of these studies derive one-factor learning rates, with the limitations noted. Of these 58 
studies, 26 studies each derive experience curves for solar PV and onshore wind, respectively (with 
some overlap). 

 
Solar photovoltaic and wind energy  

The modern wind power industry began in the 1970s and commercialised significantly for power 
generation from the 1980s onward. As a technology for grid-connected electricity production, solar 
PV is a more recent entrant to the market, and has expanded from a much smaller base, but more 
rapidly, since about 2000. 

Figure 6). The studies calculating learning rates for onshore wind and solar PV (26 each) all find clear 
and unambiguously positive learning rates, but with substantial variation reflecting differences in 
temporal and geographical coverage, and specific metrics used, as summarised in Figure 8 and Figure 
9.  

 

                                                        
26 The exceptions being 7 studies that derive learning rates based on cumulative energy generation (e.g. MWh), 
and 6 based on technology ‘units’ installed, sold or produced. 
27 For cost metrics, a few studies used other cost measures, including engineering, procurement and 
construction (EPC) costs, or cost components (e.g. balance-of-system (BOS) costs and non-fuel operations and 
maintenance (O&M) costs). 
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Figure 8: Learning rates for solar photovoltaic (PV), for cost/price of capacity and energy generated. Note: The 
primary result for each technology and dependent variable from each study has been selected. In studies with 
more than one learning rate per technology per dependent variable, the learning rate with the highest R2 value 
was selected for figures, or if not specified then the longest data analysis period. If neither of these are specified, 
the highest rate was selected. 
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Figure 9: Learning rates for onshore wind, for cost/price of capacity and energy generated. Note: The primary 
result for each technology and dependent variable from each study has been selected. In studies with more than 
one learning rate per technology per dependent variable, the learning rate with the highest R2 value was selected 
for figures, or if not specified then the longest data analysis period. If neither of these are specified 

 
Photovoltaics. The global learning rate as measured by cost (or price) per unit capacity has sustained 
at around 20±6% for most of the past four decades, although with two- or multi-factor studies 
producing values at the lower end of this range, and some outliers particularly during a period (c.2003-
2010) of supply-side bottlenecks with high silicon prices. Variations between geographies and over 
time were identified, there is little evidence to suggest that learning rates have declined over time – 
particularly when controlling for input prices (notably silicon costs - see Section 6.6). Learning rates 
may differ somewhat between residential and utility-scale systems, partly reflecting lower learning 
rates (around 10%) observed in the non-hardware ‘balance of system’ costs (Elshurafa, Albardi, 

Bigerna, & Bollino, 2018).28,29 

Onshore wind. Studies focus on Europe (and particularly Denmark), given the historic concentration 
of installed capacity (with many including data from the 1980s, although relatively few extend their 

                                                        
28 This study is excluded from Figure 8, as it it’s focus on BOS costs means it is not directly comparable with 
learning rates for the technology more broadly. 
29 Although not within he technical scope of this review, another study examining BOS costs is Bollinger & 
Gillingham (2019)**, who find a learning-by-doing contribution of 15% to the one-third reduction in BOS costs 
in PV installations in California (2002-2012). 
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analysis significantly beyond 2000). Observed rates for the price or cost of installed capacity tend to 
cluster at 5-15%, again with two- and multi-factor studies producing results at the lower end. As 
innovation over time (e.g. increasing turbine height, rotor blade diameter) has led to increasing 
capacity factors, learning rates for LCOE has tended to be slightly higher (8-13%), particularly as 
derived by studies using longer time series data. We identified a single study in the peer-reviewed 
literature attempting to derive an experience curve for offshore wind. van der Zwaan et al. (2012) find 
an installed cost learning rate of 5% for offshore wind in Europe (1991-2008), once the influence of 
key commodity prices and supply chain constraints are accounted for. However, the authors 
acknowledge that this is based on limited data with a poor statistical fit. 

Other electricity generating technologies 

The limited literature relating to conventional thermal power stations points to early learning 
but subsequent literature is thin and experience varied. Colpier & Cornland (2002) and Ostwald & 
Reisdorf (1979) found significant deployment-related learning for natural gas power plants in the past; 
we did not find subsequent literature. For coal power plants, deployment-induced learning appears 
to have taken place throughout much of the last century, although since the late 1960s, construction 
costs appear to have largely plateaued (McNerney, Farmer, & Trancik, 2011; Ostwald & Reisdorf, 1979; 
Yeh & Rubin, 2007). 

More clearly, in many countries that have built nuclear power plants, initial cost decreases have been 
observed, followed by pronounced cost increases since the late 1960, leading to negative learning 
rates (Lang, 2017; Ostwald & Reisdorf, 1979; Rangel & Leveque, 2015). However, these and various 
other studies that examine trends and drivers in the cost of nuclear (e.g. Berthélemy & Escobar Rangel, 
2015**; Grubler, 2010**; Kahouli, 2011**) typically focus on a relatively limited time period (1970s-
1990s), and on installations in the USA and France - countries which represent just a quarter of all 
nuclear installations constructed. More recent evidence from other countries (such as Japan and 
South Korea) suggests that costs elsewhere have remained stable or even declined since this period 
(Lovering, Yip, & Nordhaus, 2016**; Matsuo & Nei, 2019**).  

Nuclear has relatively unique characteristics among electricity generating technologies in use to date, 
which may make attempting to discern drivers of cost development particularly difficult, and highly 
context-specific. Lovering et al., (2016)** suggest that even aside from changes in specific reactor 
technology and design, cost drivers such as utility structure, reactor size, regulatory regime, and 
international collaboration have played a greater role in determining trends in nuclear costs than any 
learning effects to date; to which Eash-Gates et al. (2020)** add labour productivity trends. 

Studies of bioenergy-based power generation, which also generally uses conventional thermal power 
generation, have found positive learning for both investment and LCOE-based costs. However, the 
three studies reviewed are narrow in geography and timeframe (Junginger et al., 2006; Lin & He, 2016; 
Wang et al., 2018). 

Other technologies 

Biofuels. Seven studies charting experience curves in biofuels produced exceptionally divergent results 
(see Appendix II), with learning rates varying from slightly negative to almost 40% between different 
studies and periods. One major reason for this appears to be the dominant role of the Brazilian 
biofuels industry, with the derived data being strongly influenced both by exchange rate fluctuations 
and the vagaries of the sugar market. The studies taking the longest view – from the mid 1970s – have 
gravitated towards a long-term average of 16-20% for Brazilian ethanol, though one of these suggests 
much of this may have been due to exogenous technology spillovers. Two studies of US ethanol find 
comparable but slightly lower learning rates.  

Demand-side technologies: household and consumer goods. The seminal study of experience curves 
in demand-side technologies (Weiss et al, 2010)** found an average, cross-technology learning rate 
of 18% (±7%) across fifteen technologies (mostly building and appliance-related). However, rates of 
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20-30% were found for consumer electronics and components, heat pumps, and compact fluorescent 
light (CFL) technologies, with high learning in CFLs in particular reinforced by several subsequent 
studies.  

Demand-side technologies: low-emission vehicles. Early studies found relatively low rates of learning 
for hybrid vehicles (well below 10%), probably in part because initial deployment represented a very 
small, loss-leading fraction of sales by major global car companies (notably, Toyota), but potentially 
also because relatively small difference to full-internal combustion engine vehicles hybrid vehicles 
represent.  Studies of both full battery-electric vehicles (BEVs), and their components – particularly 
lithium-ion batteries - find consistently higher learning rates, mostly in the range 9-16%.   

Demand-side technologies: energy storage. Learning rates for stationary battery technologies 
(including lead-acid) have tended to find similar, though perhaps slightly lower learning rates than 
their mobile counterparts. Despite a huge variety of competing technological options, learning rates 
for stationary fuel cells seem to find consistently higher learning rates, in the range 15-25%, with a 
few notable, localised exceptions. For many of the designs, the technologies remain in relatively early 
stages, and the deployed base, modest.    

Statistical conclusions on experience curves 

In short, the general findings from experience curve studies are unambiguous: excepting extremely 
large and complex industrial facilities characterised by nuclear and large coal power stations, 
expanding deployment and cost reductions have been clearly and positively correlated across a huge 
range of technologies. The literature is strongly suggestive of higher learning rates in smaller, more 
modular and relatively less complex technologies (as also concluded by e.g. Malhotra & Schmidt, 
2020), with indications also of higher learning rates in earlier stages of deployment, implying declining 
learning rates as technologies become more established and mature - though this remains to be seen 
in some technologies, including solar PV. The question is, what does this actually imply about induced 
innovation? 

6.6 Interpreting experience curves 
 
As noted, experience curves measure a correlation, not causation. The cost and diffusion of a 
technology are influenced by a multitude of factors. The relationship between them is complex, 
including (as emphasised by Nordhaus, 2014)**, the feedback loop illustrated in Figure 3, as 
technology improvements (in cost or efficiency) should enhance diffusion. Only a few of the 
experience curve studies analysed explicitly state this (e.g. Junginger et al., 2005; Strupeit & Neij, 
2017). Only one of the studies examined (Isoard & Soria, 2001) performs a statistical test for causality 
(a Granger test), and find that for solar PV and onshore wind, cumulative installed capacity causes 
capital cost changes for both technologies, without feedback.  

Some insights come from the relatively few studies producing two- and multi-factor learning rates, 
the majority (Klaassen, Miketa, Larsen, & Sundqvist, 2005; Y. Yu et al., 2017; Zhou & Gu, 2019) of which 
suggest that R&D expenditures are an important contribution to cost decreases – although specific 
values differ considerably, and are associated with high uncertainties. There are several reasons for 
this, including difficulties with accurately accounting for private R&D expenses due to a lack of 
available data, and establishing an appropriate time lag between R&D expenditure and its effect on 
technology costs. Moreover of course deployment increases revenues which enhance not only the 
incentive, but the financial capacity, for private R&D, as noted below. Finally, R&D expenses tend to 
increase over time, as do many other potential independent variables (e.g. size of wind turbines), 
making it difficult to separate the impacts made by each variable. (Söderholm & Sundqvist, 2007 
p.2575) find that adding a time trend in their regression analysis leads to negative learning-by-
searching (i.e. R&D-related) rates that are no longer statistically significant, as the time trend tends 
“to pick up most of the variation previously ascribed to the R&D-based knowledge stock.” 

Page 36 of 76AUTHOR SUBMITTED MANUSCRIPT - ERL-109249.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 37 

In addition, the studies of how targeted demand-pull policies influence innovation already covered in 
this section also clearly inform our understanding of causality in experience curves. To the extent that 
technologies are deployed when they are much higher cost than incumbents, it is reasonable to 
assume that the direct feedback from cost reduction to deployment is weak. Private investors are 
unlikely to deploy much more of a technology which is still 50% more expensive than incumbents, just 
because they were previously twice as expensive. There could of course be some feedback to policies 
which support deployment, which become less expensive as the cost difference declines, as discussed 
in the qualitative and mixed methods literature.   

An important additional line of evidence for causality in learning curves comes from cost 
decomposition studies. Several studies demonstrate that key input prices, as well as various forms of 
economies of scale (upsizing of technologies, more individual plants per project, larger manufacturing 
plants for key components) influence derived experience curves. Input price changes have been 
shown to explain part of the observed deviations from a constant learning rate for solar PV (de la Tour, 
Glachant, & Meniere, 2013; Gan & Li, 2015; Mauleon, 2016; Trappey et al., 2016), onshore wind 
(Grafstrom & Lindman, 2017; Partridge, 2013; Qiu & Anadon, 2012; Y. Yu et al., 2017) and offshore 
wind (van der Zwaan et al., 2012). The upsizing of technologies has been shown to have a considerable 
effect on early wind turbine cost developments (Madsen, Jensen, & Hansen, 2003; Söderholm & 
Sundqvist, 2007; Y. Yu et al., 2017), while it has been suggested that the continuous increase in the 
size of PV manufacturing plants may explain a considerable share of historic cost decreases of PV 
modules (Isoard & Soria, 2001; Kavlak, McNerney, & Trancik, 2018; C. F. Yu, van Sark, & Alsema, 2011). 

Nemet (2006) and Kavlak et al. (2018) apply bottom-up cost models to identify the contribution of 
different technical factors to overall cost changes in solar PV. Their approach provides a rich 
description of the proximate factors resulting in declining costs (such as module efficiency, or silicon 
usage), which both studies then relate to the driving forces of learning-by-doing, R&D, and economies 
of scale in manufacturing processes. Both studies highlight the major role played by both public and 
private R&D in enabling the cost reductions observed, and a strong role for economies of scale; Kavlak 
et al. (2018) find a smaller role for pure learning-by-doing, though obviously there are linkages which 
are hard to disentangle.  
 
Kavlak et al. (2018) also find an important shift over time. Echoing the finding by Kruse & Wetzel (2016) 

on patents noted earlier30 they estimate that over 1980-2000, public R&D and spillovers accounted 
for almost 50% of cost reductions, double that attributable to economies of scale and learning-by-
doing combined. From 2001-2012, however, these forces reversed: public R&D and spillovers 
accounted for maybe one quarter of the observed cost reduction, whilst scale economies and 
learning-by-doing accounted for half. Moreover, Kavlak et al. (2018) suggest that the balance, 
attributed to private R&D, was largely catalysed by policies to support deployment (such as feed-in 
tariffs). This effect—of deployment support resulting in increased private R&D expenditure—was 
observed by Hoppmann et al. (2013) with regard to the solar PV industry. Taken together, these 
studies suggest that the cost reductions observed in solar PV, commonly seen as an example of 
learning-by-doing, are better understood as a process of increasing returns associated with a 
combination of mechanisms, including scale economies and induced private R&D expenditure 
alongside learning-by-doing, as well as (for cost of energy), declining cost of finance associated with 
maturation of the industry. Finally, we note that the balance between global and local experience and 
cost trends, seems so far to be little studied.  

 

                                                        
30 Section 5; Kruse & Wetzel (2016) also note major changes in patenting between technologies: “For biofuels 

and fuel cells, we see a significant increase during the 1990s, after which patent activities began to decrease. A 
completely different picture emerges for wind and solar energy. Here, we observe an above-average growth 
starting from the mid-1990s, with exceptionally high growth from the mid-2000s.” 
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Conclusions on interpreting experience curves 
 
The experience curve data charted in Section 6.5 combines the impact of many factors, some easier 
to disentangle and measure than others, but cannot be neglected simply on grounds that ‘correlation 
does not prove causation’. The causal-test, multi-factor, and cost-decomposition studies reviewed in 
this section complement the evidence surveyed in Sections 6.2-6.4, to fill out a broader picture of the 
innovation dynamics at play, to which we return in our discussion in Section 9. 

 

7. Policy mixes and survey evidence 
 
As is evident from the previous sections, a relatively large literature examines the impact on 
innovation of energy prices, taxes, and a variety of more targeted individual instruments, whilst the 
experience curve literature tracks the simple correlation of deployment and cost reduction, as 
‘learning rates’. In reality, instruments are usually introduced as part of a policy ‘mix’, often to address 
deficiencies that an existing instrument does not or cannot tackle, and learning rates leave causality 
to be inferred. Moreover as noted, the wider environment (including price shocks) often stimulates 
more targeted policies. Relatively few studies explicitly examine the influence of instrument mixes on 
either indicators (e.g. patents) or outcomes (e.g. cost or energy efficiency) of innovation. 
 
Patents 
 
Palage et al. (2019) found patent applications following public R&D support for solar PV increased 
when combined with FiTs, across 13 countries (1978-2008), although RPS schemes produced little 
marginal effect (possibly due to the stronger technology selection pressures, discussed in Section 6).  
Girod et al. (2017) found the number of ‘demand-pull’ instruments for the residential and industry 
sectors to enhance the generation of energy efficiency patents in each sector, across 21 European 
countries (1980-2009). Costantini et al., (2017) reach a similar, but more nuanced conclusion for the 
residential sector for 23 OECD countries (1990-2010). They find that a balance between technology-
push and demand-pull policy instruments in a policy mix, and comprehensive mix of demand-pull 
instruments, both induce greater patenting than an imbalanced and less comprehensive mix. 
However, they note that demand-pull comprehensiveness does not necessarily equate to instrument 
count, and simply adding instruments without sufficient consideration for instrument interaction, may 
reduce the overall impact on innovation.  
 
In contrast, Nesta, Vona, & Nicolli (2014) finds a policy instrument mix to have had no significant effect 
on renewable energy patenting in the OECD (1976-2007), when accounting for the endogeneity of 
policy (i.e. when the increased likelihood of policies to encourage renewable energy deployment being 
introduced in countries that are already active in their development) is controlled for. However, when 
removing this control, the impact is positive, providing further evidence for the interrelated path 
dependency in both technology and policy making. 
 
Other innovation indicators 
 
From their analysis of the Spanish manufacturing sector (2008-2013), Costa-Campi et al. (2017) 
conclude that a policy mix would encourage private R&D to a greater degree than instruments applied 
individually. For the Chinese manufacturing sector, Guo & Wang (2018) find the combination of public 
R&D support with environmental regulation to have enhanced product innovation as measured by 
energy efficiency, whereas environmental regulation alone appeared insufficient. 
 
Survey literature 
 

Page 38 of 76AUTHOR SUBMITTED MANUSCRIPT - ERL-109249.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 39 

A much wider literature derives evidence from surveys, either self-constructed, or using well-known 
international surveys as the European Community Innovation Survey (CIS), or national equivalents. 
These surveys tend to focus on the manufacturing and service sectors, and include questions on the 
role of public policy in inducing ‘eco-innovations’; a term that may be broadly defined, and which may 
include both product and process innovation (including adoption of existing techniques, but which are 
new to the firm), and span beyond energy and CO2 to all environmentally-related actions. 
Disentangling the effects relevant to our scope of interest in this review in many cases therefore 
proves challenging, but is helped in some studies by a narrow definition of the policy variable. 
However, in many cases policy variables are usually broadly defined (often simply as a single policy or 
regulation ‘dummy’), with specific instruments or instrument types often not discernable. 
 
However, a contribution of this survey literature is its ability to consider factors that econometric 
studies often do not (or cannot) consider, including innovation that is hard to patent or otherwise 
difficult to quantify.  Surveys may therefore highlight factors relevant to a broad set of theoretical 
approaches and explanatory variables concerning innovation, including the ‘systems of innovation’ 
perspective, evolutionary economics and the resource-based view (RBV) of the firm (del Rio, Penasco, 
& Romero-Jordan, 2016). As they stated, green innovation is not a systematic response only to 
environmental policy instruments, but the result of a mosaic of interactions with other factors. 
Consequently, where identified in our search, we consider these to be in scope.  
 
Much of this survey literature focuses on Western European countries, particularly Germany and 
Mediterranean countries (Borghesi, Cainelli, et al., 2015; Cainelli & Mazzanti, 2013; Crespi, Ghisetti, & 
Quatraro, 2015; Horbach, Rammer, & Rennings, 2012; Jove-Llopis & Segarra-Blasco, 2018; Penasco, 
del Rio, & Romero-Jordan, 2017; Veugelers, 2012; J. Weiss, Stephan, & Anisimova, 2019). Only two 
studies were found on other countries - China (Liu & Wang, 2017) and Korea (Joo, Seo, & Min, 2018). 
Despite the caveats regarding definitional granularity discussed above, a common conclusion is that 
environmental regulation (Borghesi, Crespi, et al., 2015; Horbach et al., 2012; Joo et al., 2018; Penasco 
et al., 2017; Veugelers, 2012; J. Weiss et al., 2019) and future or expected regulation (Crespi et al., 
2015; Joo et al., 2018) plays a key role in promoting eco-innovation. Stucki et al. (2018) find energy-
related taxes and regulations can reduce product innovation if they do not create demand for the 
product, although this effect is removed for firms at the technological frontier.  In China, (Liu & Wang, 
2017) found that regulation does not stimulate corporate technological upgrading in China’s energy 
intensive industry, but market-based policies (i.e. economic incentives) do. Taken together – between 
traditionally more and less market-based economies respectively - this could be considered to also 
point to the value of diverse incentives to stimulate innovation. 
 
Grants, subsidies and other provision of public financial support generates more mixed evidence. 
Positive impacts are found mostly for technologies and innovation associated to CO2 abatement 
technologies (Cainelli & Mazzanti, 2013; Jove-Llopis & Segarra-Blasco, 2018; Veugelers, 2012) and for 
national public aid (Penasco et al., 2017). However some authors find little impact on innovation 
(Borghesi, Crespi, et al., 2015; Horbach et al., 2012). 
 
Qualitative and mixed-method literature  
 
This literature also provides a rich insight into the dynamic, complex interaction between policy mixes 
and innovation. Such studies typically do not attempt to disaggregate the impact of individual 
instruments (and it is not always straightforward to identify the distinction between ‘demand pull’ 
and ‘technology push’, as noted by Taylor (2008)), but rather seek to observe the mechanisms through 
which a policy mix interacts and generates innovation. This literature suggests that interaction effects 
can be important (McDowall et al., 2013; Nemet, 2009a; Reichardt & Rogge, 2016; Ruby, 2015) – and 
both positive and negative (Borghesi, Crespi, et al., 2015). Whilst policy instruments themselves and 
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their design are influential, such studies often report that it is their interaction and characteristics of 
the policy mix as a whole that are decisive in terms of their impact on innovation – for example by 
influencing the expectations of innovators about the future market and policy conditions. This 
literature highlights the importance of consistency between instruments, and between instruments 
and policy strategy (Reichardt & Rogge, 2016). Unsurprisingly, policy processes and implementation 
issues (such as lack of coherence, poor or inadequately skilled enforcement) have also been observed 
to determine the efficacy of instruments, quite apart from the design of the instruments themselves 
(Kivimaa et al., 2017). 
 
As with surveys, this qualitative and mixed methods literature reveals some limitations of an 
‘instrument-by-instrument’ view of policy.  The wider enabling policy environment – e.g. as reflected 
in the borders of Figure 1 – cannot be fully separated from the introduction of targeted instruments. 
These factors include e.g. brokering, enabling, providing information and building capacity (e.g. 
(Hasanbeigi, Menke, & du Pont, 2010), issuing and enforcing property rights, developing and 
institutionalising safety and other codes and standards, and adapting regulatory structures and 
permitting processes.  
 
The impact of demand-pull instruments and policy mixes also depends on industry structure. A striking 
example of the complexities concerns power networks, which as natural monopolies are typically 
highly regulated. The difficulty of drawing generalised insights is then further compounded by policy 
interactions, as clearly illustrated by the case of UK electricity privatization, with initial collapse of R&D 
(Dooley, 1998);* Jamasb & Pollitt (2008))* and the subsequent regulation of its networks, which 
involved increasingly overt additional incentives for innovation, and recovery of R&D spend (Jamasb 

& Pollitt, 2015).31  Studies have noted several other ways in which public authorities have used their 
influence on network regulation to facilitate market formation for emerging technologies. For 
example, in Denmark’s early phase of developing offshore wind power, utilities were encouraged to 
experiment with offshore wind, and were allowed to pass on costs to consumers (Smit et al. 2007), 
and several countries require grid companies to cover the costs of connecting renewables (Reichardt 
& Rogge, 2016; M. Taylor, 2008).  
 
All these interactions constrain the conclusions that can be drawn about the impact of any single 
instrument, but is perhaps most limiting concerning broad-based measures. For example, the EU ETS 
has an impact on patenting which can be directly measured, and compared against a ‘control’ of non 
ETS firms below the threshold. But what about the impact higher-up the supply chain (on technology 
providers)? The impact downstream through cost pass-through? The further effects through 
knowledge spillovers (positive) and product market rivalry (negative), including across borders? The 
potential crowding-out effects on other types of innovation of all these impacts? Further general 
equilibrium effects? Credibly assessing the full effect of broad-based instruments like carbon pricing 
on innovation is, in totality, infeasible.  
 
Governments also influence expectations which help shape private sector activity (Nemet, 2009a; 
Reichardt & Rogge, 2016). Expectations of the future policy landscape can affect innovation (Ruby, 
2015), which complicates analysis of the time-lags associated with innovation responses to policy. 

                                                        
31 After privatisation, the UK introduced a simple price regulation for networks, based on retail price index minus 
an annual improvement factor (‘RPI-X’). Network companies, not known for their innovation, further reduced 
R&D spend to maximise short term gains. To try and compensate for this, the regulator then introduced a series 
of innovation funds and competitions, requiring participation and co-financing of network companies and some 
pass-through of R&D expenditures (Jamasb & Pollitt, 2011, 2015), and then moved to a new form of price 
regulation based on ‘Revenue = Investment, Innovation and Outputs” (RIIO). Disentangling the impact of 
liberalisation, funds, and new forms of network governance to find general rules would thus be almost 
impossible. 

Page 40 of 76AUTHOR SUBMITTED MANUSCRIPT - ERL-109249.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 41 

Uncertainty about future demand-pull policy appears to weaken the amount of innovation, but it 
apparently can also influence the direction, notably by changing the extent to which policy induces 
radical innovation, or incremental steps that mostly exploit existing technology designs (Hoppmann 
et al., 2013; Nemet, 2009a).  
 
Finally, these wider activities can be strongly influenced by the nature of the state (Calef & Goble, 
2007; Hadjilambrinos, 2000; Mikler & Harrison, 2012), such that the way in which technology support 
programmes are selected, designed and implemented can have significant national characteristics. 
Such studies highlight that policy instruments that ‘work’ in one context might be less (or more) 
effective elsewhere. Thus, conclusions may be robust, but still not necessarily universally applicable. 

8. Multi-Sector and Macro-level technological change 
 
The highest-level approach to assessing induced innovation examines the effect of regulation and 
policy-induced price changes not on specific technology outcomes, but on broad sets of sectors or at 
the aggregate macroeconomic level (Table 1, Search-Link III). Induced-technology effects at this level 
tend to be observed and deduced from changes in multi-sectoral and aggregate energy use, and in 

aggregate productivity measures.32 
 
The initial search for literature on broad multi-sector and macro-level technological change identified 
285 studies, of which only 26 peer-reviewed publications were deemed in-scope. These 
predominantly use econometric techniques to study the impact of energy prices (10), or of energy or 
environmental policy or regulation (9). Other independent variables included foreign direct 
investment (3) and knowledge stock measures (3). Studies measured aggregate energy intensity and 
total-factor energy efficiency (5 for each), whilst others estimated changes in total factor productivity 
due to environmental regulations or oriented towards green technologies (8). These studies varied 
greatly in the rigor, clarity, reproducibility or representative data sampling of their empirical 
approaches: based on the quality of the journals and our own assessments of these factors, we focus 
our review on the highest-quality work, whilst acknowledging the potential relevance of the broader 
literature in this inherently complex field. 
 
Aggregate technical change is traditionally measured in terms of changes in “total factor productivity” 
(TFP), which is typically calculated by dividing GDP by the weighted average of labour and capital 
inputs in an economy. Section 5 noted clear evidence that energy price rises have induced more 
private R&D and patenting in energy, particularly energy-intensive industries, but not necessarily 
overall.  In terms of the direction of innovation (e.g. towards low carbon technologies), a natural 
aggregate indicator could be the carbon intensity of energy supply, or ratios of CO2 to sectoral (value-
add) or economy (GDP) outputs. However, none of the relevant sector- and macro-level econometric 
analyses identified in our search tests for such decarbonisation, and there are plausible reasons for 

this.33  

                                                        
32 This has some relationship to the literature on the ‘Porter Hypothesis’ that environmental regulation can 
enhance firm competitiveness across sectors for which (positive) evidence is summarised in two major reviews 
(Ambec et al., 2013)** and Cohen & Tubb, (2018)**. However, that literature is mainly at the micro/firm-level 
and is not mainly about induced technological innovation, but more often about innovation in firm practices and 
adoption of better technologies – the impact of regulation/prices on profits through ‘X-efficiency’. We however 
look for effects on technology per se. Also, the Porter literature rarely focuses on energy or separates energy 
from other factors.  
33 The biggest large-scale, cross-country drivers of change were the oil shocks of the 1970s, and then early 2000s, 
without any overt carbon-related signal. Initial responses did indeed include nuclear, and where feasible, 
expansion of hydro, but these tended to be quite overt, publicly driven rather than market-led induced 
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Correspondingly, the relevant macro-literature concentrates on how energy efficiency or energy 
intensity is impacted by energy prices, rather than any specific low carbon policies. Even so, 
assessment is intrinsically fraught with difficulties. At the aggregate level, it is difficult to disentangle 
the drivers of technology innovation from structural changes (i.e. shifts between sub-sectors) and the 
multiple effects of simple factor substitution (e.g. using more labour instead of energy), capital 
substitution (using more efficient equipment), import substitution (e.g. outsourcing energy-intensive 
activities), and behavioural innovations by firms (adopting more efficient working practices or new-
to-the-firm technologies). Equally importantly, TFP is affected by numerous forces outside the energy 
sector, so it can be challenging to pick up the (small) signal from any energy-related results at all.  
 
A huge literature documents the response of energy demand to prices (usually by calculating price 
elasticities of energy demand) and investigates how the response changes under the influence of 
technical change. The studies differ greatly in whether, and if so how, they seek to disentangle this 
role of technical change, which means also that our review covers only a very small subset of the 
elasticities literature. 
 
A small niche within the energy-elasticities literature considers whether elasticities are asymmetric – 
that changes induced by large price rises do not reverse when prices fall. This can be taken to indicate 
induced innovation (which would not be expected to reverse), but similar data also could reflect 
incorporation of some exogenous efficiency improvements into capital stock. This small literature – 
not captured in our search terms – was stimulated by studies pointing to such apparent asymmetry in 
gasoline demand, which declined with the 1970s oil price shocks but did not rebound to nearly the 
same extent after prices fell (Dargay, 1992*; Gately, 1993**; Walker & Wirl, 1993*). Griffin & 
Schulman, (2005)* challenged these studies’ interpretation, finding that the effects could also be 
explained by stochastically varying exogenous trends, similarly with the subsequent Agnolucci (2010) 
study of UK demand. This in turn was disputed by (Hunt & Ninomiya, 2005*) for Japan, and 
(Huntington, 2010)* for US petroleum, and by Adeyemi & Hunt (2007*, 2014*) in cross country 
studies. The conclusion of their 2007 study that “OECD industrial energy demand incorporates 
asymmetric price responses but not exogenous energy-saving technical change” was tempered by a 
warning that this finding was not robust for all countries and studies; their follow-up seven years later, 
analysing 15 OECD countries over 49 years, concludes that: “almost all of the preferred models for 
OECD industrial energy demand incorporate both a stochastic underlying energy demand trend and 
asymmetric price responses” and they present elasticity estimates for each of the four dimensions 

implied.34  In other words, the evidence is that energy-saving innovation is a combination of both 
exogenous and price-induced effects.  

                                                        
innovation. Significant demand-pull policies for renewable energy technologies only emerged from the early 
2000s. Given the time lags in compiling data, its acquisition, and publication in journals, not many studies 
secured in our review go beyond about 2012, and none have data beyond 2016. Innovation in new low carbon 
technologies such as modern renewables, in volume terms has only become significant in a few countries in the 
last few years. As illustrated in Figure 6 (Section 6), the growth of renewables has been very rapid but even by 
2016, at a global level, only accounted for a small fraction of overall energy supply in most countries. Hence, 
presumably, the exclusive focus of sector- and macro-level econometric studies on energy intensity.  
34 “Estimated long-run income elasticities (0.34 to 0.96); estimated long-run price-maximum elasticities (−0.06 

to−1.22); estimated long-run price-recovery elasticities (0.00 to −0.27); and estimated long-run price-cut 
elasticities (0.00 to−0.18)”. Hence they conclude, “when modelling industrial energy demand there is a place for 
‘endogenous’ technical progress and an ‘exogenous’ underlying energy demand trend … any modelling strategy 
should start by including both and only impose restrictions if accepted by the data” (Adeyemi and Hunt, 2014)*. 
The niche nature of this literature to date is reflected in the fact that their reference list, covering a forty-year 
span, finds only about 30 studies, within which only about half a dozen names feature prominently.  
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Multi-Sectoral decomposition studies 
 
A sizeable literature singles out the role of induced technical change by decomposing observed 
changes in energy use into components of structural change and real efficiency improvements. Micro-
level decisions by firms and consumers to reduce energy and develop energy-saving technologies 
translate into aggregate energy reductions. Decomposition methods have been used to separate 
spending shifts within firms/sectors and spending shifts between firms/sectors.  However this still says 
little specifically about induced innovation unless separate components of the decomposition can 
then also be related to determinants like R&D, prices, regulations to test for an induced technology 
channel. 
 
Steinbuks & Neuhoff (2014) focus on the role of technology embodied in the capital stock using a 
panel model across five OECD manufacturing sectors. They distinguish short-run price responses 
(given vintage structure of the capital stock) from long-run price responses (changes in the vintage 
structure towards energy-efficient capital goods), thus separating short-run substitution from long-
run investment response. Based on energy price series together with other input prices and cost 
shares, they find that technical change is responsible for at least three quarters of the total efficiency 
improvement across US manufacturing sectors. However, this still does not separate the impact of 
regulatory policies or directly relate to innovation - the model takes energy efficiency improvements 
in capital as exogenous and focuses on how prices lead this to be embodied in capital stock. 
 
Moshiri & Duah (2016) decompose aggregate energy demand in Canada into a scale, composition, and 
technique (intra-sectoral energy intensity changes) effect. In regression analysis the composition 
effect is driven by price changes, as expected, but the technique effect is significantly driven by price 
changes in only a subset of specifications, which implies some evidence of price-induced innovation.  
 
Sue Wing (2008) assessed data for 35 industries in the US, 1958-2000, in a model which also included 
changes in quasi-fixed (capital) inputs and allowed for exogenous (time-trend) energy saving/using 
technical change, whilst price-induced technical change is measured by the effect of cumulative 
energy price changes. They found that up until the 1970s energy price shocks, innovation was energy-
using and almost exclusively exogenous. In contrast, over the period 1980-2000 technical change 
became energy saving and by 2000, 40% the reduction in aggregate energy intensity coming from 
technical change was attributed to induced technical change (Figure 7 in Sue Wing (2008): 3.5/9=.39).  
 
Determinants of economy-wide energy demand  
 
As an alternative to the decomposition method, a number of studies estimate an aggregate 
production function or frontier (which leaves intersectoral substitution implicit) and identify how price 
changes and regulation have affected macro-economic measures of energy efficiency, energy 
productivity, and energy-biased technical change. Three different methods allow varied measures of 
innovation: aggregate energy demand studies; estimates of the determinants of economy-wide 
factor-biased technical change; and stochastic-frontier-analysis based on aggregate energy-efficiency 
studies. 
 
Aggregate energy demand studies aim to explain economy-wide energy demand or intensity as a 
function of production inputs and other determinants, such as R&D, regulation, and energy price 
changes. If regulation decreases energy demand ceteris paribus, this is viewed as implicit evidence for 
induced technical change. The role of technical change can only be separated from the role of 
substitution if the estimations control for the energy price, as measured by the full user price and 
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capturing the cost effects of regulation. Including controls for aggregate (private and public) R&D 

expenditure disentangles drivers as well as effectiveness and direction of innovation.35  
 
It turns out that very few studies that study economy-wide energy demand control for all three factors 
- R&D, price, and regulation. As a result, the impact of specific regulatory policies on induced 
innovation remains largely untested. Dong et al. (2018) control for R&D and price, and find a positive 
correlation between energy intensity and total inhouse R&D at the provincial level in China; we learn 
from this study that R&D has contributed to energy saving in general, but cannot comment on induced 
technical change. Fei et al. (2014) use a similar method for Canada, Ecuador, Norway, and South Africa 
(1974-2011), but find no significant effect of R&D on energy use. Taking a different approach, Murad 
et al. (2019) explain per capita energy consumption from energy-efficiency patent applications and a 
proxy for the energy price, using a time series approach, finding that specific innovation (patents) 
towards energy saving is effective. 
 
Aggregate production function studies aim to explain energy-specific aggregate productivity levels 
with policy and price shocks. Many economy-wide studies estimate a production function that allows 
for energy-specific technological change, but few then measure if energy saving is related to price and 
policy shocks. In one of the earliest studies, Watanabe (1992) clearly identifies that innovation in Japan 
was driven by response to the oil shocks – including government R&D – substituting for oil.  
 
Carraro & De Cian (2012) estimate an aggregate production function for 12 countries (Western Europe 

and US, 1989-2001) on the basis of national income, capital, labour and energy inputs;36 they find that 
the stock of (general) R&D has a strongly significant positive partial-equilibrium impact on energy-
saving technological change, but also increases energy-using capital investment; the net effect is that 
more R&D increases energy demand. The study finds clear evidence for endogenous factor-specific 
technical change, but the study does not have a measure of regulation so cannot separate explicitly 
policy-induced innovation.  
 
Using a similar approach, Fisher-Vanden et al. (2006) estimate aggregate production possibilities in 
China, with similar results, but also control for ownership structure and trade exposure to capture 
major transformations in the Chinese economy. Using firm-level data they find that technology 
development is energy-saving, and capital-, labour-, and materials-using. General R&D investment 
reduces economy-wide energy intensity and the size of this effect is similar to the effect of sectoral 
shifts (page 695), but this study does not test separately for policy/regulation effects.  
 
Based on CES production function, Hassler et al. (2012)** also examined US energy and oil price data, 
finding that the implied measure of energy-saving technical change appears to respond strongly to 
the oil-price shocks in the 1970s. In the short run, they find low substitutability between energy and 
capital/labor but much greater substitutability over longer periods due to technical change. 
 
Stochastic-frontier analysis aims to estimate the technical frontier and explore what shifts this 
frontier. Using this to quantify aggregate energy-efficiency and its correlation with various influences,   

                                                        
35 On the one hand, if the regression controls for total R&D and energy price, the coefficient on energy regulation 
measures the direction of innovation (and its strength) towards energy-saving innovation (holding fixed total 
R&D). On the other hand, if the regression includes energy-specific R&D and controls for the full user price of 
energy, the coefficient on energy-specific R&D measures the effectiveness of R&D spending (holding fixed the 
direction of R&D). The latter is not evidence of a policy-induced or price-induced effect, unless the interaction 
of energy-specific R&D with regulation and/or price is included. 
36 They use CES (constant elasticity-of-substitution) specification for the production function, which requires  
that factor prices and time x factor input interactions are included.  
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Yang, Shao, Yang, & Miao (2018) find that capital deepening and FDI improve technical efficiency, 
whilst increased fossil energy use and R&D intensity in general reduce technical efficiency.  
 
Zhang & Fan (2018) estimate an energy efficiency frontier across Chinese provinces and then test for 
the impact of the Chinese provincial pilot CO2 emission trading systems launched from 2011. Based 
on data to 2015, they do not find a statistically significant trend break as evidence for policy-induced 
innovation from these pilot systems. Zhu & Ye (2018) find that environmental (SO2) regulation in China 
is correlated with improved green technology, and also find that spillovers from Overseas Foreign 
Direct Investment in developed countries increases green technological progress, in 
developing/transition economies reduces it.  
 
Managi, Opaluch, Jin, & Grigalunas (2005) find that environmental regulation of oil and gas industries 
in the Gulf of Mexico improved overall TFP, including both marketable and environmental outputs, 
but not marketable output alone. Several other studies also explore how environmental regulation 
can influence TFP when polluting inputs and pollution reduction are explicitly accounted for 
(sometimes called “green TFP”). These include Shen et al. (2019a), Song & Wang (2018), Tao & Li, 
(2018),  Wang et al. (2018), Zhang et al. (2018). Such studies use various frontier analysis 
methodologies and sometimes quite limited datasets, although collectively they tend to at least 
suggest that there are some gains from innovation induced by environmental regulation. 
 
Conclusions on multi-sector and macro-level technological change 
 
Overall, our review reveals that the aggregate sectoral or macro level literature is surprisingly limited, 
which is likely a testament to the difficulty in extracting robust findings. We do note that the findings 
tend to complement the findings from Section 5, that energy price increases raised patenting levels, 
and innovation has been embodied in the subsequent capital stock. But few studies precisely pin down 
the contribution of induced technology innovation at the aggregate level. We see this as a nacsent 
area that so far has broadly (but not universally) been pointing to an effect of environmental 
regulation on innovation at the aggregate level. Overall though, there is plenty of scope for more 
research to pinpoint the contribution of induced technology innovation to resolve tensions of 
economy and environment at macro levels. 

9. Interpretation: the processes of induced innovation 
 
If the study of innovation is, as Kemp & Pontoglio (2011) suggested, like the proverb of the blind man 
and the elephant, what light has our review shed on its overall shape?  First, we stress our conscious 
choice to focus on the role of demand-pull factors. Public investment, from universities to public R&D 
labs and demonstration plants, is clearly important, but so is innovation induced by demand-pull in 
many forms. To pursue the analogy, if technology push represents the back of the elephant, our study 
explored the front, recognizing that neither is much use without the other. The results of this review 
must therefore be paired with reviews of studies examining the role of technology push dynamics, to 
allow a more full (but not necessarily complete) understanding of the elephant.  
 
We stress that our review has focused on energy, and that sectors are different, as emphasized by the 
data cited in Section 2. For energy however, we conclude that the evidence, following the structure 
of our review, is as follows. 
 
Market-wide / energy & carbon pricing -> patents.  Changes in energy prices and carbon pricing 
creates incentives first and foremost for incumbent industries to improve performance of their 
existing technologies, and to generate options to maintain their comparative advantage in a higher 
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fossil fuel or carbon price world.  The literature identifies both lags between market impacts and 
patenting, and that patents tend to be path dependent, building on earlier ideas and progress. 
 
Industrial energy users and vehicle manufacturers clearly responded to the incentive of major energy 
price rises, with corresponding (if less extensive) evidence of impacts also from energy taxation and 
carbon pricing.  On the supply side, the oil price shocks in particular also hugely enriched the oil 
companies, enabling greater investment in R&D across the board, particularly in oil exploration and 
development, and biofuels which could also utilize much of their existing expertise and assets. Hence, 
the strong and unambiguous impact of market-wide changes on patent filings in these areas.   
 
Patents for renewable electricity sources were also stimulated by the energy prices. They had less to 
build on particularly after the first (1970s) oil shocks, when the rise in government R&D probably 
played a major role, and were less aligned to the core interests of incumbent energy producers. Clean 
energy patents for wind and solar especially expanded far more after about 2000 (see Figure 5). As 
reviewed across Sections 5 and 6, the literature suggests that many factors contributed to this, 
including strategic signaling (the adoption of the Kyoto Protocol in 1998, with entry-into-force in 
2005), renewed energy price rises from early 2000s, and the more targeted incentives discussed 
below.  
 
The most notable lacunae observed are in buildings, where evidence of energy price rises stimulating 
innovation (including in appliances, with some exceptions – e.g. Newell et al., 1999) is both limited 
and mostly inconclusive This, presumably, reflects the large literature arguing that most building-
related decisions face multiple problems of split incentives, low materiality, and various behavioural 
biases that weaken any responses to price signals.  
 
Market-wide / energy & carbon pricing -> outcomes. The major energy price rises correspondingly 
yielded clear improvements in established areas, such as oil extraction, industrial energy efficiency, 
and the efficiency of vehicles.  The outcome measures pick up the value of additional elements of 
innovation which yield cost reductions (such as deployment-induced learning-by-doing, customer and 
market development), but which may not be so readily patentable. The limited numbers of studies 
exploring this link do suggest a strong role for market-wide incentives. In addition to the shale 
revolution, this is most clearly in vehicle efficiency where a large, established and innovation-intensive 
industry – in many jurisdictions, prompted by regulatory sticks as well as market carrots - clearly 
regarded improving vehicle efficiency as an important selling point (and regulatory hedge).  
 
Targeted interventions -> patents.  More specific demand-pull policies which target emerging clean 
technologies provide relatively more (and more direct) incentive for their deployment, and hence for 
their commercialization and learning including by new entrants. For the earlier stages of development, 
much of the relevant knowledge may be codifiable, though propensity (or capacity) to patent may be 
varied; incentives extend to more radical innovations particularly where funding is relatively generous 
and guaranteed, to cover the higher risks. Hence the patterns found in PV and biofuels (Section 6), 
where more competitive instruments (e.g. ROCs and portfolio standards) yield patenting on more 
established technologies (e.g. PV silicon wafers, first generation biofuels), whilst feed-in-tariffs may 
incentivize more R&D in advanced and risky technology (e.g. PV thin-film, second generation biofuels). 
However, the impact of different instruments on patenting also varies with the stage of technological 
maturity – the broader the instrument, the more likely are efforts to focus on incremental 
improvements of technologies already in the market. 
 
Targeted interventions -> outcomes. The most obvious impact of demand-pull instruments, 
particularly those targeted upon emerging technologies, is to increase the scale (and overall value) of 
the associated industries.  This has multiple channels of impact on innovation and cost reduction.   
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First, it creates both incentives and resources for potentially patentable innovations, though this 
draws upon both technology-push and demand-pull; the ‘multi-factor’ experience curve literature 
helps to identify the contribution of other factors (like public R&D) but still finds a large component 
of deployment-related cost reduction.  
 
Just a few studies trace causality directly, but many others shed light upon it. The cost decomposition 
studies indicate that as well as private R&D, the impacts of enhanced deployment includes economies 
of scale (at all levels of units, factories, and industry), as well as learning-by-doing.  Moreover, policy 
support for new industries also implies political support for overcoming regulatory barriers (which 
otherwise tend to favour incumbents), and to support institutions and infrastructure which further 
reduce risks. All this reduces financing costs, increases revenues, and aids the growth of these 
technology-industries with all the attendant tacit learning and multiple scale economies. These further 
reduce costs to the market.  The findings from the qualitative, mixed-methods and survey literatures, 
underline further the way in which increasingly competitive costs also enhance confidence and market 
stability, feeding wider market diffusion, and potentially creating a virtuous circle (and hence, path-
dependence) of establishing a new technology-industry at scale (as now achieved for wind and solar).   
 
Most of the carbon-energy-policy related instruments have created financial incentives in one form 
or another, particularly for supply technologies.  Regulatory policies have also been important, either 
in complementary support roles (e.g. industry codes and standards), or as driving forces where price-
based incentives had obvious limitations (most notably, the limited literature on energy-related 
innovation in buildings).  Wider literatures from SO2 control (e.g. (Taylor et al. 2003, 2005)** and 
automobile regulation (Lee, Veloso, Hounshell, & Rubin, 2010)** underline the contribution of 
regulatory measures in driving innovations and cost reductions from other environment-related 
regulatory controls.   
 
Broadening frameworks for understanding induced innovation 
 
Before completing with the evidence around policy mixes and the multi-sector/macro literature, we 
seek to locate the above findings in a broader framework in the search for a more coherent picture of 
‘the elephant’.  Specifically, in attempting to draw from this a richer understanding of induced 
innovation, we suggest two elements which can help to broaden traditional conceptions of innovation 
processes. 
 
Broadening frameworks for understanding induced innovation 
 
Before completing with the evidence around policy mixes and the multi-sector/macro literature, we 
seek to locate the above findings in a broader framework in the search for a more coherent picture of 
‘the elephant’. Specifically, in attempting to draw from this a richer understanding of induced 
innovation, we suggest two elements which can help to broaden traditional conceptions of innovation 
processes. 
 
The first element is clarifying a distinct role for deployment, as flagged in Section 2, which notes that 
the literature often considers this as synonymous with diffusion. However, we have collected evidence 
around the patent generation associated with the early growth of renewables (and demand-pull in 
energy efficient technologies), including the critical role of associated demand-pull policies, and 
discussed how studies of cost components help identify mechanisms through which deployed scale 
leads to cost reductions. Thus deployment can have a crucial bridging role between initial 
commercialization, and self-sustaining diffusion. We therefore suggest that mechanisms of induced 
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innovation can be distinguished more clearly by considering a distinct step in which a technology is 
deployed at scale, before it is inherently cost-competitive with incumbents.  
 
Crudely, we suggest deployment be particularly associated with stages of market development driven 
by actions taken with expectation of future benefits, associated with scale or experience; whilst 
diffusion is a more autonomous, self-sustaining process. The motivation for such deployment is then 
expectation of some benefits beyond the immediate revenues. In the absence of policy, this may be 
loss-leaders by industry (e.g. the Toyota Prius), commercialization being entwined with deployment 
to establish market presence and delivery capability, brand, and customer base. Conversely, public 
policies to drive deployment might be (at least in part) motivated by expected innovation benefits, 
thereby helping to build new industries.  More formally, in the context of the debate about causality 
in experience curves, we might tentatively suggest a delineation of deployment as a stage of market 
development in which the dominant causality is from scale to technological advance, whereas 
diffusion is the succeeding stage, where established technology performance becomes the dominant 
driver of market share, and any learning becomes a secondary by-product.  
 
This helps to frame an important question, namely when and where the pull of established markets, 
supported by public R&D, is sufficient to form a vibrant innovation system.  In the absence of policy, 
commercialization may be entwined with deployment if there are either high revenues, or 
commercially motivated loss-leaders. However, this is far less evident for energy, for the reasons 
already indicated in  section 2 (e.g. lack of product differentiation). With public policy, aside from 
possible short-term justifications, deployment may be a strategic driven at scale by government 
incentives (Grubb et al. 2014 use the term ‘strategic deployment’), like feed-in tariffs, to build up new 
clean technology-industries which may ultimately become competitive with incumbents (particularly 
if policy also evolves to factor in other externalities over time, as with carbon pricing). 

 
 

Figure 10 Expanded innovation chain – the multiple journeys 
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Source: Developed and adapted from Grubb, McDowall and Drummond (2017**). 
 
The second element in gaining a fuller picture is to recognize that the terrain of innovation is not just 
wide – a long journey from invention to mature technology widely diffused - but deep. The core 
interests in considering the economics of decarbonization are to do with outcomes – more efficient 
energy production and consumption, and cheaper clean energy technologies. Technology cost and 
performance is ultimately influenced by many factors beyond ‘hardware’ alone. Figure 10 illustrates 
multiple factors which need to develop on the journey from a new invention to its widespread 
diffusion. In parallel to the technology journey itself, this may require evolution of business structures 
and supply chains, the customer base, financing routes, regulatory environments, and potentially 
institutions and infrastructure. Above and below this we suggest how the evidence presented in this 
Systematic Review can be related to these processes. 
 
Clearly, the relative importance of these other dimensions may depends on the technology in 
question, context, and indeed, the organizations involved. A technology which is developed by large 
incumbent industries, and which fits well with their comparative advantage and existing market 
structures, will already have its financing structures and routes to markets established, and may 
benefit little from regulatory, institutional or infrastructure changes. The competitiveness of radically 
new and disruptive technologies however may hinge crucially upon these factors, as underlined also 
by developments particularly in multi-level transition theories (e.g. Geels, 2014)**. 
 
In general, all indicators are potentially relevant, because though they overlap, they also point to 
different dimensions of overall innovation. Moreover, in this wider context, it seems that literature 
reviewed here is skewed towards a rather narrow range of indicators of innovation processes. There 
is a need to develop robust data on wider range of innovation activities, including those related to 
private R&D, finance, technology characteristics, firm entry/exit dynamics, and others. This seems 
important for developing a clearer picture of the diverse processes that underpin energy innovation. 
 
Correspondingly, policy-induced innovation, particularly if seeking more radical transformation of 
polluting sectors, cannot realistically resort to one or two individual instruments (like R&D plus carbon 
pricing).  Nor indeed, is the choice of environmental policy instruments a simple debate between 
market-based and regulatory approaches. As suggested over a decade ago in a review essay by 
Rosenbaum (2007)** if the goal is transformative, policy can hardly avoid elements which do not fall 
easily into either category, being more targeted at industrial strategy. In that context, some demand-
pull policy is necessary to induce successful innovation, and the challenge is not whether to do it, but 
how to do it well, as underlined by Nemet et al. (2018)**.   
 
The limited econometric literature on policy mixes (Section 7) seems to underline the relevance of 
well-crafted ‘packages’ of complementary instruments to encourage innovation (expressed through, 
inter alia, patenting and cost reduction), whilst qualitative, survey and mixed methods literatures – 
including most case studies - underline the multi-faceted complexity of real-world decisions on 
innovation, influenced by a host of direct and indirect considerations. Those literatures, 
complementing both the ‘standing on the shoulders’ findings of patent literatures, and experience 
curve data defined in terms of cumulative deployment, also underline the path-dependent and self-
reinforcing nature of some of these processes.  
 
Sector-wide and macroeconomic impacts (Section 8) necessarily involve all the above, but crucially, 
also pick up the ‘crowding out’ impact of switching innovation efforts from fossil fuel technologies – 
and maybe from other sectors - to low carbon and energy efficient technologies.  
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10. Conclusions and research gaps 
 
Hicks (1932)** was right. The direction as well as pace of innovation is influenced by economic 
conditions, expectations, and experience. The evidence drawn from almost half a century of dramatic 
changes in energy markets, and growing energy-environmental policy, yields at least three broad 
headline findings. 
 
1) Demand-pull forces enhance patenting. Table 3 (Section 5) summarizes how patents across 

numerous energy technologies and sectors have responded to energy prices over the decades, 
finding positive impacts in industry, electricity and transport sectors in all but a few specific cases. 
Studies of carbon pricing, and most (though not all) more targeted interventions (Section 6) 
similarly show patents responding to demand-pull incentives.  

2) Technology costs decline with cumulative deployment.  Figures 7 and 8 (Section 6) shows 
unambiguously positive correlations, as measured by ‘learning rates’, for all studies of wind and 
solar energy across all time periods.  The same holds true for almost all the technologies studied, 
for both production and use of energy. Numerous factors (including correlation of targeted 
market subsidies and deployment with patents but also many other lines of evidence), point to 
dominant causality from deployment (as we have defined it) to cost reduction in this relationship. 

3) Overall Innovation is cumulative, multi-faceted, and self-reinforcing. Patent evidence points to 
strong path dependence, with patents ‘building on the shoulders’ of earlier developments.  Aside 
from the experience curve data, the qualitative and policy mix literatures also point to the 
importance of combined spillovers, technology-push, and cumulative learning; the influence of 
multiple policy incentives that enhance confidence and shape expectations; and the reinforcing 
tendency of successful, expanding technology-industries to foster institutions and coalitions that 
sustain progress.  

 
The bulk of the evidence comes from micro-economic analysis of patents, technology costs, and 
processes, on which we have organized our search, review and analysis through the four specific 
relationships as set out in Table 1, with results as summarized in the previous section.  
 
Implications for modeling  
 
These findings have at least two broad implications for modeling. First, results from models which 
assume technology costs to be either fixed, or to change exogenously, need to be scrutinized to 
consider whether endogenizing innovation would change their findings. In many applications, of 
modest changes to national energy markets and systems, this may be a reasonable assumption, but it 
should not be just an unchallenged ‘default’.  For models looking at larger scale changes, in terms of 
global reach, depth and/or timescale of transitions, assuming technology costs to be exogenous needs 
to be recognized as an explicit assumption that is not supported by the evidence.  
 
We cannot draw meaningful conclusions about the cost of deep decarbonization using models which 
assume the cost of future low carbon technologies to be unaffected by how strong are the incentives, 
or much those technologies are actually deployed. Nor of course would the standard exogenous 
assumptions make much sense for modeling the economics of policy directed at deploying new and 
expensive technologies that have clear potential for economies of scale and learning. 
 
A recent review of evidence on wider dynamics in relation to ‘Integrated Assessment Models’ ( Grubb, 
Wieners, & Yang, 2020) notes that, fortunately, many of the more sophisticated IAMs now do include 
elements of induced innovation, as do some recent stylized models. Some also include the cumulative, 
path-dependent nature of innovation. The review notes the extent to which these factors may affect 
results, particularly concerning optimal investment in a cost-benefit setting.  

Page 50 of 76AUTHOR SUBMITTED MANUSCRIPT - ERL-109249.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 51 

 
Second, for this increasingly rich variety of energy-economy models which do seek to endogenize 
innovation, our results may help to inform the characterization and parametrization of such models. 
Responding to the conclusion of Gillingham, Newell, & Pizer (2008) cited in our introduction, our 
findings might indeed help to inform choices between, and validate the parameters for, a potentially 
bewildering variety of such models which have lacked firm empirical foundations.  
 
Implications for policy 
 
Our findings also have implications for policy. This has not been our main focus, but some seem 
inescapable – a study almost two decades ago (M. Grubb, Köhler, & Anderson, 2002) identified five 
types of potential policy implications of induced innovation – concerning long run costs; timing; policy 
instruments & cost distribution; first-mover economics; and spillover and leakage concerns.  
 
Given the unambiguous finding that market-wide prices do generally influence patents, the case for 
carbon pricing is enhanced further, in light of the push it may give to low carbon innovation, amplified 
with path dependency (as found in the modeling review cited above).  However, carbon pricing alone 
may be a very blunt way of stimulating innovation, particularly for sectors like energy which have very 
low natural levels of innovation as measured by private R&D (and potentially, innovation biased 
towards incumbent interests). As Grubb et al (2014) later observed, “if the innovation chain is broken, 
carbon pricing alone won’t fix it.” The clear impact of targeted demand-pull policies on innovation – 
outcomes as well as patents – underlines that successful innovation needs pull as well as push and 
that well-designed, targeted policies may provide a far stronger and more focused pull than any 
plausible level of general carbon or other externality pricing. Such targeting may also mean they have 
far less widespread impacts on the economy and face far lower political obstacles.  
 
Essentially, as emphasized by Gillingham & Stock (2018)**, policy evaluation must consider dynamic 
as well as static efficiency, and this may change both the costs and optimal instruments associated 
with decarbonisation policy.  
 
Moreover, the qualitative, mixed methods, survey and case study literatures all yield basically the 
same message – that innovation is a complex and mutli-faceted process, with numerous 
interdependencies, as well as uncertainties. Consequently, for a company, innovation is a gamble, the 
case for which is influenced by a wide variety of policy instruments, incentives, and strategic signals 
about the extent to which a government is really committed to a certain course, e.g. in terms of 
decarbonization or other sectoral change. And for a government, policy likewise carries uncertainty, 
enhancing the case for policy diversity, experimentation, evaluation, and learning.  
 
Without digging deeper into systems innovation theories, the evidence does indicate that the simple 
framing of ‘two market failures’ – technology spillovers plus externalities - is inadequate to the real 
complexity of the challenge, and the various policy implications noted flow from this.  
 
Research gaps  
 
Innovation is complex and limitations in knowledge remain striking. The literature linking energy prices 
to patents may be robust enough to generate elasticity estimates, but only a minority of these studies 
consider equally important questions: to what extent do energy-related patent trends reflect 
substantial technical change away from fossil fuels? Or, is patenting more about incremental 
innovations to help maintain the position of incumbent industries? This may be crucial to judging the 
balance between broad and targeted measures, if the latter are more likely to bring forth radical and 
disruptive technologies.  
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The gap in the literature on experience curves is even more striking. Amongst almost a hundred 
studies, few have any test for causality, taking it as assumed that cost reductions are driven by 
deployment rather than the other way round. The idea that deployed scale has predominantly driven 
cost reduction has occasionally been formally demonstrated, but mostly it rests on inference and 
assumption. Our conclusions on causality are predominantly inferred, most notably from cost 
decompositions and a wide body of case studies. It seems likely that as technologies mature from 
initial deployment to more self-sustained diffusion, the feedback from cost reduction to diffusion 
grows, with ‘learning rate’ correlations increasingly reflecting this two-way relationship. 
 
Beyond these two main areas of statistical studies are other outstanding questions.  We did not find 
studies tracing the impact of technology patents (at scale) through to innovation outcomes (beyond 
potentially, some case studies). Also as noted, the complexities of disentangling specific innovation 
from numerous other factors at the macro level has limited the robust literature. Finally, a full welfare 
assessment should seek to include environmental costs and benefits as part of the overall macro 
metrics (“Green GDP”), adding more complexity; overall, this remains an area for further research. 
 
More obvious research gaps, lacking at least in terms of formal tests, could be inferred from the matrix 
of Figure 10. The econometric literature has focused heavily on patents, as patents are the most 
readily-available data, but these only reflect codifiable (and codified) knowledge.  The tacit knowledge 
and capabilities associated with deployment contribute to the other main observable metric – final 
costs or prices, but these aspects are little charted.  Studies of the contribution from the declining cost 
of finance as a technology-industry matures has only just begun to receive appropriate academic 
attention (e.g. Egli, Steffen, & Schmidt, 2018)**.  It remains unclear how one might test in any 
quantified way the impact of the lower rows on final costs. The contribution from appropriate 
regulatory structures, supportive institutions, and infrastructure is, in terms of quantified economic 
metrics, almost uncharted territory at least as applied to the low carbon transition.  
 
One can of course debate the semantics as to whether this should be included as part of innovation, 
but it certainly contributes to cost reduction. Arrow (1971, p. 224)** noted that “Truly among man’s 
innovations, the use of organisation to accomplish his ends is among both his greatest and his 
earliest”; to which Williamson's (2000)** review of institutional economics adds, “inasmuch as these 
two work in tandem, we need to find ways to treat technical and organisational innovation in a 
combined manner.”  
 
Particularly given the scale of changes implied by deep decarbonization, it may thus be fruitful to 
explore whether and how the quantitative techniques developed in economics can be related to the 
qualitative socio-technical literature on the wider dynamic of – and obstacles to – transformation. The 
future frontiers of research may be less about the drivers of technology and patents per se, but – as 
the qualitative literature covered in this review suggests - more about their co-evolution with the way 
society organizes its economic systems to support low carbon innovation, in its many dimensions.  
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Appendix I – Systematic search terms 
 
Search-Link I(i) terms: 
 
(((electricity OR energy OR fuel OR oil OR gas OR coal) NEAR/0 pric*) OR ((“energy supply” OR energy) NEAR/0 
shock*) OR ((energy OR oil OR fuel) NEAR/0 embargo*) OR ((energy OR electricity) AND “market competit*”) OR 
((energy OR electricity) AND libera*)) 
 
AND 
 
(((cost OR price) NEAR/0 (reduc* OR saving*)) OR ((increas* OR improve*) NEAR/0 (productivity* OR yield* OR 
output* OR “energy efficiency”)) OR “increasing returns to adoption” OR ((induced OR eco OR environment* OR 
“low carbon” OR techn* OR clean OR corporate) NEAR/0 innovat*) OR "learning-by-doing" OR "learning-by-
searching" OR ((learning OR experience) NEAR/0 rate*) OR ((experience OR learning) NEAR/0 curve) OR 
((directed OR endogenous) NEAR/0 “techn* change") OR "private R&D" OR patent*) 

 
Search-Link I(ii) terms: 
 
(((environment* OR energy OR climate OR eco) NEAR/0 (polic* OR regulat*)) OR ((demand OR market) NEAR/0 
pull) OR ((supply OR technology) NEAR/0 push) OR ((energy OR electricity OR heat OR fuel OR oil OR gas) NEAR/0 
(auction OR tender OR “efficiency standard*” OR “technology standard*” OR label*)) OR ((green OR 
“renewable* obligation”) NEAR/0 certificat*) OR “renewable* portfolio standard*” OR “time of use pric*” OR 
((carbon OR emission* OR CO2) NEAR/0 (pric* OR tax* OR trad*)) OR “feed in tariff*” OR “feed in premium*” 
OR (energy AND “network regulation*”) OR (capacity NEAR/0 (market OR mechanism*)) OR “consumer subsid*” 
OR “public procurement”) 
 
AND 
 
(((cost OR price) NEAR/0 (reduc* OR saving*)) OR ((increas* OR improve*) NEAR/0 (productivity* OR yield* OR 
output* OR “energy efficiency”)) OR “increasing returns to adoption” OR ((induced OR eco OR environment* OR 
“low carbon” OR techn* OR clean OR corporate) NEAR/0 innovat*) OR "learning-by-doing" OR "learning-by-
searching" OR ((learning OR experience) NEAR/0 rate*) OR ((experience OR learning) NEAR/0 curve) OR 
((directed OR endogenous) NEAR/0 “techn* change") OR "private R&D" OR patent*) 
 

Search-Link II terms: 

 
(“wind” OR “solar” OR “photovoltaic” OR "renewable*" OR “hydrogen energy” OR "electric vehicle*" OR 
“electric car*” OR “hybrid vehicle*” OR “hybrid car*” OR “fuel cell” OR “biofuel*” OR “biodiesel” OR “biogas” 
OR “biomass” OR “bioenergy” OR "Marine energy" OR CCGT OR “natural gas” OR “fossil fuel” OR “carbon 
capture” OR “co2 capture” OR “hydro” OR “coal” OR “CCS” OR “nuclear” OR (“power” AND technolog*) OR 
“power generation” OR “geothermal” OR “batter*” OR “CFL” OR “compact fluorescent” OR “heat pump*” OR 
“hydrogen” OR “wave energy” OR “tidal energy” OR ((energy OR electricity OR power) NEAR/0 sector)) 
 
AND  
 
("learning-by-doing" OR ((learning OR experience) NEAR/0 rate*) OR ((experience OR learning) NEAR/0 curve)) 

 
Search-Link III terms: 

 
(((environment* OR energy OR climate OR eco) NEAR/0 (polic* OR regulat*)) OR ((demand OR market) NEAR/0 
pull) OR ((supply OR technology) NEAR/0 push) OR ((energy OR electricity OR heat OR fuel OR oil OR gas) NEAR/0 
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(auction OR tender OR “efficiency standard*” OR “technology standard*” OR label*)) OR ((green OR 
“renewable* obligation”) NEAR/0 certificat*) OR “renewable* portfolio standard*” OR “time of use pric*” OR 
((carbon OR emission* OR CO2) NEAR/0 (pric* OR tax* OR trad*)) OR “feed in tariff*” OR “feed in premium*” 
OR (energy AND “network regulation*”) OR (capacity NEAR/0 (market OR mechanism*)) OR “consumer subsid*” 
OR “public procurement” OR “Tax reform”OR ((electricity OR energy OR fuel OR oil) NEAR/0 pric*) OR ((“energy 
supply” OR energy) NEAR/0 shock*) OR ((energy OR oil OR fuel) NEAR/0 embargo*) OR ((energy OR electricity) 
AND “market competit*”) OR ((energy OR electricity) AND libera*)) 
 
AND 
 
(((cost OR price) NEAR/0 (reduc* OR saving*)) OR ((increas* OR improve*) NEAR/0 (productivity* OR yield* OR 
output* OR “energy efficiency”)) OR “increasing returns to adoption” OR ((induced OR eco OR environment* OR 
“low carbon” OR techn* OR clean OR corporate) NEAR/0 innovat*) OR "learning-by-doing" OR "learning-by-
searching" OR ((learning OR experience) NEAR/0 rate*) OR ((experience OR learning) NEAR/0 curve) OR 
((directed OR endogenous OR induced OR biased OR “energy using” OR “energy saving”) NEAR/0 “techn* 
change") OR "private R&D" OR patent* OR “total factor productivity” OR “aggregate technology stock” OR 
“capital accumulation”) 
 
AND 
 
(((“general equilibrium” OR macroeconomic) NEAR/0 effects) OR spillover* OR rebound OR “structural change” 
OR “absorption capacity” OR “crowd* out” OR “crowd* in” OR “market structures” OR Schumpeter* OR 
“endogenous growth” OR “structural decomposition”) 

 
 

Appendix II - Experience curves in renewable energy sources and selected demand-side 
technologies 

Solar PV 

For solar PV, most studies produce learning rates for unit prices or costs based on global cumulative 
deployment. Of the rates presented in Figure 8, 18 represent global learning rates for PV modules or 

PV systems that cover a time period of 10 years or more37. 15 of these rates were between 14% and 
28%. Studies deriving two- or multi-factor experience curves, where factors such as R&D (Kobos, 
Erickson, & Drennen, 2006; Miketa & Schrattenholzer, 2004), and economies of manufacturing scale 
(C. F. Yu et al., 2011) are controlled for, tended to be at the lower end of this range. Some two- or 
multi-factor experience curve studies (de la Tour et al., 2013; Gan & Li, 2015; Mauleon, 2016; Trappey 
et al., 2016; C. F. Yu et al., 2011)  show that for PV the effect on the learning rate of controlling for 
input prices (especially the price of silicon) has a varied impact on the learning rate depending on the 
analysis period (as they themselves have shown variation over time). 

The studies examined indicate there has been little to no reduction in the learning rate over time. 
While Nemet, (2009b) found global learning rates for PV modules appearing to decrease over 
sequential 10-year periods between 1976 to 2006, this finding is strongly influenced by the temporary 
PV module cost increases caused by supply constraints in the mid- to late-2000s. When the 
subsequent easing of these constraints are taken into account, however, Mauleon (2016) found that 
such a long-term trend has not been evident. 

                                                        
37 Following Nemet (2009b) a minimum period of 10 years is chosen here as for learning rates based on a shorter 
period of time there is a higher risk of them being strongly affected by short-term influences not correlated to 
deployment (for example by fluctuations in input prices or by market imbalances leading to temporary 
deviations in the cost vs. price developments). 
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Only two studies calculated learning rates using the (real or estimated) cost or price of electricity 
generated. Zou et al. (2016) calculate a rate of 25% using a derived LCOE in China (1976-2009), whilst 
Hong et al. (2015)estimate a rate of 2.3% for the average traded power price for solar PV and total 
power traded in South Korea (using a two-factor approach, controlling for knowledge stock). They 
suggest this may indicate a large technology gap with other high-income countries – however as they 
use quarterly data over a short period (2004-2011), they caution against overinterpretation.  

Studies published since the review by Samadi (2018) have focused on learning rates in individual 

countries and/or balance-of-system (BOS) costs38. 

For residential PV systems, Wei et al., (2017b) found a rate of 33% from 2006 to 2011 for Germany 
and a rate of 20% from 2009 to 2011 for the USA. These rates are higher than those evident in previous 
years, and the authors speculate this may be in part be due to changes in deployment programs in 

both countries39. Zhou & Gu (2019) construct two-factor experience curves for both utility-scale (> 
1.000 kW, for 2009 to 2016) and residential PV plants (< 10 kW, for 2007 to 2016) in the USA, finding 
learning-by-doing-related learning rates of 7% and 11 %, respectively (however they also find that 
public R&D led to additional, and greater, cost reductions over the observed period). 

For non-hardware (e.g. planning and installation) costs of small-scale PV systems in Germany for 1991-
2012, Strupeit & Neij (2017) find a learning rate of 10%. The authors note that this rate is lower than 
those typically found for hardware components (e.g. modules and inverters), explaining the growing 
share of non-hardware costs in PV systems over the past few decades. They also identify a need for 
further research to better understand the drivers of non-hardware cost reductions. Elshurafa et al. 
(2018) find an average learning rate of 9% for BOS costs for residential installations, but with 
considerable variation between countries. 

Concentrating Solar Power (CSP) 

Only two studies examined experience curves for CSP. Hernandez-Moro & Martinez-Duart (2013) 
derive a global learning rate of 11% for installed costs for 1984-2010, with data dominated by 
parabolic trough (PT) systems, which by 2010 accounted for over 90% of installations..Lilliestam, 
Labordena, Patt, & Pfenninger (2017) examined separate learning rates for PT and solar tower (ST) 
installations, with results later corrected by Lilliestam, Labordena, Patt, & Pfenninger (2019). For PT 
installations with little or no storage capacity, they find rates of 21% or 30% for investment costs 
depending on the data source used, for the period 2011-2014 (R2=0.97), with a sixth of the 
improvement due to improved solar resource for new projects (this rate remains unaffected in their 
correction). The authors also examine data from 1984 and find a value of 2.7%, but due to cost 
increases over 2008-2011, an experience curve fit over the full period is extremely poor. No R2 value 
is provided for the learning rate to 2010 reported by Hernandez-Moro & Martinez-Duart (2013). For 
PT installations with 6-8 hours storage, Lilliestam et al., (2019) finds a (corrected) learning rate of 6.8% 
(R2=0.513) for 2008-2017), or 7.2% (R2=0.149) when focused on 2011-2017. For PT installations with 
greater storage capacity and ST installations no experience curves were discernible, largely due to the 
very small number of installations. 

Onshore wind 

Studies examining experience curves for onshore wind focus on Europe - and particularly Denmark - 
due to the historic concentration of installed capacity. The majority of these studies derive learning 

                                                        
38 Balance-of-system costs refer to all non-module costs of an installed PV system, such as the costs of 
converters, cables, mounts and labour. 
39 Wei et al., (2017b) stress that they do not have any hard evidence for a causal relationship between learning 
rates and deployment programs, but they speculate that deployment programs may stimulate new thinking 
among manufacturers and/or may incentivise new product designs. 
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rates using turbine prices or investment costs40, with many using data extending back to the 1980s. 
Of the 18 learning rates for unit price or cost in Figure 9 covering a period of 10 years or more, 15 
cluster between 5-15%, with rates derived from multi-factor studies again tending towards the lower 
end of this range (e.g. Grafstrom & Lindman, 2017; Hansen et al., 2003; Soderholm & Klaassen, 2007).  

For wind power, the relationship between rated capacity and electricity generation is relatively 
complex. Over time, changes in turbine design (such as higher towers, longer rotor blades and 
improved control electronics) increase efficiency and produce higher capacity factors. As a 
consequence, in the 10 studies (and 11 learning rates) that employ LCOE as a cost metric, learning 
rates are typically slightly higher (at around 8% to 13%, for studies covering 10 years or more). A sub-
set of studies derive rates using both unit prices (or costs) and LCOE and installed capacity; Neij et al. 
(2004) for Denmark (1981-2000), Papineau (2006) for Denmark and Germany (1987-2000) and 
Williams et al. (2017) for the world (1984/1990-2015) all find higher learning rates using LCOE (with 
Partridge (2013) deriving similar values for both metrics for India, 2006-2011). However, Lam et al. 
(2017) find slightly lower learning rates using LCOE than for capacity for China (2004-2012). The 
authors suggest this may be due to a decrease in average estimated capacity factors in China over the 
observed period, as the industry's swift expansion has run into location and infrastructural constraints. 

Three studies found were not examined by Samadi (2018), due to their more recent publication. The 
first is Lam et al. (2017), discussed above. Williams et al. (2017) derive a global learning rate of 7% for 
project investment costs for 1984-2015, and a rate of 9% for LCOE for 1990-2015, both based on one-
factor experience curves. The LCOE rate increases to 10% and the curve’s goodness of fit (R2 value) 
improves when site quality, material costs and USD exchange rates are considered. Finally, Zhou & Gu 
(2019) derive two-factor experience curves for the USA for 2009-2016, finding a relatively high 
learning rate of 18%, despite attributing 42% of the observed cost reductions to public R&D. The 
authors suggest this result reflects an increase in the rate of learning, however this may be a faction 
of the time period examined, which immediately followed a period of high commodity prices, a high 
and value of the US dollar, and supply constraints, all of which subsequently reduced, along with wind 
power costs (Wiser et al., 2018)**. 
 
We identified a single study in the peer-reviewed academic literature that attempted to derive an 
experience curve for offshore wind. van der Zwaan et al. (2012) find an installed cost learning rate of 
5% for offshore wind in Europe (1991-2008), once the influence of key commodity prices and supply 
chain constraints are accounted for. However, the authors acknowledge that this is based on limited 
data with a poor statistical fit. 
 
Bioenergy 
 
Three studies derive learning rates for electricity generated from biomass. Junginger et al. (2006) find 
a rate of 23% for investment costs, and 9% for average electricity production costs (8% for marginal 
production costs) for biomass CHP plants in Sweden (1983-2002). For biomass power in China, Lin & 
He (2016) find rates of 5.6-7.8% for investment costs, and 2.2-6% on an LCOE basis (2005-2012), which 
the authors attribute to a combination of LBD and LBS. Wang et al. (2018) find a similar value of 4.5% 
(2006-2014) on a calculated LCOE basis, with a variable representing a combined LBS and LBD 
influence statistically significant, but a reasonably minor factor in declining costs (compared to, for 
example, changes in O&M costs). Junginger et al. (2006) was also the only study identified that derived 
learning rates for average biogas production costs, finding rates of 15% and 24% (1984-1991) in 
Denmark, depending on the data sources used (with both exhibiting high R2 values), but with no cost 
reductions found for 1991-2001). 

                                                        
40 Investment costs are the full costs of installing a wind turbine. The cost of the turbine itself constitutes about 

70 to 80 % of the total investment costs (Grafstrom & Lindman, 2017). 
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Four studies examine the learning rates for bioethanol in Brazil. In 1975, Brazil launched a National 
Alcohol Program (Pró-Álcool), which set (generally) increasingly stringent mandates for a percentage 
of bioethanol from sugarcane blended with gasoline, with an objective to decrease oil dependency, 
largely in response to the oil crisis of the early 1970s (Moreira & Goldemberg, 1999)**. The first study 
was Goldemberg (1996)*, which found a learning rate of 30% for 1982-90, reducing to 10% over 1990-
95, with the authors ascribing this shift as moving from a period of rapid expansion of production and 
associated technological progress, followed by stagnating production levels (as sugar was instead 
exported rather than converted to ethanol, as world sugar market prices in 1989/90), and a reduction 
in the rate of technological progress and cost reduction (Moreira & Goldemberg, 1999)**. The second 
study, Goldemberg et al. (2004), found rates of 7% for 1980-85 and 29% for 1985-2002 - seemingly a 
reversal of those found in the previous study. However, the time periods examined enhance or dilute 
the expression of different short-term phenomena. Over 1975-1985, bioethanol prices in Brazil were 
regulated at the cost of production, after which they were set at prices below production costs in an  
attempt to curb inflation, artificially reducing costs. From 1997 prices were liberalised, and in 1999 
prices reduced substantially due to overestimated demand and excessive harvest (before recovering 
the following year) (Bake, Junginger, Faaij, Poot, & Walter, 2009)*, skewing the (short-term) learning 
rate derived. 
 
However, Bake et al., (2009) find a long-term learning rate of 20% for 1975-2004, and goes further to 
construct learning rates for feedstock (sugarcane) production costs and processing costs excluding 
feedstock costs, deriving rates of 32% and 19%, respectively. However, they note that the rates 
derived by this and the studies described above are heavily influenced by both a fluctuating currency 
exchange rate (with analysis in all studies conducted in USD), and calculations of pre-1975 cumulative 
production (with bioethanol production in Brazil beginning in 1931). Subsequently, Chen et al. (2015) 
found an overall learning rate of 16%, over a slightly extended timeframe (1975-2010) and using 
different data sources. They also find that the only statistically significant driver of the cost reduction 
experienced to be exogenous spillovers rather than endogenous learning or other phenomena, 
however the authors recommend caution with this result, citing a limitation in the use of aggregate 
industry-level data. 
 
In 2005 Brazil launched a National Biodiesel Production and Use Program (PNPB), also expressed 
primarily as a blending mandate with diesel of increasing stringency. Nogueira et al. (2016) find a 
learning rate of biodiesel production costs in Brazil over 2006-2014 (during which the blending 
mandate increased from 2% to 7%) to be negative, at -1.7% (with -4.6% for 2006-2010, but positive at 
40.7% for 2011-2015). The authors suggest the trend in prices was driven largely by feedstock costs, 
with little technological progress achieved, although they attribute the (substantially) positive learning 
rate in later years also to economies of scale, as production shifted from small to larger plants. 
 
Two studies derive experience curves for (mainly corn-based) bioethanol production in the USA. The 
first is Hettinga et al. (2009), which find a learning rate of 18% for total production costs (1980-2005 - 
with a rate of 45% for corn production costs, and 13% for ethanol processing costs). They estimate 
that 84% of the cost reductions achieved are due to technological learning. Chen & Khanna (2012) 
employ the same data as Hettinga et al. (2009), and find a similar learning rate of 12% for 1983-2005. 
In addition, they find changes in annual corn prices and LBD to account for 95% of the cost reductions 
experienced in ethanol processing. However, both studies raise issues with data, both in estimating 
cumulative production before the time period examined, and on consistent and reliable data on 
production costs. 
 
Demand-side and other technologies 
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Weiss et al., (2010, p.411)** provided the first “comprehensive review of experience curve analyses 
for energy demand technologies”, synthesising studies of fifteen technologies (largely building 
heating, lighting and appliances), and found an average, cross-technology rate of 18% (±7). The 
learning rates for domestic appliance technologies vary substantially (across both unit price and cost, 
depending on the technology), from 9% (refrigerators) to 23% (washing machines - with laundry driers, 
dishwashers, freezers and television sets at 11-16% - and residential heating, excluding heat pumps, 
at 10%), and with substantial variation within technologies. The authors explain differences between 
technologies as result of changes in product design and services over the time periods analysed (and 
which are not considered in the rates derives), and possible data issues in calculating cumulative 
production for products that have been produced commercially for around half a century. By contrast, 
other consumer electronics, electronic components and heat pumps exhibit high rates of 26%, 22% 
and 32% respectively, which the authors posit is due to the use of reasonably novel materials and 
components, for which a large potential for manufacturing (including scale) efficiencies were possible. 
The authors suggest that such efficiencies are less available in products such as building insulation and 
glazing (with a rate of 18%). Finally, they find average learning rates of 21% for compact fluorescent 
bulbs (CFLs), and 16% for (electronic and magnetic) ballasts thereof. However, for all rates presented, 
the authors highlight that as study sample sizes are small, and with each employing different 
performance measures, geographical boundaries, and timeframes, definite conclusions are difficult to 
draw. 
 
Few studies since have sought to build upon the rates synthesised by Weiss et al., (2010)**. Two 
notable exceptions are Smith et al. (2016) and Wei et al., (2017b), both of which derive experience 
curves and assess correlations with technology deployment programmes. (Smith et al., 2016) derived 
experience curves for CFLs for 1990-97, and for 1998-2007. For the first period, they find a global rate 
of 21%, and a rate of 22% for North America (consistent with the average rate derived by Weiss et al., 
(2010)**, but for the second period, they find rates of 51% and 79%, respectively. The authors suggest 
this increase is due to technology standards and public deployment programmes, coupled with 
technology improvements, increased competition and a changing trade environment. Using the same 
data, Wei et al., (2017b) produce the same results (and explanations) for the USA. For electronic CFL 
ballasts, they find rates of 8% (1986-92) and 24% (1993-2005), and 16% (1981-89) and 39% (1990-93) 
for magnetic ballasts. These rates largely concur with those reviewed by Weiss et al (2017), and in 
some cases draw on the same data, with the authors also attributing the higher rates in later years, 
for electronic ballasts in particular, to technology standards and CFL deployment programmes. Wei et 
al., (2017b) also find time-varied rates for General Service Fluorescent Lighting (GSFL) in the USA, of 
21% (1960-68, due to intense market competition), 0% (1969-85, due to market consolidation and 
technological quiescence) and 42% (1986-94, due to state and federal standards). 
 
A third study, Van Buskirk et al., (2014), finds that learning rates for refrigerators, washing machines 
and air conditioning units in the USA, and refrigerators in the Netherlands, all increased with the 
introduction (or increasing stringency of) energy efficiency regulations (in terms of both unit price, 
and lifecycle cost). 
 
In the face of growing deployment, some recent literature has begun to turn its attention to 
experience curves for hybrid-electric (HEVs) and battery-electric vehicles (BEVs), and their key 
components (particularly lithium-ion batteries). For the Toyota Prius, the first mass-produced HEV, 
Weiss et al (2012) find a learning rate (using retail prices as a proxy for production costs) of 6% in the 
USA and Germany (2000/2001-10), but just 1% in its first market of Japan, for 1997-2010 (the authors 
suggest this lower rate may be due to Toyota internally subsidising the Prius during the first years of 
its availability). Aggregated for all available HEV models, the study finds learning rates of 8-10% in the 
USA (1999-2010) and 5% in Germany (2001-10), with Weiss et al. (2019) finding the rate for Germany 
remains stable (6%) for 2010-16.  
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For BEVs, however, Weiss et al. (2019) find a much higher rate of 23% (also in Germany, for 2010-16), 
although Safari (2018) found a rate of just 9% for the same years at the global level. Aside from the 
different geographical scope, this difference may be explained at least in part by issues of direct 
comparability of the product (BEVs and HEVs are not homogenous, either between models or over 
time), and the use of market prices rather than cost (and thus (non-)consideration of geographically 
and time-varied factors, such as sales taxes and profit margins). However, both rates are generally 
higher than those found for HEVs, which Weiss et al. (2019, p.1484), citing (Safari, 2018), suggest is 
due to “rapid technological learning in the manufacturing of traction batteries, which constitute the 
largest individual cost component of an electric powertrain…[which in turn] constitutes a higher share 
in the overall production costs of electric cars than it does in the production costs of plug-in hybrids”. 
Matteson & Williams (2015) find a learning rate of 22% for lithium-ion batteries for 1993-2005, 
although the authors highlight that such batteries were primarily used in small portable electronics 
during this time. Nykvist & Nilsson (2015) conduced a systematic review of 85 cost estimates (reported 
2007-14) for lithium-ion batteries for use in BEVs specifically, and derived an average global learning 
rate of 9%, with Schmidt et al. (2017), deriving a global rate of 16% for 2010-16. 
 
Schmidt et al. (2017) also derive learning rates for a range of battery and other technologies employed 
for energy storage. They find similar rates for a range of different systems and scales; 12% for both 
residential and utility-scale lithium-ion systems (based on German market data for 2013-16, and US 
data for 2010-15, respectively), 13% for residential lead-acid systems (for Germany, 2013-16), and 
11% for utility-scale vanadium redox-flow systems (for the USA, 2008-2015). Kittner, Lill, & Kammen 
(2017) find a global learning rate of a 15.5% for lithium-ion cells over 1991-2015. Matteson & Williams 
(2015) find learning rates of 10% and 4% for small (up to automotive size) and large (including utility-
scale) lead-acid batteries (in the USA, 1989-2012), but with a poor statistical fit. However, when the 
authors control for material price volatility, the rates increase to 24% and 19% respectively (with R2 
values improving considerably). 
 
Various studies derive experience curves for fuel cells, largely for stationary applications. The first was 
(I Staffell & Green, 2009) who derive a rate of 19.1-21.4% for residential proton exchange membrane 
fuel cell (PEMFC) CHP systems in Japan (2004-08), revised to 15% with data extended to 2012 by the 
same authors (Staffell & Green, 2013), and to 18% for with data extended to 2015 by Schmidt et al 
(2017). Including derived rates in Korea (18%, 2006-10) and an anonymous manufacturer (15%, 2007-
11, (Iain Staffell & Green, 2013) derive an average rate of 16% for PEMFC systems. Schoots et al. (2010) 
calculate learning rates for manufacturers of three types of fuel cells used in transportation; alkaline 
(AFC), phosphoric acid (PAFC) and PEMFC, and find rates of 18% (1964-70), 25% (1993-2000) and 30% 
(2002-2005), respectively. For PEMFCs, the authors also derive a  global rate (across manufacturers) 
of 21%. 

Rivera-Tinoco et al. (2012) were the first to derive experience curves for solid oxide fuel cells (SOFCs), 
principally used for stationary purposes. They derive an overall (global) learning rate of 35% for 1996-
2008, but when excluding economies of scale and automation effects, the rate reduces for 20% for 
‘pure learning’ phenomena (including learning-by-searching). They also find varied rates of 16%, 44% 
and 12% for the ‘R&D stage’, ‘pilot stage’ and ‘early commercial stage’ respectively, with ‘pure 
learning’ rates of 16% (attributed to pure learning-by-searching), 27% (with economies-of-scale for 
component materials being dominant), and 1% (with economies-of-sale for manufacturing 
technologies dominant). Complementing the studies described above, (Wei, Smith, & Sohn, 2017a) 
derive an experience curve for SOFC residential CHP systems in Japan (which have deployed in parallel, 
but to a far lesser degree, to PEMFC systems), and find a rate of 18% for 2005-15. The further indicate 
that “the observed cost reduction can be explained by three components [of] roughly comparable 
magnitude: economies of scale, product design improvements, potential cost reductions in 
installation cost and other soft costs, and other factors” (ibid, p.353). The authors also find that for 
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SOFC, molten carbonate (MCFC) and PAFC systems in California, cost reductions (and thus learning 
rate) have been negligible (2007-15, 2003-14 and 2001-13, respectively). Various possible 
explanations for this are provided, including the use of (variable) system rather than fuel cell stack 
costs, a lack of market competition, and manufacturers recouping their investment costs through 
increasing margins. 
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