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EDITORS' PREFACE

The Increasing specialisation in biological inquiry-

has made it impossible for any one author to deal

adequately with current advances in knowledge. It

has become a matter of considerable difficulty for a

research student to gain a correct idea of the present

state of knowledge of a subject in which he himself is

interested. To meet this situation the text-book is

being supplemented by the monograph.

The aim of the present series is to provide authori-

tative accounts of what has been done in some of the

diverse branches of biological investigation, and at

the same time to give to those who have contributed

notably to the development of a particular field of

inquiry an opportunity of presenting the results of

their researches, scattered throughout the scientific

journals, in a more extended form, showing their

relation to what has already been done and to

problems that remain to be solved.

The present generation is witnessing "a return to

the practice of older days when animal physiology

was not yet divorced from morphology." Con-

spicuous progress is now being seen in the field of

general physiology, of experimental biology, and in

the application of biological principles to economic

problems. Often the analysis of large masses of

data by statistical methods Is necessary, and the bio-

logical worker Is continually encountering advanced
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statistical problems the adequate solutions of which

are not found in current statistical text-books. To
meet these needs the present monograph was pre-

pared, and the early call for the second and later

editions indicates the success attained by the author

in his project.

F. A. E. C.

D. \V. C.



PREFACE TO FIRST EDITION

For several years the author has been working in

somewhat intimate co-operation with a number of

biological research departments ; the present book is

in every sense the product of this circumstance. Daily

contact with the statistical problems which present

themselves to the laboratory worker has stimulated

the purely mathematical researches upon which are

based the methods here presented. Little experience

is sufficient to show that the traditional machinery of

statistical processes is wholly unsuited to the needs of

practical research. Not only does it take a cannon

to shoot a sparrow, but it misses the sparrow ! The
elaborate mechanism built on the theory of infinitely

large samples is not accurate enough for simple labora-

tory data. Only by systematically tackling small

sample problems on their merits does it seem possible

to apply accurate tests to practical data. Such at

least has been the aim of this book.

I owe more than I can say to Mr W. S. Gosset,

Mr E. Somerfield, and Miss W. A. Mackenzie, who

have read the proofs and made many valuable sugges-

tions. Many small but none the less troublesome

errors have been removed ; I shall be grateful to

readers who will notify me of any further errors and

ambiguities they may detect.

ROTHAMSTED EXPERIMENTAL STATION,

February 1925.



PREFACE TO FOURTH EDITION

The rapid demand for a fourth edition has more than

justified the author's hope that use could be made
of a book which, without entering into the mathe-

matical theory of statistical methods, should embody

the latest results of that theory, presenting them in

the form of practical procedures appropriate to those

types of data with which research workers are actually

concerned.

Those critics who would like to have seen the

inclusion of mathematical proofs of the more important

propositions of the underlying theory, must still be

referred to the technical publications given in the list

of sources. There they will encounter exactly those

difficulties which it would be undesirable to import

into the present work ; and will perceive that modern

statistics could not have been developed without the

elaboration of a system of ideas, logical and mathe-

matical, which, however fascinating in themselves,

cannot be regarded as a necessary part of the equip-

ment of every research worker.

To present "elementary proofs," of the kind

which do not involve these ideas, would be really to

justify the censure of a second school of critics, who,

rightly feeling that a fallacious proof is worse than

none, are eager to decry any attempt to ** teach

people to run before they can walk." The actual

scope of the present volume really exempts it from



X PREFACE TO FOURTH EDITION

this criticism, which, besides, in an age of technical

co-operation, has seldom much force. The practical

application of general theorems is a different art from

their establishment by mathematical proof, and one

useful to many to whom the other is unnecessary.

In the second edition the importance of providing

a striking and detailed illustration of the principles of

statistical estimation led to the addition of a ninth

chapter. The subject had received only general

discussion in the first edition, and, in spite of its

practical importance, had not yet won sufficient

attention from teachers to drive out of practice the

demonstrably defective procedures which were still

unfortunately taught to students. The new chapter

superseded Section 6 and Example i of the first

edition ; in the third edition it was enlarged by two

new sections (57-1 and 57-2) illustrating further the

applicability of the method of maximum likelihood,

and of the quantitative evaluation of information.

In Section 27 a generalised form for the series of

orthogonal polynomials was added to the third edition,

in response to the need which it is felt, with respect

to some important classes of data, to use polynomials

of higher degree than the fifth. Simple and direct

algebraic proofs of the methods of Sections 28 and

28-1 have now been published by Miss F. E. Allan.

The principal additions to the fourth edition are

in response to the increasing use of the analysis of

covariance, which is discussed in Section 49-1. The

part played by the covariance has been further

emphasised throughout the book. The Appendix to
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Chapter III. on technical notation has been entirely

re-written, since the inconveniences of the moment

notation seem now definitely to outweigh the advan-

tages formerly conferred by its familiarity. The

working of the problems of this Chapter has therefore

been considerably modified.

Section 5, formerly occupied by an account of the

tables available for testing significance, has now been

given to a historical note on the principal contributors

to the development of statistical reasoning.

With respect to the folding copies of tables bound

with the book, it may be mentioned that many

laboratory workers, who have occasion to use them

constantly, have found it convenient to mount these

on the faces of triangular or square prisms, which

may be kept near at hand for immediate reference.

The practical advantages of this plan have made it

seem worth while to bring it to the notice of all readers.

It should be noted that numbers of sections, tables

and examples have been unaltered by the insertion of

fresh material, so that references to them, though

not to pages, will be valid irrespective of the edition

used.

ROTHAMSTED, July 1932.
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I

INTRODUCTORY

1. The Scope of Statistics

The science of statistics is essentially a branch of

Applied Mathematics, and may be regarded as

mathematics applied to observational data. As in

other mathematical studies the same formula is equally

relevant to widely different groups of subject matter.

Consequently the unity of the different applications

has usually been overlooked, the more naturally

because the development of the underlying mathe-

matical theory has been much neglected. We shall

therefore consider the subject matter of statistics

under three different aspects, and then show in more

mathematical language that the same types of prob-

lems arise in every case. Statistics may be regarded

as (i.) the study of populations, (ii.) as the study

of variation, (iii.) as the study of methods of the

reduction of data.

The original meaning of the word "statistics"
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suggests that it was the study of populations of human
beings living in political union. The methods

developed, however, have nothing to do with the

political unity of the group, and are not confined

to populations of men or of social insects. Indeed,

since no observational record can completely specify

a human being, the populations studied are always

to some extent abstractions. If we have records of

the stature of 10,000 recruits, it is rather the popula-

tion of statures than the population of recruits that is

open to study. Nevertheless, in a real sense, statistics

is the study of populations, or aggregates of indi-

viduals, rather than of individuals. Scientific theories

which involve the properties of large aggregates of

individuals, and not necessarily the properties of the

individuals themselves, such as the Kinetic Theory

of Gases, the Theory of Natural Selection, or the

chemical Theory of Mass Action, are essentially

statistical arguments, and are liable to misinterpreta-

tion as soon as the statistical nature of the argument

is lost sight of Statistical methods are essential to

social studies, and it is principally by the aid of such

methods that these studies may be raised to the rank

of sciences. This particular dependence of social

studies upon statistical methods has led to the painful

misapprehension that statistics is to be regarded as

a branch of economics, whereas in truth methods

adequate to the treatment of economic data, in so far

as these exist, have only been developed in the study

of biology and the other sciences.

The idea of a population is to be applied not only
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to living, or even to material, individuals. If an obser-

vation, such as a simple measurement, be repeated

indefinitely, the aggregate of the results is a popu-

lation of measurements. Such populations are the

particular field of study of the Theory of Errors, one

of the oldest and most fruitful lines of statistical in-

vestigation. Just as a single observation may be

regarded as an individual, and its repetition as generat-

ing a population, so the entire result of an extensive

experiment may be regarded as but one of a popu-

lation of such experiments. The salutary habit of

repeating important experiments, or of carrying out

original observations in replicate, shows a tacit

appreciation of the fact that the object of our study is

not the individual result, but the population of possi-

bilities ofwhich we do our best to make our experiments

representative. The calculation of means and probable

errors shows a deliberate attempt to learn something

about that population.

The conception of statistics as the study of varia-

tion is the natural outcome of viewing the subject as

the study of populations ; for a population of indi-

viduals in all respects identical is completely described

by a description of any one individual, together with

the number in the group. The populations which

are the object of statistical study always display

variation in one or more respects. To speak of

statistics as the study of variation also serves to

emphasise the contrast between the aims of modern

statisticians and those of their predecessors. For,

until comparatively recent times, the vast majority
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of workers in this field appear to have had no other

aim than to ascertain aggregate, or average, values.

The variation itself was not an object of study, but

was recoQfnised rather as a troublesome circumstance

which detracted from the value of the average. The

error curve of the mean of a normal sample has been

familiar for a century, but that of the standard devia-

tion was the object of researches up to 191 5. Yet,

from the modern point of view, the study of the causes

of variation of any variable phenomenon, from the

yield of wheat to the intellect of man, should be begun

by the examination and measurement of the variation

which presents itself.

The, study of variation leads immediately to the

concept of a frequency distribution. Frequency dis-

tributions are of various kinds, according as the

number of classes in which the population is distri-

buted is finite or infinite, and also according as the

intervals which separate the classes are finite or

infinitesimal. In the simplest possible case, in which

there are only two classes, such as male and female

births, the distribution is simply specified by the pro-

portion in which these occur, as for example by the

statement that 51 per cent, of the births are of males

and 49 per cent, of females. In other cases the varia-

tion may be discontinuous, but the number of classes

indefinite, as with the number of children born to

different married couples ; the frequency distribution

would then show the frequency with which o, i, 2 . . .

children were recorded, the number of classes being

sufficient to include the largest family in the record.
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The variable quantity, such as the number of children,

is called the variate, and the frequency distribution

specifies how frequently the variate takes each of its

possible values. In the third group of cases, the

variate, such as human stature, may take any inter-

mediate value within its range of variation ; the

variate is then said to vary continuously, and the

frequency distribution may be expressed by stating, as

a mathematical function of the variate, either (i.) the

proportion of the population for which the variate is

less than any given value, or (ii.) by the mathematical

device of differentiating this function, the (infinitesimal)

proportion of the population for which the variate

falls within any infinitesimal element of its range.

The idea of a frequency distribution is applicable

either to populations which are finite in number, or to

infinite populations, but it is more usefully and more

simply applied to the latter. A finite population can

only be divided in certain limited ratios, and cannot in

any case exhibit continuous variation. Moreover, in

most cases only an infinite population can exhibit

accurately, and in their true proportion, the whole of

the possibilities arising from the causes actually at

work, and which we wish to study. The actual

observations can only be a sample of such possibilities.

With an infinite population the frequency distribution

specifies the fractions of the population assigned to

the several classes ; we may have (i.) a finite number

of fractions adding up to unity as in the Mendelian

frequency distributions, or (ii.) an infinite series of

finite fractions adding up to unity, or (iii.) a mathe-
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matical function expressing the fraction of the total

in each of the infinitesimal elements in which the range

of the variate may be divided. The last possibility

may be represented by a frequency curve ; the values

of the variate are set out along a horizontal axis, the

fraction of the total population, within any limits of

the variate, being represented by the area of the curve

standing on the corresponding length of the axis. It

should be noted that the familiar concept of the

frequency curve is only applicable to an infinite

population with continuous variate.

The study of variation has led not merely to

measurement of the amount of variation present, but

to the study of the qualitative problems of the type, or

form, of the variation. Especially important is the

study of the simultaneous variation of two or more

variates. This study, arising principally out of the

works of Galton and Pearson, is generally known in

English under the name of Correlation, but by some

continental writers as Covariation.

The third aspect under which we shall regard the

scope of statistics is introduced by the practical need

to reduce the bulk of any given body of data. Any

investigator who has carried out methodical and

extensive observations will probably be familiar with

the oppressive necessity of reducing his results to a

more convenient bulk. No human mind is capable of

grasping in its entirety the meaning of any consider-

able quantity of numerical data. We want to be able

to express all the 7'elevant information contained in

the mass by means of comparatively few numerical
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values. This is a purely practical need which the

science of statistics is able to some extent to meet. In

some cases at any rate it is possible to give the whole

of the relevant information by means of one or a few

values. In all cases, perhaps, it is possible to reduce

to a simple numerical form the main issues which the

investigator has in view, in so far as the data are com-

petent to throw light on such issues. The number of

independent facts supplied by the data is usually far

greater than the number of facts sought, and in conse-

quence much of the information supplied by any body

of actual data is irrelevant. It is the object of the

statistical processes employed in the reduction of data

to exclude this irrelevant information, and to isolate

the whole of the relevant information contained in the

data.

2. General Method, Calculation of Statistics

The discrimination between the irrelevant informa-

tion and that which is relevant is performed as follows.

Even in the simplest cases the values (or sets of

values) before us are interpreted as a random sample

of a hypothetical infinite population of such values as

might have arisen in the same circumstances. The

distribution of this population will be capable of some

kind of mathematical specification, involving a certain

number, usually few, of parameters, or "constants''

entering into the mathematical formula. These para-

meters are the characters of the population. If we

could know the exact values of the parameters, we

should know all (and more than) any sample from
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the population could tell us. We cannot in fact know

the parameters exactly, but we can make estimates

of their values, which will be more or less inexact.

These estimates, which are termed statistics, are of

course calculated from the observations. If we can

find a mathematical form for the population which

adequately represents the data, and then calculate

from the data the best possible estimates of the re-

quired parameters, then it would seem that there is

little, or nothing, more that the data can tell us ; we

shall have extracted from it all the available relevant

information.

The value of such estimates as we can make is

enormously increased if we can calculate the magnitude

and nature of the errors to which they are subject. If

we can rely upon the specification adopted, this pre-

sents the purely mathematical problem of deducing

from the nature of the population what will be the

behaviour of each of the possible statistics which can

be calculated. This type of problem, with which until

recent years comparatively little progress had been

made, is the basis of the tests of significance by which

we can examine whether or not the data are in harmony

with any suggested hypothesis. In particular, it is

necessary to test the adequacy of the hypothetical

specification of the population upon which the method

of reduction was based.

The problems which arise in the reduction of data

may thus conveniently be divided into three types :

(i.) Problems of Specification, which arise in the

choice of the mathematical form of the population.
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(ii.) Problems of Estimation, which involve the

choice of method of calculating, from our sample,

statistics fit to estimate the unknown parameters of

the population.

(iii.) Problems of Distribution, which include the

mathematical deduction of the exact nature of the

distribution in random samples of our estimates of the

parameters, and of other statistics designed to test

the validity of our specification (tests of Goodness of

Fit).

The statistical examination of a body of data is

thus logically similar to the general alternation of

inductive and deductive methods throughout the

sciences. A hypothesis is conceived and defined with

all necessary exactitude ; its logical consequences are

ascertained by a deductive argument ; these conse-

quences are compared with the available observations
;

if these are completely in accord with the deductions,

the hypothesis is justified at least until fresh and more

stringent observations are available.

The deduction of inferences respecting samples,

from assumptions respecting the populations from

which they are drawn, shows us the position in

Statistics of the classical Theory of Probability. For

a given population we may calculate the probability

with which any given sample will occur, and if we

can solve the purely mathematical problem presented,

we can calculate the probability of occurrence of any

given statistic calculated from such a sample. The

problems of distribution may in fact be regarded as

applications and extensions of the theory of prob-
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ability. Three of the distributions with which we

shall be concerned, Bernoulli's binomial distribution,

Laplace's normal distribution, and Poisson's series,

were developed by writers on probability. For many

years, extending over a century and a half, attempts

were made to extend the domain of the idea of prob-

ability to the deduction of inferences respecting

populations from assumptions (or observations) re-

specting samples. Such inferences are usually dis-

tinguished under the heading of Inverse Probability,

and have at times gained wide acceptance. This is

not the place to enter into the subtleties of a prolonged

controversy ; it will be sufficient in this general

outline of the scope of Statistical Science to reaffirm

my personal conviction, which I have sustained else-

where, that the theory of inverse probability is founded

upon an error, and must be wholly rejected. In-

ferences respecting populations, from which known

samples have been drawn, cannot by this method be

expressed in terms of probability, except in the trivial

case when the population is itself a sample of a super-

population the specification of which is known with

accuracy.

The probabilities established by those tests of

significance, which we shall later designate by t and z,

are, however, entirely distinct from statements of

inverse probability, and are free from the objections

which apply to these latter. Their interpretation as

probability statements respecting populations constitute

an application unknown to the classical writers on

probability.
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The rejection of the theory of inverse probability-

should not be taken to imply that we cannot draw,

from knowledge of a sample, inferences respecting

the corresponding population. Such a view would

entirely deny validity to all experimental science.

What is essential is that the mathematical concept of

probability is, in most cases, inadequate to express our

mental confidence or diffidence in making such infer-

ences, and that the mathematical quantity which

appears to be appropriate for measuring our order of

preference among different possible populations does

not in fact obey the laws of probability. To distinguish

it from probability, I have used the term "Likelihood"

to designate this quantity ; since both the words

"likelihood" and "probability" are loosely used in

common speech to cover both kinds of relationship.

3. The Qualifications of Satisfactory Statistics

The solutions of problems of distribution (which

may be regarded as purely deductive problems in the

theory of probability) not only enable us to make

critical tests of the significance of statistical results, and

of the adequacy of the hypothetical distribution upon

which our methods of numerical deduction are based,

but afford some guidance in the choice of appropriate

statistics for purposes of estimation. Such statistics

may be divided into classes according to the behaviour

of their distributions in large samples.

If we calculate a statistic, such, for example, as the

mean, from a very large sample, we are accustomed to

ascribe to it great accuracy ; and indeed it will usually.
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but not always, be true, that if a number of such

statistics can be obtained and compared, the discrep-

ancies between them will grow less and less, as the

samples from which they are drawn are made larger

and larger. In fact, as the samples are made larger

without limit, the statistic will usually tend to some

fixed value characteristic of the population, and, there-

fore, expressible in terms of the parameters of the

population. If, therefore, such a statistic is to be used

to estimate these parameters, there is only one para-

metric function to which it can properly be equated.

If it be equated to some other parametric function, we

shall be using a statistic which even from an infinite

sample does not give the correct value ; it tends

indeed to a fixed value, but to a value which is errone-

ous from the point of view with which it was used.

Such statistics are termed Inconsistent Statistics
;

except when the error is extremely minute, as in the

use of Sheppard's adjustments, inconsistent statistics

should be regarded as outside the pale of decent usage.

Consistent statistics, on the other hand, all tend

more and more nearly to give the correct values, as

the sample is more and more increased ; at any rate,

if they tend to any fixed value it is not to an incorrect

one. In the simplest cases, with which we shall be

concerned, they not only tend to give the correct

value, but the errors, for samples of a given size, tend

to be distributed in a well-known distribution (of which

more in Chap. III.) known as the Normal Law of

Frequency of Error, or more simply as the normal

distribution. The liability to error may, in such cases,
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be expressed by calculating the mean value of the

squares of these errors, a value which is known as the

variance ; and in the class of cases with which we are

concerned, the variance falls off with increasing

samples, in inverse proportion to the number in the

sample.

Now, for the purpose of estimating any parameter,

it is usually possible to invent any number of statistics

which shall be consistent in the sense defined above,

and each of which has in large samples a variance

falling off inversely with the size of the sample. But

for large samples of a fixed size, the variance of these

different statistics will generally be different. Conse-

quently a special importance belongs to a smaller

group of statistics, the error distributions of which tend

to the normal distribution, as the sample is increased,

with the least possible variance. We may thus separate

off from the general body of consistent statistics a

group of especial value, and these are known as

efficient statistics.

The reason for this term may be made apparent by

an example. If from a large sample of (say) 1000

observations we calculate an efficient statistic. A, and

a second consistent statistic, B, having twice the

variance of A, then B will be a valid estimate of the

required parameter, but one definitely inferior to A
in its accuracy. Using the statistic B, a sample of

2000 values would be required to obtain as good an

estimate as is obtained by using the statistic A from

a sample of 1000 values. We may say, in this sense,

that the statistic B makes use of 50 per cent, of the
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relevant information available in the observations

;

or, briefly, that its efficiency is 50 per cent. The term

"efficient" in its absolute sense is reserved for

statistics the efficiency of which is 100 per cent.

Statistics having efficiency less than 100 per cent,

may be legitimately used for many purposes. It is

conceivable, for example, that it might in some cases be

less laborious to increase the number of observations

than to apply a more elaborate method of calculation

to the results. It may often happen that an inefficient

statistic is accurate enough to answer the particular

questions at issue. There is, however, one limitation

to the legitimate use of inefficient statistics which

should be noted in advance. If we are to make

accurate tests of goodness of fit, the methods of fitting

employed must not introduce errors of fitting compar-

able to the errors of random sampling; when this

requirement is investigated, it appears that when tests

of goodness of fit are required, the statistics employed

in fitting must be not only consistent, but must be of

100 per cent, efficiency. This is a very serious limita-

tion to the use of inefficient statistics, since in the

examination of any body of data it is desirable to

be able at any time to test the validity of one or

more of the provisional assumptions which have

been made.

Numerous examples of the calculation of statistics

will be given in the following chapters, and, in these

illustrations of method, efficient statistics have been

chosen. The discovery of efficient statistics in new

types of problem may require some mathematical
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investigfation. The researches of the author have led

him to the conclusion that an efficient statistic can

in all cases be found by the Method of Maximum
Likelihood ; that is, by choosing statistics so that the

estimated population should be that for which the

likelihood is greatest. In view of the mathematical

difficulty of some of the problems which arise it is also

useful to know that approximations to the maximum
likelihood solution are also in most cases efficient

statistics. Two simple examples of the application of the

method of maximum likelihood, and other methods, to

a genetical problem are developed in the final chapter.

For practical purposes it is not generally necessary

to press refinement of methods further than the stipula-

tion that the statistics used should be efficient. With

large samples it may be shown that all efficient

statistics tend to equivalence, so that little incon-

venience arises from diversity of practice. There is,

however, one class of statistics, including some of the

most frequently recurring examples, which is of theo-

retical interest for possessing the remarkable property

that, even in small samples, a statistic of this class

alone includes the whole of the relevant information

which the observations contain. Such statistics are

distinguished by the term sufficient, and, in the use

of small samples, sufficient statistics, when they exist,

are definitely superior to other efficient statistics.

Examples of sufficient statistics are the arithmetic

mean of samples from the normal distribution, or from

the Poisson series ; it is the fact of providing sufficient

statistics for these two important types of distribution
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which gives to the arithmetic mean its theoretical

importance. The method of maximum Hkehhood

leads to these sufficient statistics where they exist.

While diversity of practice within the limits of

efficient statistics will not with large samples lead to

inconsistencies, it is, of course, of importance in all

cases to distinguish clearly the parameter of the popula-

tion, of which it is desired to estimate the value, from

the actual statistic employed as an estimate of its

value ; and to inform the reader by which of the

considerable variety of processes which exist for the

purpose the estimate was actually obtained.

4. Scope of this Book

The prime object of this book is to put into the

hands of research workers, and especially of biologists,

the means of applying statistical tests accurately to

numerical data accumulated in their own laboratories

or available in the literature. Such tests are the result

of solutions of problems of distribution, most of which

are but recent additions to our knowledge and have

previously only appeared in specialised mathematical

papers. The mathematical complexity of these prob-

lems has made it seem undesirable to do more than

(i.) to indicate the kind of problem in question, (ii.)

to give numerical illustrations by which the whole

process may be checked, (iii.) to provide numerical

tables by means of which the tests may be made

without the evaluation of complicated algebraical

expressions.

It would have been impossible to give methods
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suitable for the great variety of kinds of tests which

are required but for the unforeseen circumstances that

each mathematical solution appears again and again

in questions which at first sight appeared to be quite

distinct. For example, Pearson's solution in 1900 of

the distribution of x^ is in reality equivalent to the

distribution of the variance as estimated from normal

samples, of which the solution was not given until

1908, and then quite tentatively, and without com-

plete mathematical proof, by "Student." The same

distribution was found by the author for the index of

dispersion derived from small samples from a Poisson

series. What is even more remarkable is that, al-

though Pearson's paper of 1900 contained a serious

error, which vitiated most of the tests of goodness of

fit made by this method until 192 1, yet the correction

of this error, when efficient methods of estimation are

used, leaves the form of the distribution unchanged,

and only requires that some few units should be

deducted from one of the variables with which the

table of x^ is entered.

It is equally fortunate that the distribution of t,

first established by "Student" in 1908, in his study

of the probable error of the mean, should be applicable,

not only to the case there treated, but to the more

complex, but even more frequently needed problem

of the comparison of two mean values. It further

provides an exact solution of the sampling errors of the

enormously wide class of statistics known as regression

coefficients.

In studying the exact theoretical distributions in

c
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a number of other problems, such as those presented

by intraclass correlations, the goodness of fit of regres-

sion lines, the correlation ratio, and the multiple cor-

relation coefficient, the author has been led repeatedly

to a third distribution, which mav be called the distri-

bution of z, and which is intimately related to, and

indeed a natural extension of, the distributions found

by Pearson and ''Student." It has thus been possible

to classify the necessary distributions, covering a very

great variety of cases, under these three main groups
;

and, what is equally important, to make some provision

for the need for numerical values by means of a few

tables only.

The book has been arrano-ed so that the student

may make acquaintance with these three main

distributions in a logical order, and proceeding from

more simple to more complex cases. ^Methods de-

veloped in later chapters are frequently seen to be

generalisations of simpler methods developed previ-

ously. Studying the work methodically as a connected

treatise, the student will, it is hoped, not miss the

fundamental unity of treatment under which such

verv varied material has been brought together

:

and will prepare himself to deal competently and with

exactitude with the many analogous problems, which

cannot be individually exemplified. On the other

hand, it is recognised that many will wish to use the

book for laboratory reference, and not as a connected

course of study. This use would seem desirable

only if the reader will be at the pains to work

through, in all numerical detail, one or more of the



INTRODUCTORY 19

appropriate examples, so as to assure himself, not

only that his data are appropriate for a parallel treat-

ment, but that he has obtained some critical grasp of

the meaning to be attached to the processes and

results.

It is necessary to anticipate one criticism, namely,

that in an elementary book, without mathematical

proofs, and designed for readers without special mathe-

matical training, so much has been included which

from the teacher's point of view is advanced ; and

indeed much that has not previously appeared in

print. By way of apology the author would like to

put forward the following considerations.

(i) For non - mathematical readers, numerical

tables are in any case necessary ; accurate tables are

no more difficult to use, though more laborious to

calculate, than inaccurate tables embodying the

current approximations.

(2) The process of calculating a probable or

standard error from one of the established formulae

gives no real insight into the random sampling dis-

tribution, and can only supply a test of significance by

the aid of a table of deviations of the normal curve,

and on the assumption that the distribution is in fact

very nearly normal. Whether this procedure should,

or should not, be used must be decided, not by the

mathematical attainments of the investigator, but by

discovering whether it will or will not give a sufficiently

accurate answer. The fact that such a process has been

used successfully by eminent mathematicians in analys-

ing very extensive and important material does not
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imply that it is sufficiently accurate for the laboratory

worker anxious to draw correct conclusions from a

small group of perhaps preliminary observations.

(3) The exact distributions, with the use of which

this book is chiefly concerned, have been in fact

developed in response to the practical problems arising

in biological and agricultural research ; this is true not

only of the author's own contribution to the subject,

but from the beginning of the critical examination of

statistical distributions in "Student's" paper of 1908.

The greater part of the book is occupied by

numerical examples ; and these perhaps could with

advantage have been increased in number. In choos-

ing them it has appeared to the author a hopeless task

to attempt to exemplify the great variety of subject

matter to which these processes may be usefully

applied. There are no examples from astronomical

statistics, in which important work has been done in

recent years, few from social studies, and the biological

applications are scattered unsystematically. The

examples have rather been chosen each to exemplify

a particular process, and seldom on account of the

importance of the data used, or even of similar ex-

aminations of analogous data. By a study of the

processes exemplified, the student should be able to

ascertain to what questions, in his own material, such

processes are able to give a definite answer ; and,

equally important, what further observations would be

necessary to settle other outstanding questions. In

conformity with the purpose of the examples the

reader should remember that they do not pretend to
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be discussions of general scientific questions, which

would require the examination of much more extended

data, and of other evidence, but are solely concerned

with the critical examination of the particular batch of

data presented.

5. Historical Note

Since much interest has been evinced in the

historical origin of the statistical theory underlying

the methods of this book, and as some misappre-

hensions have occasionally gained publicity, ascribing

to the originality of the author methods well known
to some previous writers, or ascribing to his

predecessors modern developments of which they

were quite unaware, it is hoped that the following

notes on the principal contributors to statistical

theory will be of value to students who wish to see

the modern work in its historical setting-.o
Thomas Bayes' celebrated essay published in

1763 is well known as containing the first attempt

to use the theory of probability as an instrument

of inductive reasoning ; that is, for arguing from

the particular to the general, or from the sample

to the population. It was published posthumously,

and we do not know what views Bayes would have

expressed had he lived to publish on the subject.

We do know that the reason for his hesitation to

publish was his dissatisfaction with the postulate

required for the celebrated " Bayes' Theorem." While

we must reject this postulate, we should also recognise

Bayes' genius in perceiving the problem to be solved,
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in making an ingenious attempt at its solution, and

finally in realising more clearly than many subsequent

writers the underlying weakness of his attempt.

Whereas Bayes excelled in logical penetration,

Laplace (1820) was unrivalled for his mastery of

analytic technique. He admitted the principle of

inverse probability, quite uncritically, into the

foundations of his exposition. On the other hand,

it is to him we owe the principle that the distribution

of a quantity compounded of independent parts shows

a whole series of features—the mean, variance, and

other cumulants (p. y^)—which are simply the sums of

like features of the distributions of the parts. These

seem to have been later discovered independently by

Thiele (1889), but mathematically Laplace's methods

were more powerful than Thiele's, and far more

influential on the development of the subject in France

and England. A direct result of Laplace's study of

the distribution of the resultant of numerous in-

dependent causes was the recognition of the normal

law of error, a law more usually ascribed, with some

reason, to his great contemporary. Gauss.

Gauss, moreover, approached the problem of

statistical estimation in an empirical spirit, raising the

question of the estimation not only of probabilities

but of other quantitative parameters. He perceived

the aptness for this purpose of the Method of

Maximum Likelihood, although he attempted to

derive and justify this method from the principle of

inverse probability. The method has been attacked

on this ground, but it has no real connection with
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inverse probability. Gauss, further, perfected the

systematic fitting of regression formulae, simple and

multiple, by the method of least squares, which, in

the cases to which it is appropriate, is a particular

example of the method of maximum likelihood.

The first of the distributions characteristic of

modern tests of significance was found by K. Pearson

in 1900, for the measure of discrepancy between

observation and hypothesis, known as x^^ This, I

believe, is the great contribution to statistical methods

by which the unsurpassed energy of Prof Pearson's

work will be remembered. It supplies an exact and

objective measure of the joint discrepancy from their

expectations of a number of normally distributed,

and mutually correlated, variates. In its primary

application to frequencies, which are discontinuous

variates, the distribution is necessarily only an

approximate one, but when small frequencies are

excluded the approximation is satisfactory. The
distribution is exact for other problems solved later.

With respect to frequencies, the apparent goodness of

fit is often exaggerated by the inclusion of vacant or

nearly vacant classes which contribute little or nothing

to the observed x^ but increase its expectation, and

by the neglect of the effect on this expectation of

adjusting the parameters of the population to fit those

of the sample. The need for correction on this

score was for long ignored, and later disputed, but is

now, I believe, admitted. The chief cause of error

tending to lower the apparent goodness of fit is the

use of inefficient methods of fitting (Chapter IX).
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This limitation could scarcely have been foreseen in

1900, when the very rudiments of the theory of

estimation were unknown.

The study of the exact sampling distributions of

statistics commences in 1908 with "Student's" paper

The Probable Error of a Mean. Once the true

nature of the problem was indicated, a large number

of sampling problems were within reach of mathe-

matical solution. "Student" himself gave in this and

a subsequent paper the correct solutions for three

such problems—the distribution of the estimate of the

variance, that of the mean divided by its estimated

standard deviation, and that of the estimated correla-

tion coefficient between independent variates. These

sufficed to establish the position of the distributions

of x^ 3-^*^ of t in the theory of samples, though

further work was needed to show how many other

problems of testing significance could be reduced

to these same two forms, and to the more inclusive

distribution of <2'. "Student's" work was not quickly

appreciated, and from the first edition it has been

one of the chief purposes of this book to make better

known the effect of his researches, and of mathe-

matical work consequent upon them, on the one

hand, in refining the traditional doctrine of the

theory of errors and mathematical statistics, and on

the other, in simplifying the arithmetical processes

required in the interpretation of data.
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DIAGRAMS

7. The preliminary examination of most data is

facilitated by the use of diagrams. Diagrams prove

nothing, but bring outstanding features readily to the

eye ; they are therefore no substitute for such critical

tests as may be applied to the data, but are valuable in

suggesting such tests, and in explaining the conclusions

founded upon them.

8. Time Diagrams, Growth Rate and Relative

Growth Rate

The type of diagram in most frequent use consists

in plotting the values of a variable, such as the weight

of an animal or of a sample of plants against its age,

or the size of a population at successive intervals of

time. Distinction should be drawn between those

cases in which the same group of animals, as in a

feeding experiment, is weighed at successive intervals

of time, and the cases, more characteristic of plant

physiology, in which the same individuals cannot

be used twice, but a parallel sample is taken at each

age. The same distinction occurs in counts of micro-



26 STATISTICAL METHODS

organisms between cases in which counts are made

from samples of the same culture, or from samples of

parallel cultures. If it is of importance to obtain the

ofeneral form of the crrowth curve, the second method

has the advantage that any deviation from the expected

curve may be confirmed from independent evidence

at the next measurement, whereas using the same

material no such independent confirmation is obtain-

able. On the other hand, if interest centres on the

growth rate, there is an advantage in using the same

material, for only so are actual increases in weight

measurable. Both aspects of the difficulty can be got

over only by replicating the observations ; by carry-

incr out measurements on a number of animals under

parallel treatment it is possible to test, from the

individual weights, though not from the means,

whether their growth curve corresponds with an

assigned theoretical course of development, or differs

significantly from it or from a series differently treated.

Equally, if a number of plants from each sample are

weighed individually, growth rates may be obtained

with known probable errors, and so may be used for

critical comparisons. Care should of course be taken

that each is strictly a random sample.

Fig. I represents the growth of a baby weighed

to the nearest ounce at weekly intervals from birth.

Table i indicates the calculation from these data of

the absolute growth rate in ounces per day and the

relative growth rate per day. The absolute growth

rates, representing the average actual rates at which

substance is added during each period, are found by
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subtracting from each value that previously recorded,

and dividing by the length of the period. The

relative growth rates measure the rate of increase not

TABLE I

Growth
Rate

per Day
(Oz.).

Relative

Age in

Weeks.

Weight
in

Ounces.
Increase.

Natural

Log. of

Weight.
Increase.

Growth
Rate

per cent,

per Day.

o IIO •0953

4 •57 •0357 •51

I 114 •1310

14 2-00 •I159 1-66

2 128 •2469

19 2-71 •1384 1-98

3 147 •3853
16 2-29 •1033 1-47

4 163 •4886

9 1-29 •0537 •77

5 172 •5423

14 2-00 •0783 I-I2

6 186 •6206

12 I-7I •0625 .89

7 198 .6831

10 1-43 •0493 •70

8 208 •7324

5 .71 •0237 •34

9 213 .7561

19 2-71 •0855 1-22

lO 232 •8416
8 I-I4 •0339 .48

11 240 •8755

14 2-00 •0567 •8i

12 254 •9322

7 I-OO •0272 •39

13 261 •9594

only per unit of time, but per unit of weight already

attained ; using the mathematical fact, that

I dm d ,, V

m dt dr ^ ^'
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it is seen that the true average value of the relative

growth rate for any period is obtained from the natural

logarithms of the successive weights, just as the actual

rates of increase are from the weig'hts themselves.

Such relative rates of increase are conveniently

multiplied by 100, and thereby expressed as the

percentage rate of increase per day. If these per-

centage rates of increase had been calculated on the

principle of simple interest, by dividing the actual

increase by the weight at the beginning of the period,

somewhat higher values would have been obtained
;

the reason for this is that the actual weight of the baby

at any time during each period is usually somewhat

higher than its weight at the beginning. The error

introduced by the simple interest formula becomes

exceedingly great when the percentage increases

between successive weighings are large.

Fig. I A shows the course of the increase in absolute

weight ; the average slope of such a diagram shows the

absolute rate of increase. In this diagram the points

fall approximately on a straight line, showing that the

absolute rate of increase was nearly constant at about

1-66 oz. per diem. Fig. i B shows the course of the

increase in the natural logarithm of the weight ; the

slope at any point shows the relative rate of increase,

which, apart from the first week, falls off perceptibly

with increasing age. The features of such curves are

best brought out if the scales of the two axes are so

chosen that the graph makes with them approximately

equal angles ; with nearly vertical, or nearly horizontal

lines, changes in the slope are not so readily perceived.
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A rapid and convenient way of displaying the line

of increase of the logarithm is afforded by the use of

crraph paper in which the horizontal rulings are spaced

on a logarithmic scale, with the actual values indicated

in the margin (see Fig. 5). The horizontal scale can

then be adjusted to give the line an appropriate slope.

This method avoids the use of a logarithm table,

which, however, will still be required if the values of

the relative rate of increase are needed.

In making a rough examination oi the agreement

of the observations with any law of increase, it is

desirable so to manipulate the variables that the law

to be tested will be represented by a straight line. Thus

Ficr. I A is suitable for a rough test of the law that the

absolute rate of increase is constant ; if it were suggested

that the relative rate of increase were constant. Fig. i B

would show clearly that this was not so. With other

hypothetical growth curves other transformations may

be used ; for example, in the so-called " autocatalytic
"

or "logistic" curve the relative growth rate falls off

in proportion to the actual weight attained at any

time. If, therefore, the relative growth rate be plotted

ao-ainst the actual weight, the points should fall on a

straio-ht line if the "autocatalytic
'' curve lits the facts.

For this purpose it is convenient to plot against each

observed weight the mean of the two adjacent relative

oTowth rates. To do this for the above data for the

o-rowth of an infant mav be left as an exercise to the

student ; twelve points will be available for weights

114 to 254 ounces. The relative growth rates, even

after averaging adjacent pairs, will be very irregular,
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so that no clear indications will be found from these

data. If a straight line is found to fit the data, it

should be produced to meet the horizontal axis to find

the weight at which growth ceases.

9. Correlation Diagrams

Although most investigators make free use of

diagrams in which an uncontrolled variable is plotted

against the time, or against some controlled factor such

as concentration of solution, or temperature, much

more use might be made of correlation diagrams in

which one uncontrolled factor is plotted against

another. When this is done as a dot diagram, a

number of dots are obtained each representing a single

experiment, or pair of observations, and it is usually-

clear from such a diagram whether or not any close

connexion exists between the variables. When the

observations are few a dot diagram will often tell us

whether or not it is worth while to accumulate observa-

tions of the same sort ; the range and extent of our

experience is visible at a glance ; and associations may

be revealed which are worth while following up.

If the observations are so numerous that the dots

cannot be clearly distinguished, it is best to divide up

the diagram into squares, recording the frequency in

each ; this semi-diagrammatic record is a correlation

table.

Fig. 2 shows in a dot diagram the yields obtained

from an experimental plot of wheat (dunged plot,

Broadbalk field, Rothamsted) in years with different
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total rainfall. The plot was under uniform treatment

during the whole period 1854- 1888; the 35 pairs

of observations, indicated by 35 dots, show well the

association of high yield with low rainfall. Even

45
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S 25 -
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RAINFALL, SEPT. TO AUG.—INCHES

Fig. 2.—Wheat yield and rainfall for 35 years, i854-i88{

45

when few observations are available a dot diagram may
suggest associations hitherto unsuspected, or what is

equally important, the absence of associations which

would have been confidently predicted. Their value

lies in giving a simple conspectus of the experience

hitherto gathered, and in bringing to the mind sugges-
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tions which may be susceptible of more exact statistical

examination.

Instead of making a dot diagram the device is

sometimes adopted of arranging the values of one

variate in order of magnitude, and plotting the values

of a second variate in the same order. If the Hne

Fig. 3.—Rainfall and yield of 35 5'ears arranged in order of yield.

so obtained shows any perceptible slope, or general

trend, the variates are taken to be associated. Fig. 3

represents the line obtained for rainfall, when the

years are arranged in order of wheat yield. Such

diagrams are usually far less informative than the

dot diagram, and often conceal features of importance

brought out by the former. In addition the dot

diagram possesses the advantage that it is easily used

D
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as a correlation table if the number of dots is small,

and easily transformed into one if the number of dots

is large.

In the correlation table the values of both variates

are divided into classes, and the class intervals should

be equal for all values of the same variate. Thus we

might divide the value for the yield of wheat through-

out at intervals of one bushel, and the values of the

rainfall at intervals of i inch. The diagram is thus

divided into squares, and the number of observations

falling into each square is counted and recorded. The

correlation table is useful for three distinct purposes.

It affords a valuable visual representation of the whole

of the observations, which with a little experience is as

easy to comprehend as a dot diagram ; it serves as a

compact record of extensive data, which, as far as the

two variates are concerned, is complete. With more

than two variates correlation tables may be given for

every pair. This will not indeed enable the reader to

reconstruct the original data in its entirety, but it is a

fortunate fact that for the great majority of statistical

purposes, a set of such twofold distributions provides

complete information. Original data involving more

than two variates is most conveniently recorded for

reference on cards, each case being given a separate

card with the several variates entered in corresponding

positions upon them. The publication of such com-

plete data presents difficulties, but it is not yet suffi-

ciently realised how much of the essential information

can be presented in a compact form by means of

correlation tables. The third feature of value about
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the correlation table is that the data so presented form

a convenient basis for the immediate application of

methods of statistical reduction. The most important

statistics which the data provide, means, variances,

and covariance, can be most readily calculated from

the correlation table. An example of a correlation

table is shown in Table 31, p. 154.

10. Frequency Diagrams

When a large number of individuals are measured

in respect of physical dimensions, weight, colour,

density, etc., it is possible to describe with some

accuracy the population of which our experience may
be regarded as a sample. By this means it may be

possible to distinguish it from other populations

differing in their genetic origin, or in environmental

circumstances. Thus local races may be very different

as populations, although individuals may overlap in

all characters ; or, under experimental conditions, the

aggregate may show environmental effects, on size,

death-rate, etc., which cannot be detected in the

individual. A visible representation of a large number

of measurements of any one feature is afforded by a

frequency diagram. The feature measured is used

as abscissa, or measurement along the horizontal axis,

and as ordinates are set off vertically the frequencies^

corresponding to each range.

Fig. 4 is a frequency diagram illustrating the

distribution in stature of 1375 women (Pearson and

Lee's data modified). The whole sample of women is

divided up into successive height ranges of one inch.
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Equal areas on the diagram represent equal frequency
;

if the data be such that the ranges into which the

individuals are subdivided are not equal, care should

be taken to make the areas correspond to the observed

frequencies, so that the area standing upon any interval

of the base line shall represent the actual frequency

observed in that interval.

The class containing the greatest number of

observations is technically known as the modal class.

200

I 50

100

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

height in inches

Fig. 4.

In Fig. 4 the modal class indicated is the class whose

central value is Gt, inches. When, as is very frequently

the case, the variate varies continuously, so that all

intermediate values are possible, the choice of the

grouping interval and limits is arbitrary and will

make a perceptible difference to the appearance of the

diagram. Usually, however, the possible limits of

grouping will be governed by the smallest units in

which the measurements are recorded. If, for example,

measurements of height were made to the nearest
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quarter of an inch, so that all values between 66|- inches

and 6y^ were recorded as 67 inches, all values between

6y^ and 67f were recorded as 67^, then we have no

choice but to take as our unit of grouping i, 2, 3, 4, etc.,

quarters of an inch, and the limits of each group must

fall on some odd number of eighths of an inch. For

purposes of calculation the smaller grouping units are

more accurate, but for diagrammatic purposes coarser

grouping is often preferable. Fig. 4 indicates a unit

of grouping suitable in relation to the total range for a

large sample ; with smaller samples a coarser grouping

is usually necessary in order that sufficient observa-

tions may fall in each class.

In all cases where the variation is continuous the

frequency diagram should be in the form of a histo-

gram, rectangular areas standing on each grouping

interval showing the frequency of observations in that

interval. The alternative practice of indicating the

frequency by a single ordinate raised from the centre

of the interval is sometimes preferred, as giving to the

diagram a form more closely resembling a continuous

curve. The advantage is illusory, for not only is

the form of the curve thus indicated somewhat mis-

leading, but the utmost care should always be taken

to distinguish the infinitely large hypothetical popu-

lation from which our sample of observations is

drawn, from the actual sample of observations which

we possess ; the conception of a continuous frequency

curve is applicable only to the former, and in illustrat-

ing the latter no attempt should be made to slur over

this distinction.
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This consideration should in no way prevent a

frequency curve fitted to the data from being super-

imposed upon the histogram (as in Fig. 4) ;• the con-

trast between the histogram representing the sample,

and the continuous curve representing an estimate of

the form of the hypothetical population, is well brought

out in such diagrams, and the eye is aided in detect-

ing any serious discrepancy between the observations

and the hypothesis. No eye observation of such

diagrams, however experienced, is really capable of

discriminatinof whether or not the observations differ

from expectation by more than we should expect from

the circumstances of random sampling. Accurate

methods of making such tests will be developed in

later chapters.

With discontinuous variation, when, for example,

the variate is confined to whole numbers, the above

reason for insisting on the histogram form has little

weight, for there are, strictly speaking, no ranges of

variation within each class. On the other hand, there

is no question of a frequency curve in such cases.

Representation of such data by means of a histogram

is usual and not inconvenient ; it is especially appro-

priate if we regard the discontinuous variation as

due to an underlying continuous variate, which can,

however, express itself only to the nearest whole

number.

It is, of course, possible to treat the values of the

frequency like any other variable, by plotting the

value of its logarithm, or its actual value on loga-

rithmic paper, when it is desired to illustrate the agree-
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ment of the observations with any particular law of

frequency. Fig. 5 shows in this way the number of

flowers (buttercups) having 5 to 10 petals (Pearson's
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Fig. 5.

data), plotted upon logarithmic paper, to facilitate com-

parison with the hypothesis that the frequency, for

petals above five, falls off in geometric progression.

Such illustrations are not, properly speaking, frequency

diagrams, although the frequency is one of the vari-
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ables employed, because they do not adhere to the

convention that equal frequencies are represented by

equal areas.

A useful form, similar to the above, is used to

compare the death-rates, throughout life, of different

populations. The logarithm of the number of sur-

vivors at any age is plotted against the age attained.

Since the death-rate is the rate of decrease of the

logarithm of the number of survivors, equal gradients

on such curves represent equal death-rates. They

therefore serve well to show the increase of death-

rate with increasing age, and to compare populations

with different death-rates. Such diagrams are less

sensitive to small fluctuations than would be the

corresponding frequency diagrams showing the dis-

tribution of the population according to age at death
;

they are therefore appropriate when such small

fluctuations are due principally to errors of random

sampling, which in the more sensitive type of diagram

might obscure the larger features of the comparison.

It should always be remembered that the choice of the

appropriate methods of statistical treatment is quite

independent of the choice of methods of diagram-

matic representation.
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11. The idea of an infinite population distributed

in a frequency distribution in respect of one or more

characters is fundamental to all statistical work.

From a limited experience, for example, of individuals

of a species, or of the weather of a locality, we may-

obtain some idea of the infinite hypothetical popula-

tion from which our sample is drawn, and so of the

probable nature of future samples to which our con-

clusions are to be applied. If a second sample belies

this expectation we infer that it is, in the language of

statistics, drawn from a different population ; that the

treatment to which the second sample of organisms had

been exposed did in fact make a material difference,

or that the climate (or the methods of measuring it)

had materially altered. Critical tests of this kind

may be called tests of significance, and when such

tests are available we may discover whether a second

sample is or is not significantly different from the

first.

A statistic is a value calculated from an observed

sample with a view to characterising the population
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from which it is drawn. For example, the mean of a

number of observations x^, x^, . . . x^, is given by

the equation

n

where S stands for summation over the whole sample

(this symbol is the one regularly used in our subject),

and n for the number of observations. Such statistics

are of course variable from sample to sample, and

the idea of a frequency distribution is applied with

especial value to the variation of such statistics. If

we know exactly how the original population was

distributed it is theoretically possible, though often a

matter of great mathematical difficulty, to calculate

how any statistic derived from a sample of given size

will be distributed. The utility of any particular

statistic, and the nature of its distribution, both

depend on the original distribution, and appropriate

and exact methods have been worked out for only a

few cases. The application of these cases is greatly

extended by the fact that the distribution of many

statistics tends to the normal form as the size of the

sample is increased. For this reason it is customary

to apply to many cases what is called " the theory of

large samples " which is to assume that such statistics

are normally distributed, and to limit consideration of

their variability to calculations of the standard error.

In the present chapter we shall give some account

of three principal distributions— (i.) the normal distri-

bution, (ii.) the Poisson series, (iii.) the binomial distri-

bution. It is important to have a general knowledge
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of these three distributions, the mathematical formulae

by which they are represented, the experimental

conditions upon which they occur, and the statistical

methods of recognising their occurrence. On the

latter topic we shall be led to some extent to anticipate

methods developed more systematically in Chapters

IV. and V.

12. The Normal Distribution

A variate is said to be normally distributed when
it takes all values from — 00 to +00, with frequencies

given by a definite mathematical law, namely, that the

logarithm of the frequency at any distance x from

the centre of the distribution is less than the losfarithm

Fig. 6.—Showing a way in which a symmetrical frequency curve may depart from

the normal distribution. A, flat-topped curve (70 negative) ; B, normal curve

(7-2 = o)-

of the frequency at the centre by a quantity propor-

tional to :)^. The distribution is therefore symmetrical,

with the greatest frequency at the centre ; although

the variation is unlimited, the frequency falls off to

exceedingly small values at any considerable distance

from the centre, since a large negative logarithm
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corresponds to a very small number. Fig. 6 B repre-

sents a normal curve of distribution. The frequency

in any infinitesimal range dx may be written as

where x — ni is the distance of the observation, x,

from the centre of the distribution m ; and <7, called

the standard deviation, measures in the same units

the extent to which the individual values are scattered.

Geometrically o- is the distance, on either side of the

centre, of the steepest points, or points of inflexion of

the curve (Fig. 4).

In practical applications we do not so often want to

know the frequency at any distance from the centre

as the total frequency beyond that distance ; this is

represented by the area of the tail of the curve cut

off at any point. Tables of this total frequency,

or probability integral, have been constructed from

which, for any value of
^~^^^

, we can find what fraction
cr

of the total population has a larger deviation ; or, in

other words, what is the probability that a value so

distributed, chosen at random, shall exceed a given

deviation. Tables I. and II. have been constructed

to show the deviations corresponding to different

values of this probability. The rapidity with which

the probability falls off as the deviation increases is

well shown in these tables. A deviation exceeding

the standard deviation occurs about once in three

trials. Twice the standard deviation is exceeded only

about once in 22 trials, thrice the standard deviation
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only once in 370 trials, while Table 11. shows that

to exceed the standard deviation sixfold would need

nearly a thousand million trials. The value for which

P = -05, or I in 20, is 1-96 or nearly 2 ; it is convenient

to take this point as a limit in judging whether a

deviation is to be considered significant or not. Devia-

tions exceedinof twice the standard deviation are thus

formally regarded as significant. Using this criterion,

we should be led to follow up a false indication only

once in 22 trials, even if the statistics are the only

guide available. Small effects will still escape notice

if the data are insufficiently numerous to bring them

out, but no lowering of the standard of significance

would meet this difficulty.

Some little confusion is sometimes introduced by

the fact that in some cases we wish to know the prob-

ability that the deviation, known to be positive, shall

exceed an observed value, whereas in other cases the

probability required is that a deviation, which is

equally frequently positive and negative, shall exceed

an observed value ; the latter probability is always

half the former. For example. Table I. shows that the

normal deviate falls outside the range +1-598193 in

1 1 per cent, of cases, and consequently that it exceeds

-1- 1-598193 in 5-5 per cent, of cases.

The value of the deviation beyond which half the

observations lie is called the quartile distance, and

bears to the standard deviation the ratio -67449.

It was therefore a common practice to calculate the

standard error and then, multiplying it by this factor,

to obtain the probable error. The probable error is
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thus about two-thirds of the standard error, and as

a test of significance a deviation of three times the

probable error is effectively equivalent to one of twice

the standard error. The common use of the probable

error is its only recommendation ; when any critical

test is required the deviation must be expressed in

terms of the standard error in using the tables of

normal deviates (Tables I. and IL).

13. Fitting the Normal Distribution

From a sample of n individuals of a normal

population the mean and the standard deviation of

the population may be estimated by using two easily

calculated statistics. The best estimate ofm is x where

while for the best estimate of o-, we calculate s from

j-"= S(.r— ;^y^:

n—\

these two statistics are calculated from the sums

of the first two powers of the observations {see

Appendix, p. 'j'^, and are specially related to the

normal distribution, in that they summarise the whole

of the Information which the sample provides as to

the distribution from which it was drawn, provided

the latter was normal. Fitting by sums of powers,

and especially by the particular system of statistics

known as moments, has also been widely applied to

skew (asymmetrical) distributions, and others which

are not normal ; but such distributions have not

generally the peculiar properties which make the first
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two powers especially appropriate, and where the

distributions differ widely from the normal form the

two statistics defined above may be of little or no use,

Ex. 2. Fittiiig a normal distribution to a large

sample.—In calculating the statistics from a large

sample it is not necessary to calculate individually

the squares of the deviations from the mean of each

measurement. The measurements are grouped to-

gether in equal intervals of the variate, and the whole

of the calculation may be carried out rapidly as shown

in Table 2, where the distribution of the stature of

1 1 64 men is analysed.

The first column shows the central height in inches

of each group, followed by the corresponding fre-

quencies. A central group (68-5'^) is chosen as

"working mean." To form the next column the

frequencies are multiplied by i, 2, 3, etc., according to

their distance from the working mean ; this process

being repeated to form the fourth column, which is

summed from top to bottom in a single operation
;

in the third column, however, the upper portion,

representing negative deviations, is summed separately

and subtracted from the sum of the lower portion.

The difference, in this case positive, shows that the

whole sample of 11 64 individuals has in all 167 inches

more than if every individual were 68-5" in height.

This balance divided by 11 64 gives the amount

by which the mean of the sample exceeds 68-5''.

The mean of the sample is therefore 68-6435''.

From the sum of the fourth column is subtracted a

correction to orive the value we should have obtained
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TABLE 2.

Central Height Men Frequency Frequency

(Inches). (Frequenc}-).
X

Deviation.

X
(Deviation)-.

Women.

52-5 •5

53-5 •5

54-5 ..

55-5 ... .. I

56-5 ... .. 5
57-5 15
58-5 " .. 155
59-5 I - 9 81 52
6o-5 2-5 - 20 160 lOI
6i-5 1-5 - IO-5 73-5 15°
62-5 9-5 - 57 342 199
63-5 31 - 155 775 223
64-5 56 -224 896 215
65-5 78.5 -235-5 706-5 169-5
66.5 127 -254 508 • 151-5

67-5 178-5 -178-5 178-5 81-5

40-5

19-5

68-5 189 -II43-5

69-5 137 137 137
70-5 137 274 548 10

71-5 93 279 837 5
72-5 52-5 210 840
73-5 39 195 975
74-5 17 102 612

75-5 6-5 45-5 318.5
76-6 3-5 28 224
77-5 I 9 81

78-5 2 20 200

79-5 I II 121

1310-5

1 164 + 167 8614 1456

Mean + •1435 Estimated
Correction for mean i[67--:- II 64 23-96 Variance. S. D.

Corrected sum of squares 8590-04 7-3861 2-7177
Sampling variance of mean -006345 -0797

Sampling variance of varianee •09382 -3063

Adjustment for grouping •0833

Adjusted variance 7-3028 2-7024
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had the working mean been the true mean. This

correction is the product of the total, 167'', and the

mean 0-1435'^ derived from it. The corrected sum of

squares divided by 1163, one less than the sample

number, provides the estimate of the variance, 7-3861

square inches, which is the basis of all subsequent

calculations.

Corresponding to any estimate of a variance, we

have, by taking the square root, the corresponding

estimate of the standard deviation. Thus from the .

value 7-3861 square inches, we obtain at once the

estimate 2-7177 inches for the standard deviation.

This, however, represents the standard deviation of

the population as grouped. The process of grouping

may be represented as the addition to any true value

of a grouping error, positive or negative, which takes

all values from -J to |- of a grouping unit with equal

frequency. The effect of this on the population, and

its average effect upon samples, is to add a constant

quantity ^ ( = -0833) to the variance. Sheppard's

adjustment for grouping consists in deducting this

quantity from the estimate of variance of the population

as grouped. This gives 7-3028 square inches for the

adjusted variance, and 2-702 for the corresponding

estimate of the standard deviation.

Any interval may be used as a unit of grouping

;

and the whole calculation is carried through in such

units, the final results being transformed into other

units if required, just as we might wish to transform

the mean and standard deviation from inches to centi-

metres by multiplying by the appropriate factor. It
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is advantageous that the units of grouping should be

exact mukiples of the units of measurement ; so that

if the above sample had been measured to tenths of an

inch, we might usefully have grouped them at intervals

of 0-6'' or Q-"]".

Resfarded as estimates of the mean and the standard

deviation of a normal population of which the above is

regarded as a sample, the values found are affected by

errors of random sampling ; that is, we should not

expect a second sample to give us exactly the same

values. The values for different (large) samples of

the same size would, however, be distributed very

accurately in normal distributions, so the accuracy

of any one such estimate may be satisfactorily ex-

pressed by its standard error. These standard errors

may be calculated from the variance of the grouped

population, and in treating large samples we take our

estimate of this variance as the basis of the calculation.

The formulae for the variances of random sampling

of estimates of the mean and of the variance of a

normal population are (as given in Appendix, p. 78)

n n—\

Putting our value for k^, 7-3861, in place of <t^ in

these formulae, we find that our estimate of the mean

has a sampling variance .006345 square inches, or,

taking the square root, a standard error -0797 inches.

From this value it is seen that our sample shows

significant aberration from any population whose mean

lay outside the Hmits 68- 48'' to 68- 80". It is therefore
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likely that the mean of the population from which our

sample was drawn lay between these limits. Similarly,

our value for the variance of the population is seen to

have a sampling variance -09382, or a standard error

•3063 ; we have therefore equally good evidence that

the variance of the grouped population from which

our sample was drawn lay between 6-773 ^^^ 7' 999

square inches. For the ungrouped population we

should deduct -083 from both limits.

It may be asked, Is nothing lost by grouping?

Grouping in effect replaces the actual data by fictitious

data placed arbitrarily at the central values of the

groups ; evidently a very coarse grouping might be

very misleading. It has been shown that as regards

obtaining estimates of the parameters of a normal

population, the loss of information caused by grouping

is less than i per cent., provided the group interval k
does not exceed one quarter of the standard deviation

;

the grouping of the sample above in whole inches is

thus somewhat too coarse ; the loss in the estimation

of the standard deviation is 2-28 per cent., or about 27

observations out of 11 64; the loss in the estimation

of the mean is half as great. With suitable group

intervals, however, little is lost by grouping, and much

labour is saved.

Another way of regarding the loss of information

involved in grouping is to consider how near the

estimates obtained for the mean and the standard

deviation will be to the estimates obtained without

grouping. From this point of view we may calculate

a standard error of grouping, not to be confused with
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the standard error of random sampling which measures

the deviation of the sample values from the population

value. In grouping units, the standard error due to

grouping of both the mean and the standard deviation is

or in this case -0085'^ For sufficiently fine grouping

this should not exceed one-tenth of the standard error

of random sampling.

In the analysis of a large sample the estimate of the

variance often employed is

11

which differs from the formula given previously (p. 46)

in that we have divided by n instead of by {11— i). In

large samples the difference between these formulae is

small, and that using n may claim some theoretical

advantagfe if we wish for an estimate to be used in con-

junction with the estimate of the mean from the same

sample, as in fitting a frequency curve to the data
;

otherwise it is best to use [n—i). In small samples

the difference is still small compared to the probable

error, but becomes important if a variance is estimated

by averaging estimates from a number of small samples.

Thus if a series of experiments are carried out each

with six parallels and we have reason to believe that

the variation is in all cases due to the operation of

analogous causes, we may take the average of such

quantities as

-^'S,{x-xf = -^{x-xf
n—\ 5
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to obtain an unbiased estimate of the variance,

whereas we should under-estimate it were we to

divide by 6.

14. Test of Departure from Normality

It is sometimes necessary to test whether an

observed sample does or does not depart significantly

from normality. For this purpose the third, and some-

times the fourth powers, are used ; from each of these

it is possible to calculate a quantity, g, the average

value of which is zero for a normal distribution, and

which is distributed normally for large samples ; the

standard error being calculable from the size of the

sample. The quantity g^, which is calculated from the

third powers, is essentially a measure of asymmetry ;

'

the parameter 71, of which it provides an estimate, may
be equated to + J^ of Pearson's notation, though

Pearson also used /S^ to designate a statistic which is

not the equivalent of^1^
; g^, calculated from the fourth

powers, is in like manner a measure of departure from

normality, in this case of a symmetrical type, by which

the apex and the two tails of the curve are increased

at the expense of the intermediate portion, or when

the corresponding parameter 72 ( = /52 — 3) is negative,

the top and tails are depleted and the shoulders

filled out, making a relatively flat-topped curve. (See

Fig. 6, p. 43.)

Ex. 3. Use of higher power's to test normality.-—
Departures from normal form, unless very strongly

marked, can only be detected in large samples ; we
give an example (Table 3) of the calculation for
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65 values of the yearly rainfall at Rothamsted ; the

process of calculation is similar to that of finding the

TABLE 3

495 I 7 49 343 2401

526 3-5 21 126 756 4536

557 2-5 12-5 62-5 312-5 1562-5

588 5 20 80 320 1280

618 6 18 54 162 486

649 7 14 28 56 112

680

711

742

3-5 3-5 3-5 3-5 3-5

5-5
1

•

1

6 6 6 6 6

773 6 12 24 48 . 96
804 6-5 19-5 58-5 175-5 526-5

835 1-5 6 24 96 384
866 I 5 25 125 625

897 3 18 108 648 3888

928 3 21 147 1029 7203

959 I 8 64 512 4096

990 I 9 81 729 6561
1021

1051 2 22 242 2662 29282

s 65 30-5 1182-5 4077-5 63048-5
-14-31 - 1664-6

+ 13-4

-7653-2
+ 1562-2

S

-9-5

1168-19 2426-3 56948-0

k •4692 18-2530 39-114 - 70-842

Adjust-

ment • • • • • -•0833

39-114

+ -008

18-1697 - 70-834

g ... + -505 --215

Standard
error ±•297 ±-586

mean and standard deviation, but it is carried two

stages further, in the summation of the 3rd and 4th

powers. The formulae by which the sums are reduced
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to the true mean, and the statistics k and g are

calculated, are gathered in an Appendix, p. 'j'^^. For

the k statistics we obtain

X'i = -4692, ^0=18-253, X'3= +39-11, ^'^= -70.84,

whence are calculated

A = '^^3/^2'" = -505, g. = k^\KJ= -.215.

For samples from a normal distribution the sampling

variances of^1 and g^ are given exactly by the formulae

in the Appendix, and the numerical values of the

standard error have been appended in Table 3. It

will be seen that neither are significant, though g^ ^

exceeds its standard error. A positive value of 71,

which is suggested but not established by the data,

would indicate an asymmetry of the distribution in

the sense that moderately dry and very wet years

are respectively more frequent than moderately wet

and very dry years.

15. Discontinuous Distributions

Frequently a variable is not able to take all possible

values, but is confined to a particular series of values,

such as the whole numbers. This is obvious when the

variable is a frequency, obtained by counting, such as

the number of cells on a square of a hsemacytometer,

or the number of colonies on a plate of culture medium.

The normal distribution is the most important of the
'

continuous distributions ; but among discontinuous

distributions the Poisson series is of the first importance.

If a number can take the values o, i, 2 x, . . .,
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and the relative frequency with which the values occur

are given by the series

- 711

1

in
e \\,in,

2l'

111^

Id )
(where x\ stands for "factorial x" =x{x—i){x—2)

... i), then the number is distributed in the Poisson

series. Whereas the normal curve has two unknown

parameters, m and o-, the Poisson series has only one.

This value may be estimated from a series of observa-

tions, by taking their mean, the mean being a statistic

as appropriate to the Poisson series as it is to the

normal curve. It may be shown theoretically that

if the probability of an event is exceedingly small,

but a sufficiently large number of independent cases

are taken to obtain a number of occurrences, then this

number will be distributed in the Poisson series. For

example, the chance of a man being killed by horse-

kick on any one day is exceedingly small, but if an

army corps of men are exposed to this risk for a year,

often a number of them will be killed in this way.

The following data (Bortkewitch's data) were obtained

from the records of ten army corps for twenty years :

TABLE 4

Deaths.
Frequency
observed.

Expected.

O

I

2

3

4

5
6

109

65
22

3

I

108-67

66-29

20-22

4-II

•63

•08

•01
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The average, x, is o-6i, and equating m to this

value the numbers calculated agree excellently with

those observed.

The importance of the Poisson series in biological

research was first brought out in connexion with the

accuracy of counting with a hsemacytometer. It was

TABLE 5

Number of Cells. Frequency observed. Frequency expected.

o 3 71

I 20 17 37
2 43 40 65

3 53 63 41

4 86 74 19

5 70 69 44
6 54 54 16

7 37 36 21

8 18 21 18

9 10 II 02

lO 5 5 16

II 2 2 19

12 2 86

13 31

14 10

15 03
i6

Total .

01

400 400 00

shown that when the technique of the counting process

was effectively perfect, the number of cells on each

square should be theoretically distributed in a Poisson

series ; it was further shown that this distribution

was, in favourable circumstances, actually realised

in practice. Thus the preceding table ("Student's"

data) shows the distribution of yeast cells in the 400

squares into which one square millimetre was divided.
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The total number of cells counted is 1872, and the

mean number is therefore 4-68. The expected fre-

quencies calculated from this mean agree well with

those observed. The methods of testing the agree-

ment are explained in Chapter IV.

When a number is the sum of several components

each of which is independently distributed in a Poisson

series, then the total number is also so distributed.

Thus the total count of 1872 cells may be regarded as

a sample of one individual from a series, for which in

is not far from 1872. The v^ance of a Poisson

series, like its mean is equal to m ; and for such large

values of in the distribution of numbers approximates

closely to the normal form ; we may therefore attach

to the number counted, 1872, the standard error

± ^1872 = +43-26, to represent the standard error

of random sampling of such a count. The density of

cells in the original suspension is therefore estimated

with a standard error of 2-31 per cent. If, for instance,

a parallel sample differed by 7 per cent., the technique

of sampling would be suspect.

16. Small Samples of a Poisson Series

Exactly the same principles as govern the accuracy

of a hsemacytometer count would also govern a count

of bacterial or fungal colonies in estimating the

numbers of those organisms by the dilution method,

if it could be assumed that the technique of dilution

afforded a perfectly random distribution of organisms,

and that these could develop on the plate without

mutual interference. Agreement of the observations
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with the Poisson distribution thus affords in the dilution

method of counting a test of the suitability of the

technique and medium similar to the test afforded of

the technique of hsemacytometer counts. The great

practical difference between these cases is that from

the hsemacytometer we can obtain a record of a large

number of squares with only a few organisms on each,

whereas in a bacterial count we may have only 5

parallel plates, bearing perhaps 200 colonies apiece.

From a single sample of 5 it would be impossible to

demonstrate that the distribution followed the Poisson

series ; however, when a large number of such samples

have been obtained under comparable conditions, it

is possible to utilise the fact that for all Poisson series

the variance is numerically equal to the mean.

For each set of parallel plates with x^, X2,

. . ., Xn colonies respectively, taking the mean x,

an index of dispersion may be calculated by the

formula

2_SC£-^2^~
X

'

It has been shown that for true samples of a Poisson

series, x^ calculated in this way will be distributed

in a known manner; Table III. (p. 104) shows the

principal values of x^ for this distribution ; entering

the table with n equal to one less than the number

of parallel plates. For small samples the permissible

range of variation of x^ is wide ; thus for five plates

with /2 = 4, x^ will be less than 1-064 in 10 per cent, of

cases, while the highest 10 per cent, will exceed 7-779 ;

a single sample of 5 thus gives us little information
;
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but if we have 50 or 100 such samples, we are in

a position to verify with accuracy if the expected

distribution is obtained.

Ex. 4. Test of agreement with Poisson series of

a 7mmber of sjnall samples.—From 100 counts of

bacteria in sugar refinery products the following values

were obtained (Table 6) ; there being 6 plates in each

TABLE 6

x"'-
Expected. Observed.

Expected

43 Per Cent.

I 26 •43

•554
I 6 •43

•752

3 II 1-29

I-I45

i-6io
5 7 2-15

10 7 4-3

2-343

10 2 4-3

3-000

20 12 8-6

4-351

20 7 8-6

6-064

7-289

10 3 4-3

9-236

10 4 4-3

5 I 2-15

11-070

13-588
3 3 1-29

15-086

I •43

Total

I II •43

100 100 43-00
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case, the values of x^ were taken from the x^ table

for n = ^.

It is evident that the observed series differs strongly

from expectation ; there is an enormous excess in the

first class, and in the high values over 15 ; the rela-

tively few values from 2 to 15 are not far from the

expected proportions, as is shown in the last column by

taking 43 per cent, of the expected values. 1 1 is possible

then that even in this case nearly half of the samples

were satisfactory, but about 10 per cent, were excess-

ively variable, and in about 45 per cent, of the cases

the variability was abnormally depressed.

It is often desirable to test if the variability is

of the right magnitude when we have not accumulated

a large number of counts, all with the same number

of parallel plates, but where a certain number of

counts are available with various numbers of parallels.

In this case we cannot indeed verify the theoretical

distribution with any exactitude, but can test whether

or not the general level of variability conforms with

expectation. The sum of a number of independent

values of y^ is itself distributed in the manner shown

in the table of x^ provided we take for n the number

S(;^), calculated by adding the several values of n

for the separate experiments. Thus for six sets of

4 plates each the total value of x^ was found to be 13-85,

the corresponding value o{ n is 6x3 = 18, and the x^

table shows that for ;?= 18 the value 13-85 is exceeded

in between 70 and 80 per cent, of cases ; it is therefore

not an abnormal value to obtain. In another case the

following values were obtained :
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TABLE 7

Number of

Plates in Set.
Number of Sets. S(«). Total X-

4

5

9

Total

8

36
I

24

144
8

27-31

133-96

8-73

176 170-00

We have therefore to test if x" = 1 70 is an unreason-

ably small or great value for ;^=i76. The x" table

has not been calculated beyond n = 30, but for higher

values we make use of the fact that the distribution of

X becomes nearly normal. A good approximation is

given by assuming that [^^2^— J211— i) is normally

distributed about zero with unit standard deviation.

If this quantity is materially greater than 2, the value

of X" is not in accordance with expectation. In the

example before us

v/2^=i8-44

J2n - 1 = 1873

Difference =—-29

The set of 45 counts thus shows variability between

parallel plates, very close to that to be expected theo-

retically. The internal evidence thus suggests that

the technique was satisfactory.

17. Presence and Absence of Org-anisms in Samples

When the conditions of sampling justify the use of

the Poisson series, the number of samples containing

o, I, 2, . . . organisms is, as we have seen, connected

2x- = 340,

2;/- I = 351,
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by a calculable relation with the mean number of

organisms in the sample. With motile organisms, or

in other cases which do not allow of discrete colony

formation, the mean number of organisms in the

sample may be inferred from the proportion of fertile

cultures, provided a single organism is capable of

developing. U in is the mean number of organisms in

the sample, the proportion of samples containing none,

that is the proportion of sterile samples, is ^"™, from

which relation we can calculate, as in the following

table, the mean number of organisms corresponding

to 10 per cent., 20 per cent., etc., fertile samples :

TABLE 8

Percentage of

fertile samples 10 20 30 40 50 60 70 80 90

Mean number
of organisms '1054 -2232 -3567 -5108 -6932 -9163 1-2040 1-6095 2-3026

In connexion with the use of the above table it

is worth noting that for a given number of samples

tested the frequency ratio of fertile to sterile is most

accurately determined at 50 per cent, fertile, but for

the minimum percentage error in the estimate of the

number of organisms, nearly So per cent, fertile or i-6

organism per sample is most accurate. At this point

the standard error of sampling may be reduced to

10 per cent, by taking about 155 samples, whereas at

50 per cent., to obtain the same accuracy, 208 samples

would be required.

The Poisson series also enables us to calculate

what percentage of the fertile cultures obtained have

been derived from a single organism, for the percentage
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of impure cultures, i.e. those derived from 2 or more

organisms, can be calculated from the percentage of

cultures which proved to be fertile. If ^""^ are sterile,

me~'^ will be pure cultures, and the remainder impure.

The following table gives representative values of

the percentage of cultures which are fertile, and the

percentage of fertile cultures which are impure :

TABLE 9
Mean number of organisms

in sample .... -i -2 '3 -4 -5 •6-7
Percentage fertile , . . 9-52 18-13 25-92 32-97 39-35 45-12 50-34

Percentage of fertile cul-

tures impure . . . 4-92 9-67 14-25 18-67 22-92 27-02 30-95

If it is desired that the cultures should be pure with

high probability, a sufficiently low^ concentration must

be used to render at least nine-tenths of the samples

sterile.

18. The Binomial Distribution

The binomial distribution is well known as the first

example of a theoretical distribution to be established.

It was found by Bernoulli, about the end of the

seventeenth century, that if the probability of an event

occurring were/ and the probability of it not occurring

were g{= i —/)> then if a random sample of 11 trials

were taken, the frequencies with which the event

occurred o, i, 2, . . ., n times were given by the

expansion of the binomial

{q+py.

This rule is a particular case of a more general

theorem dealing with cases in which not only a simple

alternative is considered, but in which the event may

happen in s ways with probabilities p^, p.^, . . ., A;
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then it can be shown that the chance of a random

sample of n giving" a.^ of the first kind, a.^ of the second,

. . ., ^s of the last is

^-^—,p^'p^' r,s,
aiia.^l . . . asl ^

which is the general term in the multinomial expansion

of

(A+/2+ • • •
+/-)"•

Ex. 5. Binomial distribidion given by dice records.

—In throwing a true die the chance of scoring more

than 4 is 1/3, and if 12 dice are thrown together the

number of dice scoring 5 or 6 should be distributed

with frequencies given by the terms in the expansion

of

If, however, one or more of the dice were not true, but

if all retained the same bias throughout the experiment,

the frequencies should be given approximately by

where / is a fraction to be determined from the data.

The following frequencies were observed (Weldon's

data) in an experiment of 26,306 throws.

[Table
F
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TABLE lo

Number of

Dice with 5

Observed
Frequency.

Expected
True Dice.

Exjiected

Biased
Measure of Divergence —

or 6. Dice. True Dice. Biased Dice.

185 202-75 187-38 1-554 •030

I I149 1216-50 1146-51 3-745 005
2 3265 3345-37 3215-24 1-931 •770

3 5475 5575-61 5464-70 1-815 •019

4 6114 6272-56 6269-35 4-008 3-849

5 5194 5018-05 5114-65 6-169 1-231

6 3067 2927-20 3042-54 6-677 •197

7 1331 1254-51 1329-73 4-664 •001

8 403 392-04 423-76 • 306 1-017

9 105 87-12 96-03 3-670 838
10 14 13-07 14-69]

1-36II 4 1-19 •952 •222

12 •05 •o6|

26306 26306-02 26306-00 35-557 8-2II

u = 10 n = 9

It is apparent that the observations are not com-

patible with the assumption that the dice were un-

biased. With true dice we should expect more cases

than have been observed of o, i, 2, 3, 4, and fewer cases

than have been observed of 5, 6, . . ., 11 dice scoring

more than four. The same conclusion is more clearly-

brought out in the fifth column, which shows the

values of the measure of divergence

7/1

where in is the expected value and x the difference

between the expected and observed values. The

aggregate of these values is x^ which measures the

deviation of the whole series from the expected series
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of frequencies, and the actual chance of x^ exceeding

35-56, the value for the hypothesis that the dice are

true, is -0004. (See Section 20.)

The total number of times in which a die showed

5 or 6 was 106,602, out of 315,672 trials, whereas the

expected number with true dice is 105,224; from the

former number, the value of/ can be calculated, and

proves to be -337,698,6, and hence the expectations of

the fourth column were obtained. These values are

much more close to the observed series, and indeed fit

them satisfactorily, showing that the conditions of the

experiment were really such as to give a binomial series.

The variance of the binomial series is pqn. Thus

with true dice and 315,672 trials the expected number

of dice scoring more than 4 is 105,224 with variance

70149-3 and standard error 264-9 ; the observed number

exceeds expectation by 1378, or 5-20 times its standard

error ; this is the most sensitive test of the bias, and

it may be legitimately applied, since for such large

samples the binomial distribution closely approaches

the normal. From the table of the probability integral

it appears that a normal deviation only exceeds 5-2

times its standard error once in 5 million times.

The reason why this last test gives so much higher

odds than the test for goodness of fit, is that the latter

is testing for discrepancies of any kind, such, for

example, as copying errors would introduce. The
actual discrepancy is almost wholly due to a single

item, namely, the value of /, and when that point

is tested separately its significance is more clearly

brought out.
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Ex. 6. Comparison of sex ratio in htunan families

with binomial distribution.— Biological data are rarely

so extensive as this experiment with dice ; Geissler's

data on the sex ratio in German families will serve

as an example. It is well known that male births

are slightly more numerous than female births, so

that if a family of 8 is regarded as a random sample

of eight from the general population, the number of

boys in such families should be distributed in the

binomial

where / is the proportion of boys. If, however,

families differ not only by chance, but by a tendency

on the part of some parents to produce males or

females, then the distribution of the number of boys

should show an excess of unequally divided families,

and a deficiency of equally or nearly equally divided

families. The data in Table 1 1 show that there is

TABLE II

Number of

Number of Boys. Families

Observed.

Expected. Excess {x).
m

o 215 165-22 + 49-78 14-998

I 1485 1401-69 + 83-31 4-952

2 5331 5202-65 + 128-35 3-166

3 10649 11034-65 -385-65 13-478

4 14959 14627-60 + 331-40 7-508

5 II929 12409-87 - 480-87 18-633

6 6678 6580-24 + 97-76 1-452

7 2092 1993-78 + 98-22 4-839

8 342 264-30 + 77-7° 22-843

53680 53680-00 9I-869
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evidently such an excess of very unequally divided

families.

The observed series differs from expectation

markedly in two respects : one is the excess of unequally

divided families ; the other is the irregularity of the

central values, showing an apparent bias in favour of

even values. No biological reason is suggested for

the latter discrepancy, which therefore detracts from

the value of the data. The excess of the extreme

types of family may be treated in more detail by

comparing the observed with the expected variance.

The expected variance, npq, is 1-998,28, while that

calculated from the data is 2-067,45, showing an

excess of -06917, or 3-46 per cent. The sampling

variance of this estimate of variance is (p. ']']\

N-i N

where N is the number of families, and k^ and /c^

are the second and fourth cumulants of the theoretical

distribution, namely,

K.2 = n/}q = 1-99828

K^= npq{\ -6pg)= --99656.

The values given are calculated from the value of/

as estimated from the frequency of boys in the sample.

The standard error of the variance, which as the values

show is nearly s/jjN, is found to be -01 141. The

excess of the observed variance over that appropriate

to a binomial distribution is thus over six times its

standard error.

One possible cause of the excessive variation lies
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in the occurrence of multiple births, for it is known

that children of the same birth tend to be of the same

sex. The multiple births are not separated in these

data, but an idea of the magnitude of this effect may

be obtained from other data for the German Empire.

These show about 12 twin births per thousand, of

which f are of like sex and f of unlike, so that one-

quarter of the twin births, 3 per thousand, may be

regarded as "identical" or necessarily alike in sex. Six

children per thousand would therefore probably belong

to such "identical" twin births, the additional effect

of triplets, etc., being small. Now with a population

of identical twins it is easy to see that the theo-

retical variance is doubled ; consequently, to raise the

variance by 3-46 per cent, we require that 3-46 per cent,

of the children should be "identical" twins; this is

more than five times the general average, and although

it is probable that the proportion of twins is higher in

families of 8 than in the general population, we cannot

reasonably ascribe more than a fraction of the excess

variance to multiple births.

19. Small Samples of the Binomial Series

With small samples, such as ordinarily occur in

experimental work, agreement with the binomial

series cannot be tested with much precision from a

single sample. It is, however, possible to verify that

the variation is approximately what it should be,

by calculating an index of dispersion similar to that

used for the Poisson series.

Ex. 7. The acatracy'of estimates of infestation.—

-
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The proportion of barley ears infested with gout-

fly may be ascertained by examining 100 ears, and

counting the infested specimens ; if this is done re-

peatedly, the numbers obtained, if the material is

homogeneous, should be distributed in the binomial

where / is the proportion infested, and q the propor-

tion free from infestation. The following are the data

from 10 such observations made on the same plot

(J. G. H. Frew's data)

:

16, 18, II, 18, 21, 10, 20, 18, 17, 21. Mean 17-0.

Is the variability of these numbers ascribable to

random sampling ; i.e. Is the material apparently

homogeneous ? Such data differ from those to which

the Poisson series is appropriate, in that a fixed total

of 100 is in each case divided into two classes, infested

and not infested, so that in taking the variability of

the infested series we are equally testing the variability

of the series of numbers not infested. The modified

form of x^ the index of dispersion, appropriate to the

binomial is

,_ S{x-xf _ S(x-xf
npq xq

differing from the form appropriate to the Poisson

series in containing the divisor q, or in this case, -Z'}^.

The value of x^ is 9-22, which, as the x^ table shows, is

a perfectly reasonable value for n — 9, one less than

the number of values available.

Such a test of the single sample, is, of course, far



72 STATISTICAL METHODS

from conclusive, since x^ niay vary within wide limits.

If, however, a number of such small samples are

available, though drawn from plots of very different

infestation, we can test, as with the Poisson series, if

the general trend of variability accords with the

binomial distribution. Thus from 20 such plots the

total X is 193-64, while S{n) is 180. Testing as before

(p. 62), we find

^387-28 = 19-68

x/359= 18-95

Difference + -73

The difference being less than one, we conclude

that the variance shows no sign of departure from that

of the binomial distribution. The difference between

the method appropriate for this case, in which the

samples are small (10), but each value is derived from

a considerable number (100) of observations, and that

appropriate for the sex distribution in families of 8,

where we had many families, each of only 8 observa-

tions, lies in the omission of the term

K^ = npq{l-6pq)

in calculating the standard error of the variance.

When n is 100 this term is very small compared to

ii^p^'q"-, and in general the x^ method is highly accurate

if the number in all the observational categories is as

high as 10.



DISTRIBUTIONS 73

Appendix on Technical Notation and Formula

A. Statistics derived from sums of powers.

If we have n observations of a variate x, it is easy

to calculate for the sample the sums of the simpler

powers of the values observed, these we may write

s^ = S(,f) i^o = S(.r-)

j-3=SCr3) s^ = ^{x')

and so on.

It is convenient arithmetically to calculate from

these the sums of powers of deviations from the mean

defined by the equations

So = i'o s-?-

11 ^

^ - _ 1 _L ^ 3Oo — Jo S^S-i -\- ^ S-,

^ * n -^ ^ 71- - ^ n^ ^

Many statistics in frequent use are derived from these

values.

(i) Moments about the arbitrary origin, x = o;

these are derived simply by dividing the corresponding

sum by the number in the sample ; in general if/ stand

for I, 2, 3, 4, . . ., they are defined by the formula

Im = —s
p fi p

Clearly in\ is the arithmetic mean, usually written x.

(ii) In order to obtain values independent of the

arbitrary origin, and more closely related to the

intrinsic characteristics of the population sampled,

values called "moments about the mean" are widely
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used, which are found by dividing the sums of powers

about the mean by the sample number ; thus if

/ = 2, 3, 4> • • •

1^1^ = "~ s,
•

these are the moments which would have been obtained

if, as would usually be inconvenient arithmetically, the

arithmetic mean had been chosen as origin.

(iii) A more recent system which has been shown

to have great theoretical advantages is to replace the

mean and the moments about the mean by the single

series of /^-statistics

h = - S\

^ 11— \ "

h - ''

s
'' {n-\){ii-2y^

/^4 = / \1 W ^N
\{n-\-\)S,— \

^-
So" \.

It is easy to verify the following relations :

n—i
,

VI.
_ (n-i)(n-2)

by which the moment statistics, when they are wanted,

may be expressed in terms of the /^-statistics,

(iv) It is of historical interest to note that a series

of statistics, termed half-invariants, were defined by
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Thiele, which are related to the moment statistics n^

and m in exactly the same way as the cumulants (see

B below) are related to the moments p! and /x of the

population. Thus if h^, h^, k^, . . . stand for the half-

invariants, we have

h^ = ni\ h^ = in^ h^ = in^

h^ = ///^ — 3 ni^ h^ = m^— iom^m^

and so on. Thiele used the same term "half-

invariants " also to designate the population parameters

of which these statistics may be regarded as estimates,

just as the same term "moments" has been used in

both senses by Pearson and his followers, so that the

cumulants have been frequently referred to as half-

invariants or semi-invariants of the population, and

even the /^-statistics have been mistakenly called semi-

invariants of the sample. The half-invariants as

originally defined by Thiele are not now of importance,

and are only mentioned here to clear up the confusion

of terminology.

B. Moments and cumulants of theoretical distributions.

Either of the systems of statistics derived from

sums of powers may be regarded as estimates of

corresponding parameters of theoretical distributions,

to which they would usually tend if the sample were

increased indefinitely. These true, or population,

values are designated by Greek letters ; thus in\ is an

estimate of p!^, the fourth moment of the population

about an arbitrary origin, m^ is an estimate of fx^, the

fourth moment of the population about the mean, and

k. is an estimate of /c., the fourth cumulant of the
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population. The relations between these population

values are simpler than those between in and k, thus

M 1
~ "^1 /"2 ~ "^2 Ms~ '^3

/X4 = /C^+ 3 '<^2^ M5 = /f5+ I O/C3/C2

and so on. The o-eneral rule for the formation of the

coefficients may be seen from the facts that three is

the number of ways of dividing four objects into two

sets of two each, while ten is the number of ways of

dividing five objects into sets of two and three

respectively.

In respect of the relationship between the estimates

and the corresponding parameters, the only elementary

point to be noted is that whereas the mean value of

any ;;/ from samples of 11 is equal to the corresponding

m', and the mean value of any k equal to the corre-

sponding K, this property is not enjoyed by the series

of moments about the mean m^, m^, ni^, . . ., for

— 71—

I

Vl.j = Uo
91 ^

~ (n—i)(n — 2)
''h = ^2 Ms

_ (;^-i)(/^^-3;^ + 3) ,

3(^^-0(2^^-3) „ 2

'"i
—

^i M-i "t- ^ M2 >

a series of formulae which sufficiently exhibits the

practical inconvenience of using the moments about

the mean, and which is typical of the much heavier

algebra to which the use of these statistics leads, in

comparison with the /^-statistics.

The half-invariants, /i, of Thiele suffer from the

same drawback ; for, though they may be regarded

as estimates of the cumulants k, their mean values
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from the aggregate of finite samples are not equal to

the corresponding values k. In fact

n— I

lu

h^
{n— i)(« — 2)

1, -'I-li
I

{ir— 6n + 6)k^— 6iiK^ k

showing that the higher members of this series suffer

from the same degree of troublesome complexity as do

the moments about the mean.

The table below gives the first four cumulants of

the three distributions considered in this chapter in

terms of the parameters of the distributions :

Symbol. Normal. Poisson. Binomial.

Mean '^'1 ?n m np

Variance '^'2
0-2 m nfq

Third cumulant '^'3 m - npq{j> - g)

Fourth cumulant '^'4 m npq{i - dpq)

C. Sampling variance of statistics derived from samples

Sampling variances are needed primarily for tests

of significance. The principal use so far developed for

sums of powers higher than the second, is in testing

normality. The two simplest measures of departure

from normality are those dependent from the statistics

of the 3rd and 4th degree, defined as

gx-h\k-r' g%=kjk.^.

It should be noted that these do not exactly corre-

spond to the statistics 71 and y^ defined in the first
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three editions. These Greek symbols are best used

not for statistics, but for the parameters of which ^i

and g^ are estimates.

Variance of General Form. Normal.

Si

N

N N-I

0-2

N
20-4

N-I
6N(N-i)

(N-2)(N + i)(N + 3)

24N(N - i)2

(N-3)(N-2)(N + 3)(N + 5)

D. Adjust})ienisfor grouping.

When the sums of powers are calculated from

grouped data, it is desirable for some purposes to

introduce an adjustment designed to annul the average

effect of the grouping process. These adjustments

were worked out for the moment notation by Sheppard,

and affect the sums of even powers about the mean.

Using unit grouping interval, the adjusted values of

the second and fourth /^-statistics, represented by I^^

and >^'4, may be obtained from the formulae

'^' 2 ~ ^t~ T 2" K ^ — k^+ Y+o

.

These adjustments should be used for purposes of

estimation, but not for tests of significance. Thus

y^'2 will be a better estimate of the variance than k<^,

but the sampling variance, or standard error, both

of the mean and of the variance, should be calculated

from the unadjusted value, k<^.
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IV

TESTS OF GOODNESS OF FIT, L\DEPENDENCE
AND HOMOGENEITY; WITH TABLE OF x'

20. The X" Distribution

In the last chapter some use has been made of the

X^ distribution as a means of testing the agreement

between observation and hypothesis ; in the present

chapter we shall deal more generally with the very wide

class of problems which may be solved by means of

the same distribution.

The element common to all such tests is the com-

parison of the numbers actually observed to fall into

any number of classes with the numbers which upon

some hypothesis, are expected. If vi is the number

expected, and viArX the number observed, in any

class, we calculate

the summation extending over all the classes. This

formula gives the value of x". and it is clear that the

more closely the observed numbers agree with those

expected the smaller will x" he ; in order to utilise the

table it is necessary to know also the value of n with

which the table is to be entered. The rule for finding
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11 is that n is equal to the number of degrees of freedom

in which the observed series may differ from the

hypothetical ; in other words, it is equal to the number

of classes the frequencies in which may be filled up

arbitrarily. Several examples will be given to illus-

trate this rule.

For any value of n, which must be a whole number,

the form of distribution of x^ was established by Pearson

in 1900; it is therefore possible to calculate in what

proportion of cases any value of x^ will be exceeded.

This proportion is represented by P, which is there-

fore the probability that x^ shall exceed any specified

value. To every value of x^ there thus corresponds a

certain value of P ; as x^ is increased from o to infinity,

P diminishes from i to o. Equally, to any value of

P in this range there corresponds a certain value of x^

Algebraically the relation between these two quantities

is a complex one, so that it is necessary to have a table

of corresponding values, if the x^ test is to be available

for practical use.

An important table of this sort was prepared by

Elderton, and is known asElderton's Table of Goodness

of Fit. Elderton gives the values of P to six decimalo
places corresponding to each integral value of x^ from

I to 30, and thence by tens to 70. In place of n, the

quantity 71! ( = /2+i) was used, since it was then

believed that this could be equated to the number of

frequency classes. Values of 11! from 3 to 30 were

given, these corresponding to values of n from 2 to

29. A table for 7/ = 2, or ;z=i, was subsequently

supplied by Yule. Owing to copyright restrictions
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we have not reprinted Elderton's table, but have given

a new table (Table III. p. 104) in a form which experi-

ence has shown to be more convenient. Instead of

giving the values of P corresponding to an arbitrary

series of values of x^ we have given the values of x^

corresponding to specially selected values of P. We
have thus been able in a compact form to cover those

parts of the distributions which have hitherto not

been available, namely, the values of x" less than unity,

which frequently occur for small values of n, and the

values exceeding 30, which for larger values of n

become of importance.

It is of interest to note that the measure of disper-

sion, 0, introduced by the German economist, Lexis,

' is, if accurately calculated, equivalent to x7^^ °^ ^^^

notation. In the many references in English to the

method of Lexis, it has not, I believe, been noted that

the discovery of the distribution of x^ in reality com-

pleted the method of Lexis. If it were desired to use

Lexis' notation, our table could be transformed into a

table of Q merely by dividing each entry by n.

In preparing this table we have borne in mind that

in practice we do not want to know the exact value of

P for any observed x^ but, in the first place, whether

or not the observed value is open to suspicion. If P

is between -i and -9 there is certainly no reason to

suspect the hypothesis tested. If it is below -02 it is

strongly indicated that the hypothesis fails to account

for the whole of the facts. We shall not often be astray

if we draw a conventional line at '05, and consider that

higher values of x^ indicate a real discrepancy.
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To compare values of x^ or of P, by means of a

"probable error" is merely to substitute an inexact

(normal) distribution for the exact distribution given

by the x^ table.

The term Goodness of Fit has caused some to fall

into the fallacy of believing that the higher the value

of P the more satisfactorily is the hypothesis verified.

Values over -999 have sometimes been reported which,

if the hypothesis were true, would only occur once

in a thousand trials. Generally such cases are demon-

strably due to the use of inaccurate formulae, but

occasionally small values of x^ beyond the expected

range do occur, as in Ex. 4 with the colony numbers

obtained in the plating method of bacterial counting.

In these cases the hypothesis considered is as definitely

disproved as if P had been -ooi.

When a large number of values of x^ ^^^ available

for testing, it may be possible to reveal discrepancies

which are too small to show up in a single value ; we

may then compare the observed distribution of x^ with

that expected. This may be done immediately by

simply distributing the observed values of x^ among

the classes bounded by values given in the x^ table,

as in Ex. 4, p. 60. The expected frequencies in

these classes are easily written down, and, if necessary,

the x^ test may be used to test the agreement of the

observed with the expected frequencies.

It is useful to remember that the sum of any number
|

of quantities, x^ is distributed in the x^ distribution,

with 71 equal to the sum of the values of n correspond-

ing to the values of x^ used. Such a test is sensitive,
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and will often bring to light discrepancies which are

hidden or appear obscurely in the separate values.

The table we give has values of ii up to 30

;

beyond this point it will be found sufficient to assume

that sf2)^ is distributed normally with unit standard

deviation about a mean sj2n—\. The values of P

obtained by applying this rule to the values of x^ given

for n = 30, may be worked out as an exercise. The

errors are small for n = 30, and become progressively

smaller for higher values of ;/.

Ex. 8. Comparison with expectation of Mendelian

class freqnencies.—In a cross involving two Mendelian

factors we expect by interbreeding the hybrid (Fj)

generation to obtain four classes in the ratio 9:3:3:1;
the hypothesis in this case is that the two factors

segregate independently, and that the four classes

of offspring are equally viable. Are the following

observations on Prinnila (de Winton and Bateson) in

accordance with this hypothesis ?

TABLE 12

Flat Leaves. Crimped Leaves.

Total.
Normal
Eye.

Primrose
Queen Eye.

Lee's

Eye.
Primrose

Queen Eye.

Observed (m + x)

Expected (;«)

328

315
•537

122

105

2752

77
105

7-467

33

35
-114

560
560

10-870

The expected values are calculated from the

observed total, so that the four classes must agree in

their sum, and if three classes are filled in arbitrarily

the fourth is therefore determinate ; hence n = ^]
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X^ = 10-87, the chance of exceeding which value is

between -oi and -02
; if we take P = -05 as the limit

of significant deviation, we shall say that in this case

the deviations from expectation are clearly significant.

Let us consider a second hypothesis in relation

to the same data, differing from the first in that we

suppose that the plants with crimped leaves are to

some extent less viable than those with fiat leaves.

Such a hypothesis could of course be tested by means

of additional data ; we are here concerned only with

the question whether or no it accords with the values

before us. The hypothesis tells us nothing of what

degree of relative viability to expect ; we therefore take

the totals of flat and crimped leaves observed, and

divide each class in the ratio 3:1.

TABLE 13

Flat Leaves. Crimped Leaves.

x^.
Normal | Primrose
Eye.

1
Queen Eye.

Lee's

Eye.

Primrose
Queen Eye.

Observed .

Expected .

x^jjn .

328 122

337-5 "2-5
•267 -804

77
82.5

-367

33
27-5

I -109 2-547

The value of n is now 2, since only two entries can

be made arbitrarily ; the value of x') however, is so

much reduced that P exceeds -2, and the departure

from expectation is no longer significant. The sig-

nificant part of the original discrepancy lay in the

proportion of flat to crimped leaves.

It was formerly believed that in entering the x^

table 11 w^as always to be equated to one less than the
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number of frequency classes ; this view led to many

discrepancies, and has since been disproved with the

establishment of the rule stated above. On the old

view, any complication of the hypothesis such as that

which in the instance above admitted differential

viability, was bound to give an apparent improvement

in the agreement between observation and hypothesis.

When the change in n is allowed for, this bias dis-

appears, and if the value of P, rightly calculated, is

many fold increased, as in this instance, the increase

may safely be ascribed to an improvement in the

hypothesis, and not to a mere increase in the number

of parameters, which may be adjusted to suit the

observations.

Ex. 9. Compai'ison with expectation of the Poisson

series and Binomial series.—In Table 5, p. 57, we

give the observed and expected frequencies in the case

of a Poisson series. In applying the x^ test to such

a series it is desirable that the number expected should

in no group be less than 5, since the calculated distribu-

tion of x^ is not very closely realised for very small

classes. We therefore pool the numbers for o and i

cells, and also those for 10 and more, and obtain the

following comparison :

TABLE 14

and 12 3 4 56 7 89 10 and
more

Total

Observed 20 43 53 86 70 54 37 18 10 9 400

Expected 21.08 40-65 63-41 74-19 69-44 54-i6 36-21 2i-i8 11-02 8-66 400

x^jtn -055 .136 1-709 i-88o -005 -005 -017 -477 -093 •013 4-390
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Using 10 frequency classes we have x^ = 4*390 ; in

ascertaining the value of n we have to remember that

the expected frequencies have been calculated, not

only from the total number of values observed (400),

but also from the observed mean ; there remain, there-

fore, 8 degrees of freedom and n = 8. For this value

the x^ table shows that P is between -8 and -9, showing

a close, but not an unreasonably close, agreement with

expectation.

Similarly in Table 10, p. 66, we have given the

value of x^ based upon 1 1 classes for the two hypo-

theses of "true dice" and "biased dice"; with

" true dice " the expected values are calculated from

the total number of observations alone, and n= 10, but

in allowing for bias we have brought also the means

into agreement so that n is reduced to 9. In the first

case x^ is far outside the range of the table showing a

highly significant departure from expectation ; in the

second it appears that P lies between -5 and -7, so that

the value of x^ is within the expected range.

21. Tests of Independence, Contingency Tables

A special and important class of cases where the

agreement between expectation and observation may
be tested comprises the tests of independence. If the

same group of individuals is classified in two (or

more) different ways, as persons may be classified as

inoculated and not inoculated, and also as attacked

and not attacked by a disease, then we may require to

know if the two classifications are independent.
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In the simplest case, when each classification

comprises only two classes, we have a 2 x 2 table, or,

as it is often called, a fourfold table.

Ex. 10. The following table is taken from Green-

wood and Yule's data for Typhoid :

TABLE 15

Observed

Attacked. Not Attacked. Total.

Inoculated . 56 6,759 6,815

Not Inoculated . 272 11,396 11,668

Total . 328 18,155
1

18,483

1

TABLE 16

Expected

Attacked. Not Attacked. 1 Total

Inoculated . 120-93 6,694-07 6,815

Not Inoculated . 207-07 11,460-93 11,668

Total . 328 18,155 18,483

In testing independence we must compare the

observed values with values calculated so that the four

frequencies are in pi'opoftion ; since we wish to test

independence only, and not any hypothesis as to the

total numbers attacked, or inoculated, the "expected"

values are calculated from the marginal totals observed,
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so that the numbers expected agree with the numbers

observed in the margins ; only one value need be

calculated, e.g.

328x6815

18483
= 120-93;

the others are written down at once by subtraction

from the margins. It is thus obvious that the observed

values can differ from those expected in only i degree

of freedom, so that in testing independence in a four-

fold table, n=i. Since x^ = 56-234 the observations

are clearly opposed to the hypothesis of independence.

Without calculating the expected values, x^ may, for

fourfold tables, be directly calculated by the formula

2_ {ad— bc)\a -\- b -\- c -{ d)

^ ^{a+ d){c-\-d){a+c){d+ dy

where a, d, c, and d are the four observed numbers.

When only one of the classifications is of two

classes, the calculation of x^ niay be simplified to some

extent, if it is not desired to calculate the expected

numbers. If a, a' represent any pair of observed

frequencies, and n, n' the corresponding totals, we
may, following Pearson, calculate from each pair

; (an'— any-,
a^a^ ^'

and the sum of these quantities divided by nn' will

bex'.

An alternative formula, which besides being quicker,

has the advantage of agreeing more closely with the

general method used in the Analysis of Variance, has
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been developed by Brandt and Snedecor. From each

pair of frequencies the fraction,

p = aj{a-\-a),

is calculated, and from the totals

/ = ;//(;/+ ;/);

then

r=/Js(./)-«/}

where q=i—p. It is a further advantage of this

method of calculation that it shows the actual fractions

observed in each class ; where there is any great

difference between the two rows it is usually convenient

to use the smaller series of fractions.

Ex. 1 1 . Test of independence in a 2 xn' classifica-

tion.—From the pigmentation survey of Scottish

children (Tocher's data) the following are the numbers

of boys and girls from the same district (No. i) whose

hair colour falls into each of five classes :

TABLE 17

Hair Colour

Fair. Red. Medium. Dark. Jet Black. Total.

Boys .

Girls .

592

544

119

97

849

677

504

451

36

14

2100

1783

Total .

Sex Ratio .

1 136

•52113

216

•55093

1526

•55636

955

•52775

50

•72000

3883

•54082

The sex ratio, proportion of boys, is given under

the total for each hair colour ; multiplying each by the

number of boys, and deducting the corresponding
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product for the total, there remains 2-603, which on

dividing by/^ gives x^= 10-48.

In this table 4 values could be filled in arbitrarily

without conflicting with the marginal totals, so that

n = 4. The value of P is between -02 and -05, so that sex

difference in the classification by hair colours is probably

significant as judged by this district alone. It is to

be noticed that, with this method, the ratios must be

calculated with somewhat high precision. Using five

decimal places, the value of x^ given is not quite correct

in the second decimal, and to avoid doubts as to the

precision of calculation two more places would have

been desirable. It is evident from the ratios that the

principal discrepancy is due to the excess of boys in

the " Jet Black " class.

Ex. 12. Test of indepe^tdence in ^4x4 classifica-

tion,—As an example of a more complex contingency

table we may take the results of a series of back-

crosses in mice, involving the two factors Black-

Brown, Self- Piebald (Wachter's data) :

TABLE 18

Black Self. Black Piebald. Brown Self. Brown Piebald. Total.

Coupling

—

Fj Males .

Fj Females

Repulsion

—

Fj Males .

Fj Females

88 (85-37)

38 (34-43)

115 (117-00)

96 (100-20)

82 (75-24)

34 (30-34)

93 (103-11)
88 (88-31)

75 (70-93)

30 (28-60)

80(97.21)

95 (83-26)

.60 (73-46)
21 (29-63)

130(100-68)

79 (86-23)

305
123

418
358

Total . 337 297 280 290 1204

The back-crosses were made in four ways, accord-

ing as the male or female parents were heterozygous
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(Fi) in the two factors, and according to whether the

two dominant genes were received both from one

(Coupling) or one from each parent (Repulsion).

The simple Mendelian ratios may be disturbed by-

differential viability, by linkage, or by linked lethals.

Linkage is not suspected in these data, and if the

only disturbance were due to differential viability of the

four genotypes, these should always appear in the

same proportion ; to test if the data show significant

departures we may apply the x' test to the whole

4x4 table. The values expected on the hypothesis

that the proportions are independent of the matings

used, or that the four series are homogeneous, are

given above in brackets. The contributions to x^

made by each cell are given below (Table 19).

The value of x' is therefore 21-832 ; the value of

n is 9, for we could fill up a block of three rows and

three columns and still adjust the remaining entries to

check with the margins. In general for a contingency

table of r rows and c columns ;/ = (;-— i) {c — i). For

71 = 9, the value of x" shows that P is less than -01, and

TABLE 19

•081 607 •234 2-466 3-388

•370 •442 -069 2-514 3-395
•034 -991 3-047 8-539 I2-6lI

•176 -001 1-655 -606 2-438

661 2-041 5-C05 14-125 21-832

therefore the departures from proportionality are not

fortuitous ; it is apparent that the discrepancy is due
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to the exceptional number of Brown Piebalds in the Fi

males Repulsion series.

It should be noted that the methods employed in

this chapter are not designed to measure the degree of

association between one classification and another, but

solely to test whether the observed departures from

independence are or are not of a magnitude ascribable

to chance. The same degree of association may be

significant for a large sample but insignificant for a

small one ; if it is insignificant we have no reason on

the data present to suspect any degree of association at

all, and it is useless to attempt to measure it. If, on

the other hand, it is significant the value of x^ indi-

cates the fact, but does not measure the degree of

association. Provided the deviation is clearly signifi-

cant, it is of no practical importance whether P is -oi

or -000,001, and it is for this reason that we have not

tabulated the value of x^ beyond -oi. To measure

the degree of association it is necessary to have some

hypothesis as to the nature of the departure from

independence to be measured. With Mendelian fre-

quencies, for example, the recombination percentage

may be used to measure the degree of association of

two factors, and the significance of evidence for linkage

may be tested by comparing the difference between the

recombination percentage and 50 per cent, (the value

for unlinked factors), with its standard error. Such a

comparison, if accurately carried out, must agree

absolutely with the conclusion drawn from the x^

test. To take a second example, the values in a four-

fold table may be sometimes regarded as due to the
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partition of a normally correlated pair of variates,

according as the values are above or below arbitrarily

chosen dividing-lines ; as if a group of stature measure-

ments of fathers and sons were divided between those

above and those below 68 inches. In this case

the departure from independence may be properly

measured by the correlation in stature between father

and son ; this quantity can be estimated from the

observed frequencies, and a comparison between the

value obtained and its standard error, if accurately

carried out, will agree with the x' test as to the signifi-

cance of the association ; the significance will become

more and more pronounced as the sample is increased

in size, but the correlation obtained will tend to a

fixed value. The x^ test does not attempt to measure

the degree of association, but as a test of significance

it is independent of all additional hypotheses as to the

nature of the association.

Tests of homogeneity are mathematically identical

with tests of independence ; the last example may

equally be regarded in either light; in Chapter III.

the tests of agreement with the Binomial series were

essentially tests of homogeneity ; the ten samples of

lOO ears of barley (Ex. 7, p. 70) might have been

represented as a 2 x 10 table. The x" index of

dispersion would then be equivalent to the x^ obtained

from the contingency table. The method of this

chapter is more general, and is applicable to cases in

which the successive samples are not all of the same size.

Ex. 13. Homogeneity of different families in

respect of ratio black : red.—The following data show
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in 2)3 families of Gammarus (Huxley's data) the

numbers with black and red eyes respectively :

TABLE 20

Black

Red
79

14

120

31

24

6

117

29

62

17

79

20

66

12

45

II

61

14

64

13

208

52

154

45

31

4

158

45

21

4

105

28

28

7

Total 93 151 30 146 79 99 78 56 75 77 260 199 35 203 25 133 35

Black

Red

58

19

81

27

25

8

95

29

47

16

67

21

30

II

70

28

139

57

179

62

129

44

44

17

24

9

19

8

45

23

91

41

2565

772

Total 77 108 33 124 63 88 41 98 196 241 173 61 33 27 68 132 3337

The totals 2565 black and 772 red are distinctly

not In the ratio 3:1; the discrepancy is ascribed to

linkage. The question before us is whether or not all

the families indicate the same ratio between black and

red, or whether the discrepancy Is due to a few families

only. For the whole table x^ = 35-620, n = 32. This Is

beyond the range of the table, so we apply the method

explained on p. 62 :

x/2p = 8-44;

>/2;^-i=7-94;

Difference = +-50± i.

The series Is therefore not significantly hetero-

geneous ; effectively all the families agree and confirm

each other in Indicating the black-red ratio observed In

the total.

Exactly the same procedure would be adopted If

the black and red numbers represented two samples

distributed according to some character or charac-

ters each Into 33 classes. The question " Are these

samples of the same population ?
" Is in effect Identical
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with the question "Is the proportion of black to red

the same in each family ?
" To recognise this identity-

is important, since it has been very widely disregarded.

Ex. 14. Agreement ivith expectation of normal

variance.—Closely akin to tests of homogeneity is the

use of the x^ distribution to test whether or not an

observed series of values, normally or nearly normally

distributed, agrees in its variance with expectation.

If jt'i, ^-.2, . . ., are a sample of a normal population,

the standard deviation of which population is o-, then

is distributed in random samples as is x, taking n

one less than the number in the sample. J. W. Bispham

gives three series of experimental values of the partial

correlation coefficient, which he assumes should be

distributed so that i/o-^ = 29, but which properly

should have i/cr- =28. The values of S[x —xY for the

three samples of 1000, 200, 100 respectively are* as

judged from the grouped data,

35-0278, 7-1071, 3-6169,

whence the values of x^ on the two theories are

TABLE 21

Exp. I. 2. 3- Total.
v'zX'--

Differ-

ence.

29S(a;-;e)2
2%S{x-xy
Expectation («) .

1015-81

980-78

999

217-71
210-20

199

104-89

101-27

99

1338-41

1292-25

1297

51-74
50-82

50-92

+ .82

-•10

It will be seen that the true formula for the variance

gives slightly the better agreement. That the differ-

ence is not significant may be seen from the last two
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columns. About 6000 observations would be needed

to discriminate experimentally, with any certainty,

between the two formulae.

2 11. The Combination of Probabilities from

Tests of Significance

When a number of quite independent tests of

significance have been made, it sometimes happens

that although few or none can be claimed individually

as significant, yet the aggregate gives an impression

that the probabilities are on the whole lower than

would often have been obtained by chance. It is

sometimes desired, taking account only of these

probabilities, and not of the detailed composition of

the data from which they are derived, which may be

of very different kinds, to obtain a single test of the

significance of the aggregate, based on the product

of the probabilities individually observed.

The circumstance that the sum of a number of

values of y^ is itself distributed in the x^ distribution

with the appropriate number of degrees of freedom,

may be made the basis of such a test. For in the

particular case when n = 2, the natural logarithm of

the probability is equal to —
2X'^. If therefore we take

the natural logarithm of a probability, change its sign

and double it, w^e have the equivalent value of x^ for

2 degrees of freedom. Any number of such values

may be added together, to give a composite test, using

the table of x^ to examine the significance of the result.

Ex. 14-1. Significance of theproduct of a mimber of

independent probabilities.—Three tests of significance

H
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have yielded the probabilities -145, -263, -087; test

whether the aoroTeo^ate of these three tests should be

reo-arded as siornihcaiit. We haveo o

p _ ] CT P Degrees of
"* Freedom.

•145 I-93IO 2

•::63 1-3356 2

•087 2-4419 2

570S5 6

X- = 11-4170

For 6 deofrees of freedom we have found a value

11-417 for x^- The 5 per cent, value is 12-592 while

the 10 per cent, value is 10-645. The probability of

the aggregate of the three tests occurring by chance

therefore exceeds -05, and is not far from -075.

In applying this method it will be noticed that we

require to know from the individual tests not only

whether they are or are not individually significant,

but also, to two or three figure accuracy, what are the

actual probabilities indicated. For this purpose it is

convenient and sufficiently accurate for most purposes

to interpolate in the table given (Table III.), using the

loofarithm of the values of P tabulated. Either natural

or common logarithms may equally be employed. We
may exemplify the process by applying it to find the

probability of x^ exceeding 11-417, when n = 6.

Our value of x^ exceeds the 10 per cent, point by

•772, while the 5 per cent, point exceeds the 10 per

cent, point by 1-947 ! the fraction

•772-^— = -397-
1-947

The difference between the common logarithm of 5

and of 10 is -3010, which multiplied by -397 gives -119;
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the negative logarithm of the required probability is

thus found to be 1-119, and the probability to be -076.

For comparison, the value calculated by exact methods

is -07631.

22. Partition of x" into its Components

Just as values of x^ iTiay be aggregated together to

make a more comprehensive test, so in some cases it is

possible to separate the contributions to x^ made by

the individual degrees of freedom, and so to test the

separate components of a discrepancy.

Ex. 15. Partition of observed disci^epancies from
Mendelian expectation.—The table on p. 100 (de

Winton and Bateson's data) gives the distribution of

sixteen families of primula in the eight classes obtained

from a back-cross with the triple recessive.

The theoretical expectation is that the eight classes

should appear in equal numbers, corresponding to the

hypothesis that in each factor the allelomorphs occur

with equal frequency, and that the three factors are

unlinked. This expectation is fairly realised in the

totals of the sixteen families, but the individual

families are somewhat irregular. The values of x^

obtained by comparing each family with expectation

are given in the lowest line. These values each

correspond to seven degrees of freedom, and it appears

that in 5 cases out of 16, P is less than • i, and of these

2 are less than -02. This confirms the impression of

irregularity, and the total value of x" (not to be con-

fused with x^ derived from the totals), which corre-

sponds to 112 degrees of freedom, is 151-78.
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Now >/223 = 14-93 ;

V303- 56 =17-42;

Difference = +2-49;

so that, judged by the total x^ the evidence for

departures from expectation in individual families is

clear.

Each family is free to differ from expectation

in seven independent ways. To carry the analysis

further, we must separate the contribution to x^ of

each of these seven degrees of freedom. Mathe-

matically the subdivision may be carried out in more

than one way, but the only way which appears to be of

biological interest is that which separates the parts due

to inequality of the allelomorphs of the three factors, and

the three possible linkage connexions. If we separate

the frequencies into positive and negative values

according to the following seven ways,

TABLE 23

Ch. G. W. GW. ChW. ChG. ChGW.

ChG W . + + + + + + +
Ch G w + + - - - + -
Chg W . + — + - + - —
Ch g w + - - + - +
ch G W .

- + + + - - -
ch G w - + - - + - +
chg W .

- - + - - + +
ch g w ~ + + + ~

then it will be seen that all seven subdivisions are

wholly independent, since any two of them agree in

four signs and disagree in four. The first three

degrees of freedom represent the inequalities in the
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allelomorphs of the three factors Ch, G, and W ; the

next are the degrees of freedom involved in an inquiry

into the linkage of the three pairs of factors, while the

seventh degree of freedom has no simple biological

meaning but is necessary to complete the analysis.

If we take in the first family, for example, the differ-

ence between the numbers of the W and w plants,

namely 8, then the contribution of this degree of

freedom to x" is found by squaring the difference

and dividing by the number in the family, e.g.

8^ ^72 = -889. In this way the contribution of

each of the 1 1 2 decrees of freedom in the sixteen

families is found separately, as shown in the following

table :

TABLE 24

Family. Ch. G. w. GW. Ch W. ChG. ChGW. Total.

54 3-556 2-000 •889 .222 2.000 .889 •222 9-778

55 •076 3-034 •076 3-034 .412 1-017 •210 7-859

58 •820 -820 •820 -295 1.607 -820 •295 5-477

59 •153 •831 4898 .017 6-119 -831 •153 13-002

107 6720 •269 3.108 1.817 -097 -269 •269 12-549

no 14-821 1-282 •821 .821 •205 1-282 19-232

119 6261 •391 391 .174 2-130 •043 -696 10-086

121 1 1 000 •364 •818 •091 •091 12.364

122 .161 6-200 1-090 1.865 •523 •316 7-903 18.058

127 •610 •024 • 220 .610 1. 195 •220 1-976 4-855

129 •900 1-600 •400 •100 •900 •900 4.800

131 •172 •062 .062 062 .062 •338 8-448 9-206

132 •163 •791 .320 .320 •059 1-471 •059 3-183

^11 •220 -220 4.122 •024 8.80s •220 •610 14-221

135 •211 3.368 1-316 •053 •053 •053 5-054

178 .258 •835 •093 •093 OIO .258 .505 2.052

Total 46-102 21-727 18.226 10-171 24.195 8-965 22-390 151.776

Looking at the total values of x' for each column,

since n is 16 for these, we see that all except the

first have values of P between .05 and .95, while the
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contribution of the first degree of freedom is very

clearly significant. It appears then that the greater

part, if not the whole, of the discrepancy is ascribable to

the behaviour of the Sinensis-Stellata factor, Ch, and

its behaviour strongly suggests close linkage with a

recessive lethal gene of one of the familiar types. In

four families, 107- 121, the only high contribution is in

the first column. If these four families are excluded

X^ = 97-545, and this exceeds the expectation for

^2 = 84 by only just over the standard error ; the total

discrepancy cannot therefore be regarded as significant.

There does, however, appear to be an excess of very

large entries, and it is noticeable of the seven largest,

that six appear in pairs belonging to the same family.

The distribution of the remaininof 1 2 families accordingr

to the value of P is as follows :

TABLE 2t'

P. . I-O •9 •8 •7 •5 •3 •2 •I •OS •02 •01 Total

Families i I 4 I 2 I I I 12

from which it would appear that there is some slight

evidence of an excess of families with high values of

X^ This effect, like other non-significant effects, is

only worth further discussion in connexion with some

plausible hypothesis capable of explaining it.

The general procedure to follow in analysing x^

into its components will be developed in Section 55.
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TABLE III-

n. P = -99- .98. •95- -90. .80. .70.

I •000157 •000628 00393 •0158 -0642 •148

2 •0201 .0404 103 •211 -446 •713

3 •115 -185 352 •584 1-005 1-424

4 •297 •429 711 1-064 1-649 2-195

S -554 •752 I 145 1-610 2-343 3-000

6 .872 I-I34 I 635 2-204 3-070 3-828

7 1-239 1-564 2 167 2-833 3-822 4-671

8 1-646 2-032 2 733 3-490 4-594 5-527

9 2-088 2-532 3 325 4-168 5-380 6-393

lO 2-558 3-059 3 940 4-865 6-179 7-267

1

1

3-053 3-609 4 575 5-578 6-989 8.148

12 3-571 4-178 5 226 6-304 7-807 9-034

13 4-107 4-765 5 892 7-042 8-634 9-926

14 4-660 5-368 6 571 7-790 9-467 10-821

15 5-229 5-985 7 261 8-547 10-307 11-721

16 5-812 6-614 7 962 9-312 11-152 12-624

17 6-408 7-255 8 672 10-085 12-002 13-531

18 7.015 7-906 9 390 10-865 12-857 14-440
j

19 7-633 8-567 10 117 11-651 13-716 15-352
'

20 8-260 9-237 10 851 12-443 14-578 16-266

21 8-897 9-915 II 591 13-240 15-445 17-182

22 9-542 io-6oo 12 338 14-041 16-314 i8-ioi

23 10-196 11-293 13 091 14-848 17-187 19-021
i

24 10-856 11-992 13 848 15-659 18-062 19-943
'

25 11-524 12-697 14 611 i6-473 18-940 20-867

26 12-198 13-409 15 379 17-292 19-820 21-792

27 12-879 14-125 16-151 18-114 20-703 22-719

28 13-565 14-847 16 928 18-939 21-588 23-647

29 14-256 15-574 17 708 19-768 22-475 24-577

30 14-953 16^306 18-493 20-599 23-364 25-508

For larger values of «, the expression s2\'^~ 'J^n— i
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Table of ^'^

•50. •30- •20. •10. •05. -02. •01.

•455 I 074 1-642 2 706 3-841 5-412 6-635

1.386 2 408 3-219 4 605 5-991 7-824 9-210

2-366 3 665 4-642 6 251 7-815 9-837 11-341

3-357 4 878 5-989 7 779 9-488 11-668 13-277

4-351 6 064 7-289 9 236 11-070 13-388 15-086

5-348 7 231 8-558 10 645 12-592 15-033 16-812

6-346 8 383 9-803 12 017 14-067 16-622 18-475

7-344 9 524 11-030 13 362 15-507 18-168 20-090

8-343 10 656 12-242 14 684 16-919 19-679 21-666

9-342 II 781 13-442 15 987 18-307 21-161 23-209

10-341 12 899 14-631 17 275 19-675 22-618 24-725

11-340 14 on 15-812 18 549 21-026 24-054 26-217

12-340 15 119 16-985 19 812 22-362 25-472 27-688

13-339 16 222 18-151 21 064 23-685 26-873 29-141

T4-339 17 322 19-311 22 307 24-996 28-259 30-578

15-338 18 418 20-465 23 542 26-296 29-633 32-000

16-338 19 511 21-615 24 769 27-587 30-995 33-409

17-338 20 601 22-760 25 989 28-869 32-346 34-805

18-338 21 689 23-900 27 204 30-144 33-687 36-191

19-337 22 775 25-038 28 412 31-410 35-020 37-566

20-337 23 858 26-171 29 615 32-671 36-343 38-932

21-337 24 939 27-301 30 813 33-924 37-659 40-289

22-337 26 018 28-429 32 007 35-172 38-968 41-638

23-337 27 096 29-553 33 196 36-415 40-270 42-980

24-337 28 172 30-675 34 382 37-652 41-566 44-314

25-336 29 246 31-795 35 563 38-885
'

42-856 45-642

26-336 30 319 32-912 36 741 40-113 44-140 46-963

27-336 31 391 34-027 37 916 41-337 45-419 48-278

28-336 32 461 35-139 39 087 42-557 46-693 49-588

29-336 33 530 36-250 40-256 43-773 47-962 50-892

may be used as a normal deviate with unit standard error.



TESTS OF SIGNIFICANCE OF MEAA'S, DIFFER-

ENCES OF MEANS, AND REGRESSION CO-

EFFICIENTS

23. The Standard Error of the Mean

The fundamental proposition upon which the statis-

tical treatment of mean values is based is that— If a

quantity be normally distributed with variance o-^, then

the mean of a random sample of Ji such quantities is

normally distributed with variance a-'/n.

The utility of this proposition is somewhat increased"

by the fact that even if the original distribution were

not exactly normal, that of the mean usually tends to

normality, as the size of the sample is increased ; the

method is therefore applied widely and legitimately

to cases in which we have not sufficient evidence to

assert that the original distribution was normal, but

in which we have reason to think that it does not

belong to the exceptional class of distributions for

which the distribution of the mean does not tend

to normality.

If, therefore, we know the variance of a population,

we can calculate the variance of the mean of a random

sample of any size, and so test whether or not it

106
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differs significantly from any fixed value. If the

difference is many times greater than the standard

error, it is certainly significant, and it is a convenient

convention to take twice the standard error as the

limit of significance ; this is roughly equivalent to

the corresponding limit P = -05, already used for the

X^ distribution. The deviations in the normal distri-

bution corresponding to a number of values of P are

pfiven in the lowest line of the table of t at the end of

this chapter (p. 151). More detailed information has

been given in Table I.

Ex. 16. Significance of mean of a laj^ge sample.—
We may consider from this point of view Weldon's

die-casting experiment (Ex. 5, p. 65). The variable

quantity is the number of dice scoring "5" or "6"

in a throw of 12 dice. In the experiment this number

varies from zero to eleven, with an observed mean of

4-0524 ; the expected mean, on the hypothesis that

the dice were true, is 4, so that the deviation observed

is -0524. If now we estimate the variance of the

whole sample of 26,306 values as explained in Ex. 2,

without using Sheppard's correction (for the data are

not grouped, and even with grouped data, since the

mean is affected by grouping errors, its variance

should be estimated without this correction), we find

(7-= 2-69826,

whence o-^/« = -0001026,

and <tIs/7i = -o\oiT).

The standard error of the mean is therefore about

•01, and the observed deviation is nearly 5-2 times as
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great ; thus by a slightly different path we arrive at

the same conclusion as that of p. 6^. The difference

between the two methods is that our treatment of

the mean does not depend upon the hypothesis that

the distribution is of the binomial form, but on the

other hand we do assume the correctness of the value

of 0- derived from the observations. This assumption

breaks down for small samples, and the principal

purpose of this chapter is to show how accurate

allowance can be made in these tests of significance

for the errors in our estimates of the standard

deviation.

To return to the cruder theory, we may often, as

in the above example, wish to compare the observed

mean with the value appropriate to a hypothesis which

we wish to test ; but equally or more often we wish to

compare two experimental values and to test their

agreement. In such cases we require the variance of

the difference between two quantities whose variances

are known ; to find this we make use of the pro-

position that the variance of the difference of two

independent variates is equal to the sum of their

variances. Thus, if the standard deviations are o-i,

0-2, the variances are o-f and o-o^ ; consequently the

variance of the difference is o-i^+ o-g^ and the standard

error of the difference is sJ(t^--\-(t^.

Ex. 17. Standard error of difference of means

from large samples.-— In Table 2 is given the distribu-

tion in stature of a group of men, and also of a group of

women ; the means are 68-64 and 63-87 inches, giving

a difference of 4-77 inches. The variance obtained
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for the men was 7-3861 square inches. Dividing

this by 1 164, we find the variance of the mean is

•006345. Similarly, the variance for the women is

6-7832, which divided by 1456 gives the variance of

the mean of the women as -004659. To find the

variance of the difference between the means, we must

add together these two contributions, and find in all

•01 1004 ; the standard error of the difference between

the means is therefore • 1049 inches. The sex difference

in stature may therefore be expressed as

4-77 ±-105 inches.

It is manifest that this difference is significant,

the value found being over 45 times its standard

error. In this case we can not only assert a significant

difference, but place its value with some confidence at

between 4|- and 5 inches. It should be noted that we

have treated the two samples as independent, as though

they had been given by different authorities ; as a

matter of fact, in many cases brothers and sisters

appeared in the two groups ; since brothers and sisters

tend to be alike in stature, we have overestimated the

probable error of our estimate of the sex difference.

Whenever possible, advantage should be taken of

such facts in designing experiments. In the common

phrase, sisters provide a better "control" for their

brothers than do unrelated women. The sex difference

could therefore be more accurately estimated from the

comparison of each brother with his own sister. In

the following example (Pearson and Lee's data), taken

from a correlation table of stature of brothers and
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sisters, the material is nearly of this form ; it differs

from it in that in some instances the same individual

has been compared with more than one sister, or

brother.

Ex. 1 8. Standard error of mean of differences.—
The followinor table sfives the distribution of the excess

in stature of a brother over his sister in 1401 pairs.

TABLE 26

Stature "j

difference I-5-4-3-2-1 o i 2 3 4 5

in inches J

Frequency -25 1-5 1-25 4-5 11-25 27-5 71-75 122-75 171-75 209-75 220-5

Stature "j

difference h 6 7 8 9 10 11 12 13 14 15 16 Total

in inches J

Frequency 205-5 148-75 9575 57 26 11-25 8-5 2-75 i i -75 1401

Treatino- this distribution as before we obtain :

mean =4-895, estimate of variance =6-5480, variance

of mean =-004674, standard error of mean =-0684;

showing that we may estimate the mean sex difference

as 4f to 5 inches.

In the examples given above, which are typical of

the use of the standard error applied to mean values,

we have assumed that the variance of the population

is known with exactitude. It was pointed out by

"Student" in 1908, that with small samples, such as

are of necessity usual in field and laboratory experi-

ments, the variance of the population can only be

roughly estimated from the sample, and that the errors

of estimation seriously affect the use of the standard

error.

If .r (for example the mean of a sample) is a value

with normal distribution and <r is its true standard
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error, then the probability that xja- exceeds any speci-

fied value may be obtained from the appropriate table

of the normal distribution ; but if we do not know cr,

but in its place have s, an estimate of the value of o-,

the distribution required will be that of xjs, and this

is not normal. The true value has been divided by a

factor, i-/(T, which introduces an error. We have seen

in the last chapter that the distribution in random

samples of s'-jo-'^ is tliat of x"A^, when n is equal to the

number of degrees of freedom, in the group (or groups)

of which 5" is the mean square deviation. Conse-

quently the distribution of sja- is calculable, and if

its variation is completely independent of that of xja-

(as in the cases to which this method is applicable),

then the true distribution of xjs can be calculated,

and accurate allowance made for its departure from

normality. The only modification required in these

cases depends solely on the number n, representing

the number of degrees of freedom available for the

estimation of cr. The necessary distributions were

given by "Student" in 1908; fuller tables have since

been given by the same author, and at the end of this

chapter (p. 151) we give the distributions in a similar

form to that used for our table of x^

24. The Significance of the Mean of a

Unique Sample

U x\, X2, . . ., Xn' is a sample of ;/ values of a

variate x, and if this sample constitutes the whole of

the information available on the point in question.
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then we may test whether the mean of x differs

significantly from zero by calculating the statistics

;f=-SOv),

£2 I

11

' tl.n

n = n —\.

The distribution of ^^ for random samples of a normal

population distributed about zero as mean is given in

the table of t for each value of n. The successive

columns show, for each value of n, the values of t for

which P, the probability of falling outside the range

+ ^, takes the values -9, . . ., -oi, at the head of the

columns. Thus the last column shows that, when

n= 10, just I per cent, of such random samples will give

values of ^ exceeding +3-169, or less than —3-169. If

it is proposed to consider the chance of exceeding the

given values of t, in a positive (or negative) direction

only, then the values of P should be halved. It will

be seen from the table that for any degree of certainty

we require higher values of /, the smaller the value

of ;/. The bottom line of the table, corresponding to

infinite values of ;/, gives the values of a normally

distributed variate, in terms of its standard deviation,

for the same values of P.

Ex. 19. Significance of mean of a small sample.—
The following figures (Cushny and Peebles' data),

which I quote from "Student's" paper, show the result

of an experiment with ten patients on the effect of
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the optical isomers of hyoscyamine hydrobromide in

producing sleep.

TABLE 27

Additional Hours of Sleep gained by the Use
OF Hyoscyamine Hydrobromide.

Patient. I (Dextro-). 2 (Laevo - ). Difference (2-1).

I + 0-7 + 1-9 + 1-2

2 -1-6 + 0-8 + 2-4

3 - 0-2 + i-i + 1-3

4 - 1-2 + 0-I + 1-3

5 -O-I - O-I o-o

6 + 3-4 + 4-4 + I-0

7 + 3-7 + 5-5 + 1-8

8 + 0-8 + 1-6 + 0-8

9 o-o + 4-6 + 4-6

10 + 2-0 + 3-4 + 1-4

Mean {x) + •75 + 2-33 + 1.58

The last column gives a controlled comparison of

the efficacy of the two drugs as soporifics, for the same

patients were used to test each ; from the series of

differences we find

^= + 1-58,

— = •1513.
10 ^

^

t= 4-o6.

For 71 = 9, only one value in a hundred will exceed

3-250 by chance, so that the difference between the

results is clearly significant. By the methods of the

previous chapters we should, in this case, have been led

to the same conclusion with almost equal certainty

;

for if the two drugs had been equally effective, positive
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and negative signs would occur in the last column with

equal frequency. Of the 9 values other than zero,

however, all are positive, and it appears from the

binomial distribution,

that all will be of the same sign, by chance, only twice

in 512 trials. The method of the present chapter

differs from that in takinor account of the actual values

and not merely of their signs, and is consequently

the more reliable method when the actual values are

available.

241. Comparison of Two Means

In experimental work it is even more frequently

necessary to test whether two samples differ signi-

ficantly in their means, or whether they may be

regarded as belonging to the same population. In the

latter case any difference in treatment which they may

have received will have shown no significant effect.

li x-y, X2, • . •) -'^;/j + i and X I, x 2, • • ., ^n.^+i be

two samples, the significance of the difference between

their means may be tested by calculating the following

statistics

:

X — S(x), X = S(x'),

.y2=—?

—

{s(x-xf+ S(x-xy\

s ^ n-y-\-n.^-\-2

n = n^+ n^.

The means are calculated as usual ; the standard
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deviation is estimated by pooling the sums of squares

from the two samples and dividing by the total number

of the degrees of freedom contributed by them ;
if o-

were the true standard deviation, the variance of the

first mean would be o-7(?^i+i), of the second mean

0-7(^2+
I )' ^^*^ therefore that of the difference would

be o-^{i/(«i+ i)+ i/(?^2+ i)< ; ^ is therefore found by

dividing .^ —^ by its standard error as estimated, and

the error of the estimation is allowed for by entering

the table with n equal to the number of degrees of

freedom available for estimating s ; that is n = ;zi + n2.

It is thus possible to extend " Student's" treatment of

the error of a mean to the comparison of the means of

two samples.

It may be noted in connexion with this method,

and with later developments, which also involve a

pooled estimate of the variance, that_a difference in

variance between the populations from which the

samples are drawn will tend somewhat to enhance the

value of ^ obtained. The test, therefore, is decisive,

if the value of t is significant, in showing that the

samples could not have been drawn from the same

population ; but it might conceivably be claimed

that the difference indicated lay in the variances and

not in the means. The theoretical possibility, that

a significant value of / should be produced by a

difference between the variances only, seems to be

unimportant in the application of the method to experi-

mental data ; as a supplementary test, however, the

significance of the difference between the variances may

always be tested directly by the method of Section 41.
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It has been repeatedly stated, perhaps through a

misreading- of the last paragraph, that our method

involves the "assumption" that the two variances are

equal. This is an incorrect form of statement ; the

equality of the variances is a necessary part of the

hypothesis to be tested, namely that the two samples

are drawn from the same normal population. The

validity of the /-test, as a test of this hypothesis, is

therefore absolute, and requires no assumption what-

ever. It would, of course, be legitimate to make a

different test of significance appropriate to the

question, Might these samples have been drawn from

different normal populations having the same mean ?

This problem has, in fact, been solved, but in relation

to the real situations arising in research, the question

it answers appears to be wholly academic.

Ex. 20. Significance of differe^ice of means of

small samples.—Let us suppose that the figures of

Table 27 had been obtained using different patients

for the two drugs ; the experiment would have been

less well controlled, and we should expect to obtain

less certain results from the same number of observa-

tions, for it is ^/r/(?rz probable, and the above figures

suggest, that personal variations in response to the

drugs will be to some extent correlated.

Taking, then, the figures to represent two different

sets of patients, we have

AA+i'o) = -72IO,

/=-t-i-86i,
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The value of P is, therefore, between -i and -05, and

cannot be regarded as significant. This example

shows clearly the value of design in small scale experi-

ments, and that the efficacy of such design is capable

of statistical measurement.

The use of " Student's " distribution enables us to

appreciate the value of observing a sufficient number

of parallel cases ; their value lies, not only in the fact

that the standard error of a mean decreases inversely

as the square root of the number of parallels, but in

the fact that the accuracy of our estimate of the

standard error increases simultaneously. The need

for duplicate experiments is sufficiently widely realised
;

it is not so widely understood that in some cases, when

it is desired to place a high degree of confidence (say

P = -oi) on the results, triplicate experiments will

enable us to detect with confidence differences as

small as one-seventh of those which, with a duplicate

experiment, would justify the same degree of confi-

dence.

The confidence to be placed in a result depends not

only on the magnitude of the mean value obtained,

but equally on the agreement between parallel experi-

ments. Thus, if in an agricultural experiment a first

trial shows an apparent advantage of 8 bushels to the

acre, and a duplicate experiment shows an advantage of

9 bushels, we have n=i, t=^ij, and the results would

justify some confidence that a real effect had been

observed ; but if the second experiment had shown an

apparent advantage of 18 bushels, although the mean

is now higher, we should place not more but less
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confidence in the conclusion that the treatment was

beneficial, for t has fallen to 2-6, a value which for

n=\ is often exceeded by chance. The apparent

paradox may be explained by pointing out that the

difference of lo bushels between the experiments

indicates the existence of uncontrolled circumstances

so influential that in both cases the apparent benefit

may be due to chance, whereas in the former case the

relatively close agreement of the results suggests that

the uncontrolled factors are not so very influential.

Much of the advantage of further replication lies in the

fact that with duplicates our estimate of the importance

of the uncontrolled factors is so extremely hazardous.

In cases in which each observation of one series

corresponds in some respects to a particular observa-

tion of the second series, it is always legitimate to take

the differences and test them as in Ex. i8 or 19, as

a single sample ; but it is not always desirable to do

so. A more precise comparison is obtainable by this

method only if the corresponding values of the two

series are positively correlated, and only if they are

correlated to a sufficient extent to counterbalance the

loss of precision due to basing our estimate of variance

upon fewer degrees of freedom. An example will

make this plain.

Ex. 21. Significance of change in bacterial

niLnibers. — The following table shows the mean

number of bacterial colonies per plate obtained by

four slightly different methods from soil samples

taken at 4 p.m. and 8 p.m. respectively (H. G. Thorn-

ton's data) :
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TABLE 28
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Method. 4 P.M. 8 P.M. Difference.

A
B
C
D

29-75

27-50

30-25

27-80

39-20

40-60

36-20

42-40

+ 9-45

+ 13-10

+ 5-95

+ 14-60

Mean 28-825 39-6o + 10-775

From the series of differences we havejr= + 10-775,

4-^^ = 3*756, ^ = 5-560, 11 = 2,, whence the table shows

that P is between -oi and -02. If, on the contrary, we

use the method of Ex. 20, and treat the two separate

series, we find x — x^= +10-775, 1"-^^= 2-188, zf = 7-285,

n = 6 ; this is not only a larger value of n but a larger

value of t, which is now far beyond the range of the

table, showing that P is extremely small. In this

case the differential effects of the different methods

are either negligible, or have acted quite differently

in the two series, so that precision was lost in compar-

ing each value with its counterpart in the other series.

In cases like this it sometimes occurs that one method

shows no significant difference, while the other brings it

out ; ifeither method indicates a definitely significant

difference, its testimony cannot be ignored, even if

the other method fails to show the effect. When no

correspondence exists between the members of one

series and those of the other, the second method only

is available.
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25. Regression Coefficients

The methods of this chapter are applicable not

only to mean values, in the strict sense of the word,

but to the very wide class of statistics known as

recfression coefficients. The idea of reg^ression is

usually introduced in connexion with the theory of

correlation, but it is in reality a more general, and, in

some respects, a simpler idea ; and the regression co-

efficients are of interest and scientific importance in

many classes of data where the correlation coefficient,

if used at all, is an artificial concept of no real utility.

The following qualitative examples are intended to

familiarise the student with the concept of regression,

and to prepare the way for the accurate treatment of

numerical examples.

It is a commonplace that the height of a child

depends on his age, although, knowing his age, we

cannot accurately calculate his height. At each age

the heights are scattered over a considerable rano-e in

a frequency distribution characteristic of that age

;

any feature of this distribution, such as the mean,

will be a continuous function of age. The function

which represents the mean height at any age is termed

the regression function of height on age ; it is repre-

sented graphically by a regression curve, or regression

line. In relation to such a regression line ae'e is

termed the independent variate, and height the de-

pendent variate.

The two variates bear very different relations to the

reo^ression line. If errors occur in the heisfhts, this
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will not influence the regression of height on acre,

provided that at all ages positive and negative errors

are equally frequent, so that they balance in the

averages. On the contrary, errors in age will in

general alter the regression of height on age, so that

from a record with ages subject to error, or classified

in broad age-groups, we should not obtain the true

physical relationship between mean height and age.

A second difference should be noted : the regression

function does not depend on the frequency distribu-

tion of the independent variate, so that a true regression

line may be obtained even w^hen the age groups are

arbitrarily selected, as when an investigation deals with

children of "school age." On the other hand, a

selection of the dependent variate will change the

regression line altogether.

It is clear from these two instances that the

regression of height on age is quite different from the

regression of age on height ; and that one may have a

definite physical meaning in cases in which the other

has only the conventional meaning given to it by

mathematical definition. In certain cases both regres-

sions are of equal standing ; thus, if we express in

terms of the height of the father the average adult

height of sons of fathers of a given height, observation

shows that each additional inch of the fathers' height

corresponds to about half an inch in the mean height

of the sons. Equally, if we take the mean height of

the fathers of sons of a given height, we find that each

additional inch of the sons' height corresponds to half

an inch in the mean height of the fathers. No selection
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has been exercised in the heights either of fathers

or of sons ; each variate is distributed normally, and

the aggregate of pairs of values forms a normal cor-

relation surface. Both regression lines are straight,

and it is consequently possible to express the facts of

regression in the simple rules stated above.

When the regression line with which we are con-

cerned is straight, or, in other words, when the regres-

sion function is linear, the specification of regression

is much simplified, for in addition to the general means

we have only to state the ratio which the increment of

the mean of the dependent variate bears to the corre-

sponding increment of the independent variate. Such

ratios are termed regression coefficients. The regres-

sion function takes the form

Y = a-\-b{x—x),

where b is the regression coefficient of y on x,

and Y is the predicted value of j for each value of x.

The physical dimensions of the regression coefficient

depend on those of the variates ; thus, over an age

rano-e in which growth is uniform we might express

the regression of height on age in inches per annum, in

fact as an average growth rate, while the regression of

father's height on son's height is half an inch per inch,

or simply |-. Regression coefficients may, of course,

be positive or negative.

Curved regression lines are of common occurrence
;

in such cases we may have to use such a regression

function as Y = a-\- bx+ ex"+ dx^,

in which all four coefficients of the regression function
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may, by an extended use of the term, be called regres-

sion coefficients. More elaborate functions of ;t' may

be used, but their practical employment offers diffi-

culties in cases where we lack theoretical guidance in

choosing the form of the regression function, and at

present the simple power series (or, polynomial in x)

is alone in frequent use. By far the most important

case in statistical practice is the straight regression

line.

26. Sampling Errors of Regression Coefficients

The linear regression formula contains two para-

meters which are to be estimated from the data.

If we use the form

Y = a-\-b{x-x)

then the value chosen for a will be simply the mean, jp,

of the observed values of the dependent variate. This

ensures that the sum of the residuals y — Y shall be

zero, for the sum of the values of b{x—x) must be

zero, whatever may be the value of b.

The value given to b, our estimate of the regression

coefficient of jj/ on x, is obtained from the sum of the

products of X and y. Just as with a single variate

we estimate the variance from the sum of squares, first

by deducting nx^, so as to obtain the sum of the

squares of deviations from the mean, in accordance

with the formula,

S{{x-xf] = S{x')-7tx'',

and then dividing by [n— i) to obtain an estimate of

the variance ; so with any two variates x and y, we
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may obtain the sum of the products of deviations from

the means by deducting nxy ; for

S {
{x-% {y -J') ] = S {xy) - nxy.

( The mean product of two variates, thus measured from

\ their means, is termed their covariance, and, just as in

the case of the variance of a single variate, we estimate

its value by dividing the sum of products by n—i.

The sum of products from which the covariance is

estimated may evidently be written equally in the forms

S{y{x-x)), S{x{y-y)}.

Our estimate of b is simply the ratio of the

covariance of the two variates, to the variance of the

dependent variate ; or, since we may ignore the factor

{n-i) which appears in both terms of the ratio, our

method of estimation may be expressed by the formula

S\y{x-x)]
''- S{{x-xfY

We thus have estimates calculable from the observa-

tions of the two parameters needed to specify the

straight line. The true regression formula, which we

should obtain from an infinity of observations, may be

represented by
Y = a-\-^{x-x)

and the differences a-a,b-^, are the errors of random

sampling of our statistics.

To ascertain the magnitude of the sampling errors

to which they are subject consider a population of

samples having the same values for x. The variations
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from sample to sample in our statistics will be due only

to the fact that for a given value of x the values of y
in the population sampled are not all equal. If o-^

represent the variance of j^ for a given value of x, then

clearly the error of a is merely the mean of n!

independent errors each having a variance cr^, so that

the variance of a is cT^jn'. The second statistic b is

also a linear function of the values, y, and its sampling

variance may be obtained by an extension of the same

reasoning. In this case each deviation oi y from the

true regression formula is multiplied by x — x\ the

variance of the product is therefore (T'^{^x — xf, and that

of the sum of the products, which is the numerator of

the expression for b, must be

To find b we divide this numerator by S [{x — xf] so

that the variance of b is found by dividing the variance

of the numerator by S'^{{x —xy\ which gives us the

expression

S(x—x)-

for the sampling variance of the statistic b.

It will be noticed that the value stated for the

sampling variance of a is not merely the sampling

variance of our estimate of the mean ofjk, but of our

estimate of the mean o^ y for a given value of^, this

value being chosen at, or near to, the mean of our

sample, and supposed invariable from sample to

sample. The distinction, which at first sight appears

somewhat subtle, is worth bearing in mind. From a
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set of measurements of school children we may make

estimates of the mean stature at age ten, and of the

mean stature of the school, and these estimates will

be equal if the mean age of the school children is

exactly ten. Nevertheless, the former will usually be

the more accurate estimate, for it eliminates the varia-

tion in mean school age, which will doubtless contribute

somewhat to the variation in mean school stature.

In order to test the significance of the difference

between b, and any hypothetical value, /3, to which it

is to be compared, we must estimate the value of o-^

;

the best estimate for the purpose is

.2=^S(j^-Y)^
11—2

found by summing the squares of the deviations ofj
from its calculated value Y, and dividing by {fi! — 2).

The reason the divisor is [n' — 2) is that from the

n' values of jy two statistics have already been calcu-

lated which enter into the formula for Y, consequently

the group of differences, y — Y, represent in reality

only 1/ — 2 degrees of freedom.

When ;/ is small, the estimate of s^ obtained above

is somewhat uncertain, and in comparing the difference

d — (3 with its standard error, in order to test its signifi-

cance we shall have to use "Student's" method, with

n = 7t' — 2. When ?/ is large the /-distribution tends

to normality. The value of ^ with which the table

must be entered is found by dividing {b — ^) by its

standard error as estimated, and is therefore
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Similarly, to test the significance of the difference

between a and any hypothetical value a, the table is

entered with

. {a — a)s/n' , ^

s

this test for the significance of a will be more sensitive

than that ignoring the regression, if the variation in

y is to any considerable extent expressible in terms

of that of X, for the value of s obtained from

the regression line will then be smaller than that

obtained from the original group of observations.

On the other hand, one degree of freedom is always

lost, so that if b is small, no greater precision is

obtained.

Ex. 22. Effect of nitrogenous fertilisers in main-

taining yield.—The yields of dressed grain in bushels

per acre shown in Table 29 were obtained from two

plots on Broadbalk wheat field during thirty years ; the

only difference in manurial treatment was that " 9 ^
"

received nitrate of soda, while "7 f received an equi-

valent quantity of nitrogen as sulphate of ammonia.

In the course of the experiment plot "9 a'' appears to

be gaining in yield on plot "7 <5." Is this apparent

gain significant ?

A great part of the variation in yield from year to

year is evidently similar in the two plots ; in conse-

quence, the series of differences will give the clearer

result. In one respect these data are especially simple,

for the thirty values of the independent variate form

a series with equal intervals between the successive

values, with only one value of the dependent variate
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corresponding to each. In such cases the work is

simplified by using the formula

TABLE 29

Harvest
Year.

9fl. 7^. 9 fl - 7 ^.

1855 29-62 33-00 -3-38

1856 32-38 36-91 -4-53

1857 43-75 44-84 - 1-09

1858 37-56 38-94 -1-38

1859 30-00 34-66 -4-66

i860 32-62 27-72 + 4-90
n* / —\ n'(n'- - i)

1861 33-75 34-94 -1-19 s{x-xy==^ ^ = 2247-5
12

1862 43-44 35-88 + 7-56

1863 55-56 53-66 + 1-90
I? - -2668

1864 51-06 45-78 + 5-28

1865 44-06 40-22 + 3-84 so -J')- = 1020-56
1866 32-50 29-91 + 2-59

d-'S(x --x)- =-- 159-99
1867 29-13 22-16 + 6-97

1868 47-81 39-19 + 8-62 S{y--Yp= 860-57

1869 39-00 28-25 + IO-75

1870 45-5° 41-37 + 4-13 s- = 30-73

1871 34-44 22-31 + 12-13

1872 40-69 29-06 + 11-63 sys{x -xY = -013675

1873 35-81 22-75 + 13-06

1874 38-19 39-56 -1-37 = (-1169)^

1875 30-50 26-63 + 3-87

1876 33-31 25-50 + 7-81 / = 2-282

1877 40-12 19-12 + 21-00

1878 37-19 32-19 + 5-00 fl = 28

1879 21-94 17-25 + 4-69

1880 34-06 34-31 -.25

1881 35-44 26-13 + 9-31

1882 31-81 34-75 -2-94

1883 43-38 36-31 + 7-07

1884 40-44 37-75 + 2-69

Mean 37-50 33-03 + 4-47

where 7/ is the number of terms, or 30 in this case.

To evaluate d it is necessary to calculate the sum of

products s{jix-x)};
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which bears the same relation to the covariance of two

variates as does the sum of squares to the variance

of a single variate ; this may be done in several ways.

We may multiply the successive values of j/ by — 29,

— 27, . . . +27, +29, add, and divide by 2. This

is the direct method suggested by the formula. The
same result is obtained by multiplying by 1,2,.. ., 30

(7z' -l- I \=
j times the sum of values

of y ; the latter method may be conveniently carried

out by successive addition. Starting from the bottom

of the column, the successive sums 2-69, 9-76, 6-82, . . .

are written down, each being found by adding a new

value of y to the total already accumulated ; the sum

of the new column, less 15I- times the sum of the

previous column, will be the value required. In this

case we find the value 599-615, and dividing by 2247-5,

the value of b is found to be -2668. The yield of

plot "9 rt; " thus appears to have gained on that of

" 7 <5 " at a rate somewhat over a quarter of a bushel

per annum.

To estimate the standard error oi b, we require the

value of the sum of squares of the deviations, or

residuals, from the regression formula,

knowing the value of b, it is easy to calculate the thirty

values of Y from the formula

for the first value, x —x= — 14-5, and the remaining

values of Y may be found in succession by adding
K
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b each time. By subtracting each value of Y from the

corresponding y, squaring, and adding, the required

quantity may be calculated directly. This method is

laborious, and it is preferable in practice to utilise the

algebraical fact that

SQ. - Y)^ = SO/-)f - b'-'$.{x-xf

The work then consists in squaring the values of ji' and

adding, then subtracting the two quantities which can

be directly calculated from the mean value of y and

the value of d. In using this shorten-ed method it

should be noted that small errors in y and d may intro-

duce considerable errors in the result, so that it is

necessary to be sure that these are calculated accurately

to as many significant figures as are needed in the

quantities to be subtracted. Errors of arithmetic

which would have little effect in the first method,

may altogether vitiate the results if the second method

is used. The subsequent work in calculating the

standard error of b may best be followed in the scheme

given beside the table of data ; the estimated standard

error is -1169, so that in testing the hypothesis that

/3 = o, that is that plot "9^" has not been gaining

on plot "7 b'\ we divide b by this quantity and

find/ = 2-282. Since 5 was found from 28 degrees of

freedom ;z=28, and the result of/ shows that P is

between -02 and -05.

The result must be judged significant, though

barely so ; in view of the data we cannot ignore the

possibility that on this field, and in conjunction with
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the other manures used, nitrate of soda has conserved

the fertility better than sulphate of ammonia ; the

data do not, however, demonstrate this point beyond

possibility of doubt.

The standard error of y, calculated from these

data, is 1-012, so that there can be no doubt that the

difference in mean yields is significant ; if we had

tested the significance of the mean, without regard to

the order of the values, that is calculating s^ by

dividing 1020-56 by 29, the standard error would have

been 1-083. The value of b was therefore high enough

to have reduced the standard error. This suggests

the possibility that if we had fitted a more complex

regression line to the data the probable errors would

be further reduced to an extent which would put the

significance of b beyond doubt. We shall deal later

with the fitting of curved regression lines to this type

of data.

26-1. The Comparison of Regression Coefficients

Just as the method of comparison of means is

applicable when the samples are of different sizes, if

we obtain an estimate of the error by combining the

sums of squares derived from the two different

samples, so we may compare regression coefficients

when the series of values of the independent variate

are not identical ; or if they are identical we can ignore

the fact in comparing the regression coefficients.

Ex. 23. Co7nparison of relative growth rate of
two cultures of an alga.—Table 30 shows the logarithm

(to the base 10) of the volumes occupied by algal cells
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on successive days, in parallel cultures, each taken

over a period during which the relative growth rate

was approximately constant. In culture A nine

values are available, and in culture B eight (Dr

M. Bristol- Roach's data).

The method of finding Sy{x—x) by summation is

shown in the second pair of columns : the original

values are added up from the bottom, giving successive

TABLE 30

Log Values. Summation Values.

A. B. A. B.

Total

Mean

3-592

3-823

4-174

4-534
4-956
5-163

5-495
5-602

6-087

3-538
3-828

4-349

4-833

4-9"
5-297

5-566

6.036

43-426

39-834
36-011

31-837

27-303

22-347

17-184

11-6S9
6-087

38-358

34-820

30-992

26-643
21-810

16-899
11-602

6-036

S(j-Y)2, A .05089

B .07563

W5- .12652
5- -009732

J-/60 -0001622

J-/42 -0002317

0003939

Standard error -01985

6'-d -0366

t 1-844

« 13

43-426
4-8251

38-358

4-7947

235-718
217-130

187.160

I72-6II

Sy(_x~x) 18-588
! 14-549

5 -3098 -3464

totals from 6-087 ^o 43"426 ; the final value should, of

course, tally with the total below the original values.

From the sum of the column of totals is subtracted the

sum of the original values multiplied by 5 for A and

by 4J- for B. The differences are Sy{x—x); these

must be divided by the respective values of S{x — xy,

namely, 60 and 42, to give the values of d, measuring

the relative orrowth rates of the two cultures. To test
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if the difference is significant we calculate in the two

cases S(jV^), and subtract successively the product of

the mean with the total, and the product of b with

Sy{x — x) ; this process leaves the two values of

S(_y — Y)^ which are added as shown in the table, and

the sum divided by n, to give /. The value of n is

found by adding the 7 degrees of freedom from series

A to the 6 degrees from series B, and is therefore 13.

Estimates of the variance of the two regression

coefficients are obtained by dividing s^ by 60 and 42,

and that of the variance of their difference is the sum

of these. Taking the square root we find the standard

error to be -01985, and /?= 1-844. The difference

between the regression coefficients, though relatively

large, cannot be regarded as significant. There is

not sufficient evidence to assert that culture B was

growing more rapidly than culture A.

27. The Fitting of Curved Regression Lines

Little progress has been made with the theory of

the fitting of curved regression lines, save in the

limited but most important case when the variability

of the independent variate is the same for all values

of the dependent variate, and is normal for each such

value. When this is the case a technique has been

fully worked out for fitting by successive stages any

line of the form

Y = a-\-bx+cx-+ dx^+ . . .
;

we shall give details of the case where the successive

values of :r are at equal intervals.
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As it stands the form given would be inconvenient

in practice, in that the fitting could not be carried

through in successive stages. What is required is to

obtain successively the mean of jk, an equation linear

in X, an equation quadratic in x, and so on, each

equation being obtained from the last by adding, a new

term being calculated by carrying a single process of

computation through a new stage. In order to do

this we take

Y = A + B^,+ C^,+ D^3+ . . .,

where fi, ^2. & shall be functions of x of the ist, 2nd,

and 3rd degrees, out of which the regression formula

may be built. It may be shown that the functions

required for this purpose may be expressed in terms

of the moments of the x distribution, as follows :

&2 — fcl y"-: —^\
j2 '

^— <?3_^<? — jf 3 _ .
3^^ ~"^

.<?

^ (f 4 Mq /^2M4^2 I
^2^6 ^C

fe4~ tl 2 fcl """
2

jJ.^ — /Xo- ^C^— /U2

= ^ 4_ 3!i!:zI3^ 2^ 3 (^^" -
1 )

(^^'- - 9)

14 ^1 560
2

^ _<?;-)_ /^2^S P-jP-Q f: 3
I

/^4^8 ^6 f:

~^i 18
^^^ 1008 ^^'

where the coefficients are given in general as ratios

of simple determinants of the moments, and have been

expressed in terms of 1^ for simple series, as far as
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is needed for fitting curves up to the 5th degree.

For higher degrees than the 5th the expHcit expres-

sions in powers of x and ti! become unduly heavy
;

they may be more readily expressed using the con-

vention that [pcf shall stand for the product of a series

of n numbers differing consecutively by unity, the

arithmetic mean of the series being x, or in terms

of factorials that

W^-'
,r+K«-0}!

with this convention, the expression

'•'

[i«Tf.2
('-^-i)' Cf'l-"^'"'

gives the appropriate polynomial of degree r. The
series is summed for values of q from o upwards, but

owing to the factor {r—2q)\ in the denominator, all

terms vanish for which 2q exceeds r, and the series

consequently terminates in |- (r+ i) or |- (r+ 2) terms.

Algebraically the process of fitting may now be

represented by the equations

P 180 ,

and, in general, the coefficient of the term of the rth

degree is

,
' (2r)!(2r+i)! ^.,^.
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As each term is fitted the regression line approaches

more nearly to the observed values, and the sum of the

squares of the deviations

S(j-Y)2

is diminished. It is desirable to be able to calculate

this quantity, without evaluating the actual values of

Y at each point of the series ; this can be done by

subtracting from S(y^) the successive quantities

'

12 1 80

or more simply

AS(j), BS(/^0. CS(j^,).

and so on. These quantities represent the reduction

which the sum of the squares of the residuals suffers

each time the regression curve is fitted to a higher

degree ; and enable its value to be calculated at any

stage by a mere extension of the process already used

in the preceding examples. To obtain an estimate, s~,

of the residual variance, we divide by n, the number of

degrees of freedom left after fitting, which is found

from n^ by subtracting from it the number of constants

in the regression formula. Thus, if a straight line has

been fitted, n = 7t' — 2 ; while if a curve of the 5th degree

has been fitted, 7z = n' — 6.

28. The Arithmetical Procedure of Fitting

The main arithmetical labour of fitting curved

regression lines to data of this type may be reduced to

a repetition of the process of summation illustrated in

Ex. 23. We shall assume that the values of jk are
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written down in a column in order of increasincr valueso
of X, and that at each stage the summation is com-

menced at the top of the column (not at the bottom, as

in that example). The sums of the successive columns

will be denoted by Sj, S2, . . . When these values have

been obtained, each is divided by an appropriate divisor,

which depends only on ?/', giving us a new series of

quantities a, d, c, . . . according to the following

equations

rt =— Si =—S (j') =/',

;/(«'+!)(//+ 2)
^'

and so on.

From these a third series of quantities a\ b' , c\

. . . are obtained by equations independent of 7/, of

which we Q-We below the first six, which are enough to

carry the process of fitting up to the 5th degree :

a' = a,

d' = a— 6b-\- \Qc—^d,

e =a— io^+ 30<:-— 35(7'+ 14^,

f ^a—\^b-\-'/Oc—id,od-\-\26e— ^2f.

The rule for the formation of the coefficients is to

multiply successively by

r{r-^\) (r-i)(r+2) (;'-2)(r+3)

1.2 ' 2.3
'

3.4

and so on till the series terminates.
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These new quantities are proportional to the

required coefficients of the regression equation, and

need only be divided by a second group of divisors to

give the actual values. The equations are

A = a\ B

C=-r-,—f^^

—

^c, D = ^^—,, r^,, , -,d\
{ri — i){fi —2)

630
-e\ Y.

—— b

,

140

ill —\){7l' —2){jl -3)

2772 f'
(;/-i)(;/-2) . . . in'-^)

'

{n -\) . . . (n'-sY
'

the numerical part of the factor being

(2r+i)!

for the term of decree ;'.

If an equation of degree r has been fitted, the

estimate of the standard errors of the coefficients are

all based upon the same value of i"", i.e.

71 —7'-l{ ^-^ "^ 12 J'

from which the estimated standard error of any co-

efficient, such as that of i^, is obtained by dividing by

and taking out the square root. The number of

degrees of freedom upon which the estimate is based

is (11' — r— i), and this must be equated to n in using

the table of /.
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A suitable example for using this method may be

obtained by fitting the values of Ex. 22 (p. 127) with

a curve of the 2nd or 3rd degree.

28- 1. The Calculation of the Polynomial Values

The methods of the preceding sections provide an

analysis of a series into the components which can be

represented by polynomial terms of any required

degree, and the remainder which cannot be so repre-

sented. For much work of this kind it is desirable to

carry out this analysis without the labour of calculating

the polynomial values, Y, at each point of the series.

Sometimes, however, it is desirable to have these

values, either to construct a graph, to examine the

deviations in regions of special interest, or because

doing so provides a completely satisfactory check

upon the results calculated.

The very tedious procedure of calculating the

individual values of
f,

and from them, and the calcu-

lated coefficients, forming the individual values of the

polynomial, may be avoided by building up the whole

series, by a continuous process, from its differences.

The process is obvious when a straight line is fitted.

For the terminal value, and the constant difference

between successive values, we take

^ n —I

and build up all the other values of Y by continuous

addition of the constant difference. The method is,
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however, applicable to polynomials of high order, and

in such cases appears to save more than three-quarters

of the labour of calculation. For curves of the 2nd

degree the equations are :

Yi = rt'+ 3^'+ 5r',

A-2Y = - c'
^ {n—\){n'— 2)

Starting with the terminal value AYi, the series of

first differences is built up by successive addition of the

constant second difference A^Yi ; then starting from

Yi, and adding successively the first differences, the

series of values of Y is built up in turn.

The formulae for any degree are constructed using

the factors, with alternate positive and negative signs,

-2-3 3-4-5 -4-5-6-7
^' «'_i' (;/-i)(;/-2)' («'-l)(;/-2)(«'-3)' • •

together with expressions in a!, b', c\ . . . with the

same coefficients, as given in Table 30-2, whatever the

deeree of the curve.

The arithmetical procedure, which consists almost

entirely of successive addition, may be illustrated on

the series of Ex. 22. Table 30-1 shows on the left the

last five lines of the summations needed to fit a curve

of the 3rd degree, and on the right the first five lines

of the summations by which the polynomial values

are built up.

Below the first four columns are shown the values

of ^, . . ., d derived directly from the totals, and of
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a', . . ., d' derived from them. If we want the

values of Y to two decimal places, it will be as well to

calculate Y^ to three places, and each difference to

one more place than the last, discarding one place for

TABLE -,o-i

Observed
Values.

ist Sum. 2nd Sum. 3rd Sum.
Poly-
nomial
Values.

ISt

Difference.

2nd
Difference.

3rd

Difference.

-0-25

+ 9-31

-294
+ 7-07

+ 2.69

117-88

127-19

124-25

131-32

134-01

960-77

1087-96

I2I2-2I

1343-53

1477-54

4440-58

5528-54
6740-75
8084-28

9561-82

5-86

4.99
3-98

2-84

1-544

-739
.871

1-008

1-148

1-2919

-•1280
-.1320
--1361
-•1402
-.14423 •004061

I34-OI

4-467000
4-467000

1477-54
3-177505

1-289495

9561-82

1-927786

-1.209947

39167.21

0-957165
- -105995

134-00

the subsequent differences of each series. With this

in view six decimal places will be sufficient for

a, . . ., d. Any further degree of accuracy required

may be obtained merely by retaining additional digits.

The sum of the column of polynomial values, which

must tally with that of those observed, provides an

excellent check of the latter parts of the procedure,

but not of the correctness of the initial summations.

TABLE 30-2

3 5 7 9 II 13 15 17 19 21
I 5 14 30 55 91 140 204 285 385

I 7 27 77 182 37« 714 1254 2079
I 9 44 ^S^ 450 1122 2508 5148

I II ^S 275 935 2717 7007
I 13 90 442 1729 5733

I 15

I

119

17

I

665
152

19
I

2940

952
189
21

I
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The coefficients used in this method in the expres-

sion for Yi, AYi, A^Yi, ... in terms of a!, b', c', . . .

are given in Table 30-2 up to the loth degree.

29. Regression with several Independent Variates

It frequently happens that the data enable us to

express the average value of the dependent variate y,

in terms of a number of different independent variates

Xi, X2, . . . Xp. For example, the rainfall at any

point within a district may be recorded at a number

of stations for which the longitude, latitude, and alti-

tude are all known. If all of these three variates

influence the rainfall, it may be required to ascertain

the average effect of each separately. In ^speaking

of longitude, latitude, and altitude as independent

variates, all" that is implied is that it is in terms of

them that the average rainfall is to be expressed ; it

is not implied that these variates vary independently,

in the sense that they are uncorrected. On the con-

trary, it may well happen that the more southerly

stations lie on the whole more to the west than do the

more northerly stations, so that for the stations avail-

able longitude measured to the west may be nega-

tively correlated with latitude measured to the north.

If, then, rainfall increased to the west but was

independent of latitude, we should obtain, merely by

comparing the rainfall recorded at different latitudes,

a fictitious regression indicating that rain decreased

towards the north. What we require is an equation,

takincr account of all three variates at each station,

and agreeing as nearly as possible with the values



SIGNIFICANCE OF MEANS, ETC. 143

recorded ; this is called a partial regression equation,

and its coefficients are known as partial regression

coefficients.

To simplify the algebra we shall suppose that

y, Xi, X2, x^, are all measured from their mean values,

and that we are seeking- a formula of the form

Y = b^x^+ b.A'i+ Vs-

If S stands for summation over all the sets of observa-

tions we construct the three equations

b^S{x^x^)+ bSi^'i) + ^z^{^2^'z) = S('i"2j).

of which the nine coefficients are obtained from the

data either by direct multiplication and addition, or,

if the data are numerous, by constructing correlation

tables for each of the six pairs of variates. The three

simultaneous equations for b^, b^, and b^ are solved in

the ordinary way ; first b^, is eliminated from the first

and third, and from the second and third equations,

leaving two equations for b^ and b^ ; eliminating b^ from

these, b^ is found, and thence by substitution, b^ and b^.

It frequently happens that, for the same set of

values of the independent variates, it is desired to

examine the regressions for more than one set of values

of the dependent variate ; as, for example, if for the

same set of rainfall stations we had data for several

different months or years. In such cases it is pre-

ferable to avoid solving the simultaneous equations

afresh on each occasion, but to obtain a simpler

formula which may be applied to each new case.
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This may be done by solving once and for all the

three sets, each consisting of three simultaneous

equations :

^iS(-i'i^)

+

K^{^'i^'^ + ^sSC-^v^'s) = I
>

the three solutions of these three sets of equations may

be written

"2^ ^12' ^22' ^23>

^3~'^13> ^23' ^33-

Once the six values of c are known, then the partial

regression coefficients may be obtained in any particular

case merely by calculating S(:i-'ij), S[x2y), S{xzy) and

substituting in the formulae,

b^= c^^S {x^y) + ^22S ix^y) + ^23S ixzy)

,

b.,= c^^s (,i\f) + ^ggS (^2^) + ^ssS (ysf)-

The method of partial regression is of very wide

application. It is worth noting that the different

independent variates may be related in any way

;

for example, if we desired to express the rainfall as

a linear function of the latitude and longitude, and

as a quadratic function of the altitude, the square

of the altitude would be introduced as a fourth inde-

pendent variate, without in any way disturbing the

process outlined above, save in such points as that

S{xsXi) = S{xs^) would be calculated directly from the

distribution of altitude.
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The analysis of sequences, exhibited in Sections 27

and 28 by means of orthogonal polynomials, could

therefore alternatively have been carried out by the

multiple regression method. In the case specially

treated, in which we have a simple sequence of

observations of a dependent variate, one for each of a

series of equally spaced values of the independent

variate, as in annual returns of economic and socio-

logical data, the use of orthogonal polynomials presents

manifest advantages. When, however, the number of

observations is variable, or the intervals are not equally

spaced, the method of orthogonal polynomials, which

can be generalised to cover such cases, is artificial, and

less direct than the treatment of the data by multiple

regression. The equations of multiple regression are

moreover equally applicable to regression equations

involving not merely powers, but other functions such

as logarithms, exponentials or trigonometric functions

of the dependent variate.

In estimating the sampling errors of partial

regression coefficients we require to know how nearly

our calculated value, Y, has reproduced the observed

values of^ ; as in previous cases, the sum of the squares

of [y — Y) may be calculated by differences, for, with

three variates,

S{y-yy = Sir) - b,S(x,y) - bS{x,y) - b,S{x,y).

If we had n' sets of observations, and/ independent

variates, we should therefore first calculate
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and to test if b^ differed significantly from any hypo-

thetical value, /3i , we should calculate

t=
r^/ql

'

entering the table of t with n = r^ —p — i.

In the practical use of a number of variates it is

convenient to use cards, on each of which is entered the

values of the several variates which may be required.

By sorting these cards in suitable grouping units with

respect to any two variates the corresponding correla-

tion table may be constructed with little risk of error,

and thence the necessary sums of squares and products

obtained.

Ex. 24. Dependence of rainfall on position and

altitude.—The situations of 57 rainfall stations in

Hertfordshire have a mean longitude i2'-4 W., a

mean latitude 51° 48'- 5 N., and a mean altitude 302

feet. Taking as units two minutes of longitude, one

minute of latitude, and twenty feet of altitude, the

following values of the sums of squares and products

of deviations from the mean were obtained :

S(V") = 1934- 1, ^{x^^ = + 1 19-6,

S(;r/) = 2889.5, S(Avri)= +924-1,

500= 1750-8, Six,x,)= -772-2.

To find the multipliers suitable for any particular

set of weather data from these stations, first solve the

equations
1934-1 ^11- 772-2 c^o+ 924-1 ^13=1

-772-2 qj + 2889-5 ^2+ 1 19-6 % = o

+ 924-1 ^11+ 119-6 c^^+i7So-S ^3 = 0;
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using the last equation to eliminate ^13 from the first

two, we have

2532-3 %- 1462-5 ^10=17508

1462-5 ^1^+ 5044-6 q.3 = o;

from these eliminate C12, obtaining

10,635-5 % = 8-832i;

whence

<;il
= -00083043, ^12 = -00024075, ^3= --00045476,

the last two being obtained successively by substitution.

Since the corresponding equations for C12, ^22. %
differ only in changes in the right-hand member, we
can at once write down

- 1462-5 ^12+ 5044'6 ^22= 17508 ;

whence, substituting for ^12 the value already obtained,

^22= -00041686, ^23= —•00015554;

finally, to obtain ^33 we have only to substitute in the

equation
924-1 ^3+ I 19-6 ^23+1750-8 %=I,

giving ^33=00082 1 82.

It is usually worth while, to facilitate the detection

of small errors by checking, to retain as above one

more decimal place than the data warrant.

The partial regression of any particular weather

data on these three variates can now be found with

little labour. In January 1922 the mean rainfall

recorded at these stations w^as 3-87 inches, and the

sums of products of deviations with those of the three
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independent variates were (taking o- 1 inch as the unit

for rain)

S(^-i/)=+ii37-4, S(.r^)= -592-9, S(.r3j)= +891-8
;

multiplying these first by fn, ^12, ^13 ^^^^ adding, we

have for the partial regression on longitude

^i
= - 39624;

similarly using the multipliers ^12, €^2, ^23 we obtain for

the partial regression on latitude

<^2 = -
• II 204 ;

and finally, by using c^^, ^23. ^sz,

-^3
= -30787

gives the partial regression on altitude.

Remembering now the units employed, it appears

that in the month in question rainfall increased by

•0198 of an inch for each minute of longitude west-

wards, it decreased by -oi 12 of an inch for each minute

of latitude northwards, and increased by -00154 of an

inch for each foot of altitude.

Let us calculate to what extent the regression on

altitude is affected by sampling errors. For the 57

recorded deviations of the rainfall from its mean value,

in the units previously used

S(/) = 1786-6;

whence, knowing the values of d^, do, and d^ we

obtain by differences

S(j-Y)2 = 994.9.

To find s^, we must divide this by the number of
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degrees of freedom remaining after fitting a formula

involving three variates—that is, by 53—so that

s"-= 18772;

multiplying this by c^^ and taking the square root,

^x/^= -i242i.

Since n is as high as 53 we shall not be far wrong in

takingf the recrression of rainfall on altitude to be in

working units -308, with a standard error -124; or

in inches of rain per 100 feet as -154, with a standard

error -062.

The importance of the procedure developed in

Ex. 24 lies in the generality of its applications, and

in the fact that the same process is used to give in

succession {a) the best regression equation of a given

form, and {b) the materials for studying the residual

variation, and the precision of the coefficients of our

equation.

We have illustrated and used the fact that the

sampling variance of any coefficient, such as b^, is given

by multiplying the estimated residual variance, r, by

the factor Cy, derived wholly from the independent

variates. In many applications the calculation of the

multipliers c is of further value owing to the fact that

the sampling covariance of any two coefficients, such

as b-^ and b^, is given by multiplying the same estimated

variance by ^12- We may, therefore, without repeating

the primary calculations, review the results from a

variety of different points of view. Although it would

be of little interest in the meteorological problem.
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it will in other cases be frequently important to

compare the magnitude of two different coefficients,

e.g. to ask if b^ is significantly greater than b^. We
need to compare the difference b-^ — b^ with its estimated

standard error, and this will be

^\^\\ ^^12 "•" ^22/

>

since the variance of the differences of any two

quantities must be the sum of their variances, less

twice their covariance, as is apparent from the

algebraic identity

{x—yy= x^— 2xy +y^.

By the use of the c multipliers, we are thus able to

test the significance of the sum or difference, or indeed

any linear function, of two or more regression

coefficients, by calculating its standard error, and

recoornisino- the ratio it bears to its standard error

as ^, having degrees of freedom appropriate to the

estimation of the residual variance.

[Table
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VI

THE CORRELATION COEFFICIENT

30. No quantity Is more characteristic of bio-

metrical work than the correlation coefficient, and no

method has been applied to such various data as

the method of correlation. Observational data in

particular, in cases where we can observe the occur-

rence of various possible contributory causes of

a phenomenon, but cannot control them, has been

given by its means an altogether new importance.

In experimental work proper its position is much

less central ; it will be found useful in the exploratory

stages of an inquiry, as when two factors which had

been thought independent appear to be associated

in their occurrence ; but it is seldom, with controlled

experimental conditions, that it is desired to express

our conclusion in the form of a correlation coefficient.

One of the earliest and most striking successes of

the method of correlation was in the biometrical study

of inheritance. At a time when liothinof was known

of the mechanism of inheritance, or of the structure of

the germinal material, it was possible by this method

to demonstrate the existence of inheritance, and to
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"measure its intensity"; and this in an organism in

which experimental breeding could not be practised,

namely, Man, By comparison of the results obtained

from the physical measurements in man with those

obtained from other organisms, it was established that

man's nature is not less governed by heredity than

that of the rest of the animate world. The scope of

the analogy was further widened by demonstrating

that correlation coefficients of the same maofnitude were

obtained for the mental and moral qualities in man
as for the physical measurements.

These results are still of fundamental importance,

for not only is inheritance in man still incapable of

experimental study, and existing methods of mental

testing are still unable to analyse the mental disposi-

tion, but even with organisms suitable for experiment

and measurement, it is only in the most favourable

cases that the several factors causino- fluctuatinor

variability can be resolved, and their effects studied,

by Mendelian methods. Such fluctuating variability,

with an approximately normal distribution, is character-

istic of the majority of the useful qualities of domestic

plants and animals ; and although there is strong

reason to think that inheritance in such cases is

ultimately Mendelian, the biometrical method of study

is at present alone capable of holding out hopes of

immediate progress.

We give in Table 31 an example of a correlation

table. It consists of a record in compact form of the

stature of 1376 fathers and daughters. (Pearson and

Lee's data.) The measurements are grouped in
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TABLE

H eight of

58-5 59-5 60.5 61-5 62.5 63-5 64-5 65-5 66-5

52-5 •25 •25

53-5 •25 •25

54-5

55-5 I

56.5 •25 •25 ... •25 1-25 •5 I •5

57-5 •25 •25 •5 1-5 4^5 I 1-5 ^•5 2^5

58.5 •25 •75 •5 •75 •75 I 1^75 1-25 5

I/)

u
59-5 •5 I 2 6 4^75 5 6-25 11-75

C
6o-s •75 •75 2-5 8 6-25 12-5 18-25 20-25

.s
1/)

61.5 •5 1-75 2 9-75 II.

5

13 23^75 23^75

<L>

j3
62-5 . .. I 2-25 2 4^5 12 22-75 26 33

63-5 •25 2 6 8.25 II 27-25 35-75

o

'v 64-5 •25 2^5 1-75 3-25 9-25 23 18-75

ffi

65.5 •5 I •5 II 12-25 9-25

66-5 •5 •5 1^5 3-25 7-25 8-75

67-5 I 5^75 7

68-5 •25 •25 •25 •25 1^5

69-5 •25 •25 •25 •25 •25

70-5 ...

71-5 ...

72-5 ...

Total 2 4^5 7^5 14-5 45 51-5 92-5 155 178
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31

Fathers in Inche s.

67-5 68-5 69-5 70-5 71-5 72-5 73-5 74-5 75-5 Total.

•5

... •5

I

•5

-5 -5

4-5

14.5

275 -5 -25 ... ... 15-5

3-5 3-5 2 1-75 -5 48-5

II 9 4-75 2-5 1-25 1-25 99

20-25 16.5 10-25 4-25 3 1-25 141-5

28-25 24-75 14-25 13-75 4-75 -75 -5 190.5

37-25 31-5 26-25 16-25 7-75 1-5 -75 •25 212

28-5 33 34-25 24-5 11-75 5-5 I -25 I 198-5

19-75 30 26.5 22-25 15 4-75 3-75 2 I 159-5

16 26-25 26.75 20-5 18-5 7-75 4-25 -25 -5 142-5

4 14-25 13-25 12 11-25 4-5 3-75 -75 77-5

3 5-5 4-25 5-75 5-25 3-75 2-5 1-5 2 36

•25 I 2-5 6-5 2-25 2-75 2 I 19-5

1-75 •25 4-5 -75 1-25 •75 •25 9-5

-5 -5 •5 1-5 -75 -25 4

I ... ... I

175 199-5 166 135 82-5 36-5 20 6-5 4-5 1376
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inches, and those whose measurement was recorded as

an integral number of inches have been spHt ; thus a

father recorded as of 6"] inches would appear as \ under

66-5 and \ under 67-5. Similarly with the daughters
;

in consequence, when both measurements are whole

numbers the case appears in four quarters. This

gives the table a confusing appearance, since the

majority of entries are fractional, although they repre-

sent frequencies. It is preferable, if bias in measure-

ment can be avoided, to group the observations in

such a way that each possible observation lies wholly

within one group.

The most obvious feature of the table is that cases

do not occur in which the father is very tall and the

daughter very short, and vice versa ; the upper right-

hand and lower left-hand corners of the table are blank,

so that we may conclude that such occurrences are too

rare to occur in a sample of about 1400 cases. The
observations recorded lie in a roughly elliptical figure

lying diagonally across the table. If we mark out the

region in which the frequencies exceed to it appears

that this region, apart from natural irregularities, is

similar, and similarly situated. The frequency of

occurrence increases from all sides to the central region

of the table, where a few frequencies over 30 may
be seen. The lines of equal frequency are roughly

similar and similarly situated ellipses. In the outer

zone observations occur only occasionally, and there-

fore irregularly ; beyond this we could only explore

by taking a much larger sample.

The table has been divided into four quadrants by
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marking out central values of the two variates ; these

values, 67-5 inches for the fathers and 63-5 inches for

the daughters, are near the means. When the table

is so divided it is obvious that the lower right-hand

and upper left-hand quadrants are distinctly more

populous than the other two ; not only are more

squares occupied, but the frequencies are higher. It

is apparent that tall men have tall daughters more

frequently than the short men, and vice versa. The

method of correlation aims at measuring the degree

to which this association exists.

The marginal totals show the frequency distribu-

tions of the fathers and the daughters respectively.

These are both approximately normal distributions,

as is frequently the case with biometrical data collected

without selection. This marks a frequent difference

between biometrical and experimental data. An
experimenter would perhaps have bred from two con-

trasted groups of fathers of, for example, 6'^ and

72 inches in height ; all his fathers would then belong

to these two classes, and the correlation coefficient, if

used, would be almost meaningless. Such an experi-
^

ment would serve to ascertain the regression of

daughter's height on father's height and so to deter-

mine the effect on the daughters of selection applied

to the fathers, but it would not give us the correlation

coefficient, which is a descriptive observational feature

of the population as it is, and may be wholly vitiated

by selection.

Just as normal variation with one variate may

be specified by a frequency formula in which the
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logarithm of the frequency is a quadratic function

of the variate, so with two variates the frequency-

may be expressible in terms of a quadratic function

of the values of the two variates. We then have a

normal correlation surface, for which the frequency

may conveniently be written in the form

I f X , 2pxy y^ \

df= ^ ~2(i-p-)\o-i- <ri<T2 <ri^)dxdy.

27r<T]^(72V I —
fy"

In this expression x and y are the deviations of

the two variates from their means, <j^ and a-.-^ are the

two standard deviations, and p is the correlation

between x and y. The correlation in the above

expression may be positive or negative, but cannot

exceed unity in magnitude ; it is a pure number

without physical dimensions. Ifp = o, the expression

for the frequency degenerates into the product of the

two factors

I --^- I
-^--

y—e ^"^'dx 7=^ -"-'dy,

showinof that the limit of the normal correlation sur-

face, when the correlation vanishes, is merely that of

two normally distributed variates varying in complete

independence. At the other extreme, when /> is + i

or — I, the variation of the two variates is in strict pro-

portion, so that the value of either may be calculated

accurately from that of the other. In other words, we

cease strictly to have two variates, but merely two

measures of the same variable quantity.

If we pick out the cases in which one variate has

an assigned value, we have what is termed an array

;
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the columns and rows of the table may, except as

regards variation within the group limits, be regarded

as arrays. With normal correlation the variation

within an array may be obtained from the general

formula, by giving x a constant value, (say) a, and

dividing by the total frequency with which this value

occurs ; then we have

I
^ ( - l^(Tn\^

df= . . .e~2{i-p"')oA^ ^^} dy,
cr2V 27rV I — p^

showing (i.) that the variation o{y within the array is

normal
;

(ii.) that the mean value of jk for that array is

paa-.yja--^, SO that the regression of^ on x is linear, with

regression coefficient

0-9

and (iii.) that the variance of j/ within the array is

0-2^ (i—p^), and is the same within each array. We
may express this by saying that of the total variance

of jv the fraction (i— p^) is independent of ^, while

the remaining fraction p^, is determined by, or cal-

culable from, the value of ;i;.

These relations are reciprocal ; the regression of :i;

on y is linear, with regression coefficient pa-Jcr2 ; the

correlation p is thus the geometric mean of the two

regressions. The two regression lines representing

the mean value of x for given y, and the mean value of

y for given x, cannot coincide unless p= ±1. The
variation of x within an array in which y is fixed is

normal with variance equal to 0-1^(1— /o^), so that we

may say that of the variance o( x the fraction (i— p^)
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is independent of jk, and the remaining fraction, p"-, is

determined by, or calculable from, the value ofj.

Such are the formal mathematical consequences of

normal correlation. Much biometric material certainly

shows a general agreement with the features to be

expected on this assumption ; though I am not

aware that the question has been subjected to any

sufficiently critical inquiry. Approximate agreement

is perhaps all that is needed to justify the use of the

correlation as a quantity descriptive of the population
;

its efficacy in this respect is undoubted, and it is not

improbable that in some cases it affords, in conjunction

with the means and variances, a complete description

of the simultaneous variation of the variates.

31. The Statistical Estimation of the Correlation

Just as the variance of a normal population in one

variate may be most satisfactorily estimated from the

sum of the squares of deviations from the mean of

the observed distribution, so, as we have seen, the

only satisfactory estimate of the covariance, when the

variates are normally correlated, is found from the sum

of the products. The estimate used for the correlation

is the ratio of the covariance to the geometric mean of

the two variances. If ;i;andjj/ represent the deviations

of the two variates from their means, we calculate the

three statistics s-^, s^, r by the three equations

ns^ = S (.r-) , ns.2^= S (j") , n 7's^s^ = S (.tj) ;

then ^1 and So are estimates of the standard deviations

o"! and 0-2, and r is an estimate of the correlation p.
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Such an estimate is called the correlation coefficient,
^

or the product^ moment correlation, the latter term

referring to the summation of the product terms, xy,

in the last equation. The value used for n should

properly be the number of degrees of freedom, or one

less than the number of pairs of observations in the

sample. As far as the value obtained for r is con-

cerned, however, the value used for 71 is indifferent,

and it is usually convenient to base the calculation

directly on the sums of squares and products without

dividing by n.

The method of calculation might have been derived
j

from the consideration that the correlation of the^^

population is the geometric mean of the two regression /

coefficients ; for our estimates of these two resfressions,

would be

S(,r2j
"""^

S(y) '

so that it is in accordance with these estimates to take

as our estimate of p

SGtj)
r =

VsGr^) . s(y)

'

which is in fact the product moment correlation.

Ex. 25. Parental correlation in statnre.—The

numerical work required to calculate the correlation

coefficient is shown below in Table 32.

The first eight columns require no explanation,

since they merely repeat the usual process of finding

the mean and variance of the two marginal distribu-

tions. It is not necessary actually to find the mean,
M
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by dividing the total of the 3rd column, 480-5, by

1376, since we may work all through with the

undivided totals. The correction for the fact that

our working mean is not the true mean is performed

by subtracting (480-5)^-:- 1376 in the 4th column;

a similar correction appears at the foot of the 8th

column, and at the foot of the last column. The

correction for the sum of products is performed by

subtracting 480-5 x 260-5 ^ 1376. This correction of

the product term may be positive or negative ; if the

total deviations of the two variates are of opposite sign,

the correction must be added. The sum of squares,

with and without Sheppard's adjustment (1376-^12),

are shown separately ; there is no corresponding

adjustment to be made to the product term.

The 9th column shows the total deviations of the

daughter's height for each of the 18 columns in which

Table 31 is divided. When the numbers are small,

these may usually be written down by inspection of

the table. In the present case, where the numbers

are large, and the entries are complicated by quarter-

ing, more care is required. The total of column 9

checks with that of the 3rd column. In order that it

shall do so, the central entry +15-5, which does not

contribute to the products, has to be included. Each

entry in the 9th column is multiplied by the paternal

deviation to give the 10th column. In the present

case all the entries in column 10 are positive ; fre-

quently both positive and negative entries occur, and

it is then convenient to form a separate column for

each. A useful check is afforded by repeating the
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work of the last two columns, interchanging the

variates ; we should then find the total deviation of

the fathers for each array of daughters, and multiply

by the daughters' deviation. The uncorrected totals,

5136-25, should then agree. This check is especially

useful with small tables, in which the work of the

last two columns, carried out rapidly, is liable to

error.

The value of the correlation coefficient, using

Sheppard's adjustment, is found by dividing 5045-28

by the geometric mean of 9209-0 and 10,392-5 ;
its

value is +-5157. If Sheppard's adjustment had not

been used, we should have obtained +-5097. The

difference is in this case not large compared to the

errors of random sampling, and the full eff"ects on the

distribution in random samples of using Sheppard's

adjustment have never been fully examined, but there

can be little doubt that Sheppard's adjustment should

be used, and that its use gives generally an improved

estimate of the correlation. On the other hand, the

distribution in random samples of the uncorrected

value is simpler and better understood, so that the un-

corrected value should be used in tests of significance,

in which the effect of correction need not, of course, be

overlooked. For simplicity, coarse grouping should

be avoided where such tests are intended. The fact

that with small samples the correlation obtained by

the use of Sheppard's adjustment may exceed unity,

illustrates the disturbance introduced into the random

sampling distribution.
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32. Partial Correlations

A great extension of the utility of the idea of

correlation lies in its application to groups of more than

two variates. In such cases, where the correlation

between each pair of three variates is known, it is

possible to eliminate any one of them, and so find

what the correlation of the other two would be in

a population selected so that the third variate was

constant.

When estimates of the three correlations are

obtainable from the same body of data the process of

elimination shown below will give an estimate of the

partial correlation exactly comparable with a direct

estimate.

Ex. 26. Elimination of age iii organic correlations

with groiving children.— For example, it was found

(Mumford and Young's data) in a group of boys of

different ao^es, that the correlation of standino- heis^ht

with chest girth was +-836. One might expect that

part of this association was due to general growth with

increasing age. It would be more desirable for many
purposes to know the correlation between the variates

for boys of a given age ; but in fact only a few of the

boys will be exactly of the same age, and even if we
make age groups as broad as a year, we shall have

in each group many fewer than the total number
measured. In order to utilise the whole material, we
only need to know the correlations of standing height

with age, and of chest girth with age. These are given

as -714 and -708.
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The fundamental formula in calculating partial

correlation coefficients may be written

V =' lO'O —

Here the three variates are numbered i, 2, and 3, and

we wish to find the correlation between i and 2, when

3 is eliminated ; this is called the "partial " correlation

between i and 2, and is designated by i\^.^, to show

that variate 3 has been eliminated. The symbols r-^^,

^13. ^23 indicate the correlations found directly between

each pair of variates ; these correlations being dis-

tinguished as "total" correlations.

Inserting the numerical values in the formula

given we find ^12-3 = -668, showing that when age is

eliminated the correlation, though still considerable,

has been markedly reduced. The mean value stated

by the above-mentioned authors for the correlations

found by grouping the boys by years, is -653, not a

greatly different value. In a similar manner, two or

more variates may be eliminated in succession ; thus

with four variates, we may first eliminate variate 4,

by thrice applying the formula to find ^12.4, ^13-4, and

^23-4. Then applying the same formula again, to

these three new values, we have

x/(i-ri3./)(i-;'o3./)'

The labour increases rapidly with the number of

variates to be eliminated. To eliminate s variates,

the number of operations involved, each one applica-
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tion of the same formula, is ^s(s + i)(s + 2) ; for

values of s from i" to 6 this gives i, 4, 10, 20, 35, 56

operations. Much of this labour may be saved by

using tables of y/ l — r- such as that published by

J. R. Miner.

The meaning of the correlation coefficient should

be borne clearly in mind. The original aim to

measure the "strength of heredity" by this method

was based clearly on the supposition that the whole

class of factors which tend to make relatives alike, in

contrast to the unlikeness of unrelated persons, may
be grouped together as heredity. That this is so for

all practical purposes is, I believe, admitted, but the

correlation does not tell us that this is so ; it merely

tells us the degree of resemblance in the actual popula-

tion studied, between father and daughter. It tells

us to what extent the height of the father is relevant

information respecting the height of the daughter, or,

otherwise interpreted, it tells us the relative importance

of the factors which act alike upon the heights of father

and daughter, compared to the totality of factors at

work. If we know that B is caused by A, together

with other factors independent of A, and that B had

no influence on A, then the correlation between A
and B does tell us how important, in relation to the

other causes at work, is the influence of A. If we have

not such knowledge, the correlation does not tell us

whether A causes B, or B causes A, or whether both

influences are at work, with or without the effects of

common causes.

This is true equally of partial correlations. If we
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know that a phenomenon A is not itself influential in

determining certain other phenomena B, C, D, . . .,

but on the contrary is probably directly influenced by

them, then the calculation of the partial correlations

A with B, C, D, . . ., in each case eliminating the

remaining values, will form a most valuable analysis

of the causation of A. If on the contrary we choose

a group of social phenomena with no antecedent

knowledge of the causation or absence of causation

among them, then the calculation of correlation

coefficients, total or partial, will not advance us a

step towards evaluating the importance of the causes

at work.

The correlation between A and B measures, on a

conventional scale, the importance of the factors which

(on a balance of like and unlike action) act alike in

both A and B, as against the remaining factors which

affect A and B independently. If we eliminate a third

variate C, we are removing from the comparison all

those factors which become inoperative when C is

fixed. If these are only those which affect A and B

independently, then the correlation between A and B,

"whether positive or negative, will be numerically

increased. We shall have eliminated irrelevant dis-

turbing factors, and obtained, as it were, a better

controlled experiment. We may also require to

eliminate C if these factors act alike, or oppositely on

the two variates correlated ; in such a case the varia-

bility of C actually masks the effect we wish to in-

vestigate. Thirdly, C may be one of the chain of

events bv the mediation of which A affects B, or vice
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versa. The extent to which C is the channel through

which the influence passes may be estimated by-

eliminating C ; as one may demonstrate the small

effect of latent factors in human heredity by finding

the correlation of grandparent and grandchild, elimi-

nating the intermediate parent. In no case, however,

can we judge whether or not it is profitable to eliminate

a certain variate unless we know, or are willing to

assume, a qualitative scheme of causation. For the

purely descriptive purpose of specifying a population

in respect of a number of variates, either partial or

total correlations are effective, and correlations of either

type may be of interest.

As an illustration we may consider in what sense the

coefficient of correlation does measure the " strength

of heredity," assuming that heredity only is concerned

in causing the resemblance between relatives ; that

is, that any environmental effects are distributed at

haphazard. In the first place, we may note that if

such environmental effects are increased in magni-

tude, the correlations would be reduced ; thus the

same population, genetically speaking, would show

higher correlations if reared under relatively uniform

nutritional conditions, than they would if the nutri-

tional conditions had been very diverse ; although the

genetical processes in the two cases were identical.

Secondly, if environmental effects were at all influential

(as in the population studied seems not to be indeed the

case), we should obtain higher correlations from a

mixed population of genetically very diverse strains,

than we should from a more uniform population.
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Thirdly, although the influence of father on daughter

is in a certain sense direct, in that the father contri-

butes to the germinal composition of his daughter, we

must not assume that this fact is necessarily the cause

of the whole of the correlation ; for it has been shown

that husband and wife also show considerable resem-

blance in stature, and consequently taller fathers tend

to have taller daughters partly because they choose, or

are chosen by, taller wives. For this reason, for

example, we should expect to find a noticeable positive

correlation between step-fathers and step-daughters
;

also that, when the stature of the wife is eliminated,

the partial correlation between father and daughter

will be found to be lower than the total correlation.

These considerations serve to some extent to define the

sense in which the somewhat vague phrase "strength

of heredity," must be interpreted, in speaking of the

correlation coefficient. It will readily be understood

that, in less well understood cases, analogous considera-

tions may be of some importance, and should if

possible be critically considered.

33. Accuracy of the Correlation Coefficient

With large samples, and moderate or small corre-

lations, the correlation obtained from a sample of n

pairs of values is distributed normally about the true

value p, with variance,

//— I

it is therefore usual to attach to an observed value r,

a standard error (i - r-)jJn - i, or (i - -r)! Jn. This
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procedure is only valid under the restrictions stated

above ; with small samples the value of r is often very-

different from the true value, /?, and the factor i — ?'^,

correspondingly in error ; in addition, the distribution

of r is far from normal, so that tests of significance

based on the large-sample formula are often very

deceptive. Since it is with small samples, less than

100, that the practical research worker ordinarily

wishes to use the correlation coefficient, we shall give

an account of more accurate methods of handling- the

results.

In all cases the procedure is alike for total and

for partial correlations. Exact account may be taken

of the differences in the distributions in the two

cases, by deducting unity from the sample number

for each variate eliminated ; thus a partial correlation

found by eliminating three variates, and based on

data giving 13 values for each variate, is distributed

exactly as is a total correlation based on 10 pairs of

values.

34. The Significance of an Observed Correlation

In testing the significance of an observed correla-

tion we require to calculate the probability that such

a correlation should arise, by random sampling, from

an uncorrected population. If the probability is low

we regard the correlation as significant. The table

of ^ given at the end of the preceding chapter (p. 151)

may be utilised to make an exact test. If ;/ be the

numbers of pairs of observations on which the correla-
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tion is based, and r the correlation obtained, without

using Sheppard's adjustment, then we take

n = n'— 2,

and it may be demonstrated that the distribution of

t so calculated, will agree with that given in the table.

It should be observed that this test, as is obviously-

necessary, is identical with that given in the last

chapter for testing whether or not the linear regression

coefficient differs significantly from zero.

Table V.A. (p. i88) allows this test to be applied

directly from the value of r, for samples up to lOO

pairs of observations. Taking the four definite levels

of significance, represented by P = -io, -05, -02, and

•01, the table shows for each value of n, from i to 20,

and thence by larger steps to 100, the corresponding

values of r.

Ex. 27. Significance of a correlation coefficient

between atctztmn rainfall and ivheat crop.—For the

twenty years 1885- 1904, the mean wheat yield of

Eastern England was found to be correlated with the

autumn rainfall; the correlation found was —-629.

Is this value significant ? We obtain in succession

I
—;-- = •6044,

Vi-r^ = 7774.

r/-v/ 1 — r- = — • 809 1

,

^=-3-433-

For n= 18, this shows that P is less than -oi, and the

correlation is definitely significant. The same con-
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elusion may be read off at once from Table V.A.

entered with 7^=18.

If we had applied the standard error,

I — r^

\/n — I

we should have

^=— =7:^72 V^^ -I = -4-536,

a much greater value than the true one, very much
exaggerating the significance. In addition, assuming

that r was normally distributed {11 = co ), the signifi-

cance of the result would be even further exaofo-erated.

This illustration will suffice to show how deceptive, in

small samples, is the use of the standard error of the

correlation coefficient, on the assumption that it will

be normally distributed. Without this assumption

the standard error is without utility. The misleading

character of the formula is increased if ;/ is substituted

for n' — I, as is often done. Judging from the normal

deviate 4-536, we should suppose that the correlation

obtained would be exceeded in random samples from

uncorrelated material only 6 times in a million trials.

Actually it would be exceeded about 3000 times in

a million trials, or with 500 times the frequency

supposed.

It is necessary to warn the student emphatically

against the misleading character of the standard error

of the correlation coefficient deduced from a small

sample, because the principal utility of the correlation

coefficient lies in its application to subjects of which

little is known, and upon which the data are rela-
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tively scanty. With extensive material appropriate

for biometrical investigations there is Httle dancrer

of false conclusions being drawn, whereas with the

comparatively few cases to which the experimenter

must often look for guidance,- the uncritical applica-

tion of methods standardised in biometry, must be so

frequently misleading as to endanger the credit of this

most valuable weapon of research. It is not true, as

the example above shows, that valid conclusions cannot

be drawn from small samples ; if accurate methods

are used in calculating the probability, we thereby

make full allowance for the size of the sample, and

should be influenced in our judgment only by the value

of the probability indicated. The great increase of

certainty which accrues from increasing data is

reflected in the value of P, if accurate methods are

used.

Ex. 28. Significance of a partial correlation

coefficient.— In a group of 32 poor law relief unions.

Yule found that the percentage change from 1881 to

1 89 1 in the percentage of the population in receipt of

relief was correlated with the corresponding change in

the ratio of the numbers oriven outdoor relief to the

numbers relieved in the workhouse, when two other

variates had been eliminated, namely, the correspond-

ing changes in the percentage of the population over

65, and in the population itself

The correlation found by Yule after eliminating

the two variates was +-457 ; such a correlation is

termed a partial correlation of the second order. Test

its siofnificance.
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It has been demonstrated that the distribution in

random samples of partial correlation coefficients may-

be derived from that of total correlation coefficients

merely by deducting from the number of the sample,

the number of variates eliminated. Deducting 2 from

the 32 unions used, we have 30 as the effective number

of the sample ; hence
« = 28.

Calculating t from r as before, we find

^=2719,

whence it appears from the table that P lies between

•02 and -oi. The correlation is therefore significant.

This, of course, as in other cases, is on the assump-

tion that the variates correlated (but not necessarily

those eliminated) are normally distributed ; economic

variates seldom themselves give normal distributions,

but the fact that we are here dealing with rates of

change makes the assumption of normal distribution

much more plausible. The values given in Table V. A.

for 7^ = 25, and 7^ = 30, give a sufficient indication of

the level of significance attained by this observation.

35. Transformed Correlations

In addition to testing the sigrnificance of a correla-

tion, to ascertain if there is any substantial evidence of

association at all, it is also frequently required to

perform one or more of the following operations, for

each of which the standard error would be used in the

case of a normally distributed quantity. With cor-

relations derived from large samples the standard
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error may, therefore, be so used, except when the

correlation approaches + i ; but with small samples

such as frequently occur in practice, special methods

must be applied to obtain reliable results.

(i.) To test if an observed correlation differs

significantly from a given theoretical value.

(ii.) To test if two observed correlations are

significantly different,

(iii.) If a number of independent estimates of a

correlation are available, to combine them

into an improved estimate,

(iv.) To perform tests (i.) and (ii.) with such

averacre values.

Problems of these kinds may be solved by a method

analogous to that by which we have solved the problem

of testine the significance of an observed correlation.

In that case we were able from the given value r to

calculate a quantity t which is distributed in a known

manner, for which tables were available. The trans-

formation led exactly to a distribution which had

already been studied. The transformation which we

shall now employ leads approximately to the normal

distribution in which all the above tests may be carried

out without difficulty. Let

- = Mlog,(i+0-log.(i-0},

then as r changes from o to \, z will pass from o to oo .

For small values of r, z is nearly equal to r, but as

r approaches unity, z increases without limit. For

negative values of r, z is negative. The advantage of
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this transformation of r into z lies in the distribution of

these two quantities in random samples. The standard

deviation of r depends on the true value of the corre-

lation, p, as is seen from the formula

i-p^

sf n —

Since p is unknown, we have to substitute for it the

observed value r, and this value will not, in small

samples, be a very accurate estimate of p. The

standard error of z is simpler in form, approximately

V « - 3

and is practically independent of the value of the

correlation in the population from which the sample is

drawn.

In the second place the distribution of r is not

normal in small samples, and even for large samples it

remains far from normal for hiofh correlations. The

distribution of z is not strictly normal, but it tends to

normality rapidly as the sample is increased, whatever

may be the value of the correlation. We shall give

examples to test the effect of the departure of the z

distribution from normality.

Finally the distribution of r changes its form

rapidly as p is changed ; consequently no attempt can

be made, with reasonable hope of success, to allow for

the skewness of the distribution. On the contrary, the

distribution of z is nearly constant in form, and the

accuracy of tests may be improved by small correc-

tions for departure from normality ; such corrections

N
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are, however, too small to be of practical importance,

and we shall not deal with them. The simple assump-

tion that z is normally distributed will in all ordinary-

cases be sufficiently accurate.

These three advantages of the transformation from

r \.o 2 may be seen by comparing Figs. 7 and 8. In

Fig. 7 are shown the actual distributions of r, for 8

pairs of observations, from populations having cor-

relations o and 0-8 ; Fig. 8 shows the corresponding

distribution curves for z. The two curves in Fig. 7

are widely different in their modal heights ; both are

distinctly non-normal curves; in form also they are

strongly contrasted, the one being symmetrical, the

other highly unsymmetrical. On the contrary, in

Fig. 8 the two curves do not differ greatly in height
;

although not exactly normal in form, they come so

close to it, even for a small sample of 8 pairs of observa-

tions, that the eye cannot detect the difference ; and

this approximate normality holds up to the extreme

limits p= + I. One additional feature is brought out

by Fig. 8 ; in the distribution for /o = o-8, although the

curve itself is as symmetrical as the eye can judge of,

yet the ordinate of zero error is not centrally placed.

The figure, in fact, reveals the small bias which is

introduced into the estimate of the correlation co-

efficient as ordinarily calculated : we shall treat

further of this bias in the next section, and in the

following chapter shall deal with a similar bias intro-

duced in the calculation of intraclass correlations.

To facilitate the transformation we give in Table

V.B (p. 189) the values of r corresponding to values of
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2", proceeding by intervals of -oi, from o to 3. In the

VALUE OF r OBSERVED

Fig. 7.

P= 0.8

VALUE OF z OBSERVED

Fig. 8

-10 b;

D

04 01

earlier part of this table it will be seen that the values

of r and z do not differ greatly ; but with higher cor-
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relations small changes in r correspond to relatively-

large changes in ^. In fact, measured on the ^-scale,

a correlation of -99 differs from a correlation -95

by more than a correlation -6 exceeds zero. The

values of 2 give a truer picture of the relative import-

ance of correlations of different sizes, than do the

values of r.

To find the value of z corresponding to a given

value of r, say -6, the entries in the table lying on

either side of -6 are first found, whence we see at once

that z lies between -69 and -70 ; the interval between

these entries is then divided proportionately to find

the fraction to be added to 69. In this case we

have 20/64, or -31, so that £ = •6931. Similarly, in

finding the value of r corresponding to any value

of z, say -9218, we see at once that It lies between

•7259 and -7306; the difference is 47, and 18 per

cent, of this gives 8 to be added to the former value,

giving us finally ^ = -7267. The same table may

thus be used to transform r Into z, and to reverse the

process.

Ex. 29. Test of the approximate normality of the

distribution of z.—In order to illustrate the kind of

accuracy obtainable by the use of z, let us take the

case that has already been treated by an exact method

in Ex. 27. A correlation of --629 has been obtained

from 20 pairs of observations ; test its significance.

For r= —-629 we have, using either a table of

natural logarithms, or the special table for z, z= — -7398.

To divide this by Its standard error is equivalent to

multiplying it by Vi?- This gives -3-050, which we



THE CORRELATION COEFFICIENT i8i

interpret as a normal deviate. From the table of

normal deviates it appears that this value will be

exceeded about 23 times in 10,000 trials. The true

frequency, as we have seen, is about 30 times in

10,000 trials. The error tends only slightly to

exagfoferate the significance of the result.

Ex. 30. FiLrther test of the normality of the

distribution of z.—A partial correlation +-457 was

obtained from a sample of 32, after eliminating two

variates. Does this differ significantly from zero ?

Here ^ = -4935 ;
deducting the two eliminated variates

the effective size of the sample is 30, and the standard

error of z is 1/^27 ; multiplying z by ^^727, we have as

a normal variate 2-564. Table I. (or the bottom line

of Table IV.) shows, as before, that P is just over -oi.

There is a slight exaggeration of significance, but it is

even slighter than in the previous example.

These examples indicate that the 2 transformation

will give a variate which, for most practical purposes,

may be taken to be normally distributed. In the

case of simple tests of significance the use of the table

of t is to be preferred ; in the following examples

this method is not available, and the only method

available which is both tolerably accurate and suffi-

ciently rapid for practical use lies in the use of z.

Ex. 31. Significance of deviation froin expecta-

tion of an observed correlation coefficient. — In a

sample of 25 pairs of parent and child the correlation

was found to be -60. Is this value consistent with the

view that the true correlation in that character was

•46?
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The first step is to find the difference of the corre-

sponding values of z. This is shown below :

TABLE 33

^ z.

Sample value

Population value .

Difference

•60

.46

•6931

•4973

.1958

To obtain the normal deviate we multiply by J22,

and obtain -918. The deviation is less than the

standard deviation, and the value obtained is therefore

quite in accordance with the hypothesis.

Ex. 32. Significance of difference between two

obseiued correlations. — Of two samples the first,

of 20 pairs, gives a correlation -6, the second, of 25

pairs, gives a correlation -8 : are these values signi-

ficantly different ?

In this case we require not only the difference of

the values of z, but the standard error of the difference.

The variance of the difference is the sum of the

reciprocals of 17 and 22 ; the w^ork is shown below:

TABLE 34
'

r. z. «'-3- Reciprocal.

I St sample

2nd sample

Difference .

.60

•80

.6931 1

1-0986

17

22

Sum .

•058S2

•04545

•4055 ±-3230 •10427

VC''
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The standard error which is appended to the

difference of the values of z is the square root of the

variance found on the same line. The difference does

not exceed twice the standard error, and cannot there-

fore be judged significant. There is thus no sufficient

evidence to conclude that the two samples are not

drawn from equally correlated populations.

Ex. 2)Z- Combination of vahtesfrom small samples.

—Assuming that the two samples in the last example

were drawn from equally correlated populations,

estimate the value of the correlation.

The two values of z must be given weight in-

versely proportional to their variance. We therefore

multiply the first by 17, the second by 22 and add,

dividing the total by 39. This gives an estimated

value of z for the population, and the corresponding

value of r may be found from the table.

TABLE 35

r. z. «-3- («-3>.

I St sample

2nd sample

•60

•80

.6930

1-0986

17

22

11-7810

24-1692

•7267 •9218 39 35-9502

The weighted average value oi z is -9218, to which

corresponds the value ^=-7267; the value of z so

obtained may be regarded as subject to normally

distributed errors of random sampling with variance

equal to 1/39. The accuracy is therefore equivalent
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to that of a single value obtained from 42 pairs of

observations. Tests of significance may thus be

applied to such averaged values of z, as to individual

values.

36. Systematic Errors

In connexion with the averaging of correlations

obtained from small samples it is worth while to

consider the effects of two classes of systematic errors,

which, although of little or no importance when single

values only are available, become of increasing im-

portance as larger numbers of samples are averaged.

The value of z obtained from any sample is an

estimate of a true value, ^, belonging to the sampled

population, just as the value of r obtained from a

sample is an estimate of a population value, p. If the

method of obtainino; the correlation were free from

bias, the values of z would be normally distributed

about a mean z, which would agree in value with ^.

Actually there is a small bias which makes the mean

value of z somewhat greater numerically than X^\

thus the correlation, whether positive or negative, is

slightly exaggerated. This bias may effectively be

corrected by subtracting from the value of z the

correction

P
2(;/-iy

For single samples this correction is unimportant,

being small compared to the standard error oi z. For

example, if w'=io, the standard error of ^^ is •^I'^y

while the correction is /0/18 and cannot exceed -056.
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If, however, z were the mean of 1000 such values of ^,

derived from samples of 10, the standard error of 2

is only -012, and the correction, which is unaltered by-

taking the mean, may well be of great importance.

The second type of systematic error is that intro-

duced by neglecting Sheppard s adjustment. In calcu-

lating the value z, we must always take the value of

r found without using Sheppard's adjustment, since

the latter complicates the distribution.

But the omission of Sheppard's adjustment intro-

duces a systematic error, in the opposite direction to

that mentioned above ; and which, though normally

very small, appears in large as well as in small samples.

In the case of averaofinor the correlations from a number

of coarsely grouped small samples, the average z should

be obtained from values of r found without Sheppard's

adjustment, and to the result a correction, representing

the average effect of Sheppard's adjustment, may be

applied.

37. Correlation between Series

The extremely useful case in which it is required to

find the correlation between two series of quantities,

such as annual figures, arranged in order at equal

intervals of time, may be regarded as a case of partial

correlation, although it may be treated more directly

• by the method of fitting curved regression lines given

in the last chapter (p. 133).

If, for example, we had a record of the number

of deaths from a certain disease for successive years,

and wished to study if this mortality were associated
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with meteorological conditions, or the incidence of

some other disease, or the mortality of some other age

group, the outstanding difficulty in the direct applica-

tion of the correlation coefficient is that the number

of deaths considered probably exhibits a progressive

change during the period available. Such changes

may be due to changes in the population among which

the deaths occur, whether it be the total population

of a district, or that of a particular age group, or

to changes in the sanitary conditions in which the

population lives, or in the skill and availability of

medical assistance, or to changes in the racial or

genetic composition of the population. In any case

it is usually found that the changes are still apparent

when the number of deaths is converted into a death-

rate on the existing population in each year, by which

means one of the direct effects of changing population

is eliminated.

If the progressive change could be represented

effectively by a straight line it would be sufficient to

consider the time as a third variate, and to eliminate

it by calculating the corresponding partial correlation

coefficient. Usually, however, the change is not so

simple, and would need an expression involving the

square and higher powers of the time adequately to

represent it. The partial correlation required is one

found by eliminating not only t, but f^, f, t^, . . .,

regarding these as separate variates ; for if we have

eliminated all of these up to (say) the 4th degree,

we have incidentally eliminated from the correlation

any function of the time of the 4th degree, including
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that by which the progressive change is best repre-

sented.

This partial correlation may be calculated directly

from the coefficients of the regression function obtained

as in the last chapter (p. 136). If j>' andy are the two

quantities to be correlated, we obtain for y the co-

efficients A, B, C, . . ., and for y the corresponding

coefficients A', B', C, . . . ; the sum of the squares of

the deviations of the variates from the curved regres-

sion lines are obtained as before, from the equations

S(7

-

Yf = S{f-) - n'A^

-

'''^'''^^- ^^
B^ - . . .,

while the sum of the products may be obtained from

the similar equation

S{(j-Y)(y-Y0} = SOy)-;/AA'-^^^^^^BB'-. . .;

the required partial correlation being, then,

S!(j.-Y)(y-Y')}

x/S(j-Y)2.S(y-Y'/

In this process the number of variates eliminated

is equal to the degree of / to which the fitting has been

carried ; it will be understood that both variates must

be fitted to the same degree, even if one of them is

capable of adequate representation by a curve of lower

degree than is the other.

[Table
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TABLE V.A.—Values of the Correlation Coefficient

FOR different LEVELS OF SIGNIFICANCE

«. P = .i. •05. •02. •01.

I 98769 996917 9995066 9998766
2 90000 95000 98000 990000

3 8054 8783 93433 95873

4 7293 8114 8822 91720

5 6694 7545 8329 8745
6 6215 7067 7887 8343

7 5822 6664 7498 7977
8 5494 6319 7155 7646

9 5214 6021 6851 7348
lO 4973 5760 6581 7079

II 4762 5529 6339 6835
12 4575 5324 6120 6614

13 4409 5139 5923 6411

14 4259 4973 5742 6226

15 4124 4821 5577 6055
16 4000 4683 5425 5897
17 3887 4555 •5285 5751
18 •3783 4438 5155 5614
19 3687 4329 5034 5487
20 •3598 .4227 4921 5368

25 •3233 .3809 •4451 .4869

30 •2960 •3494 •4093 4487

35 •2746 •3246 .3810 4182
40 •2573 •3044 •3578 •3932

45 •2428 •2875 •3384 •3721

50 • 2306 •2732 .3218 3541
60 •2108 •2500 •2948 •3248

70 1954 •2319 •2737 .3017

80 1829 2172 •2565 •2830

90 •1726 •2050 •2422 •2673

100 •1638 .1946 •2301 •2540

For a total correlation, « is 2 less than the number of pairs in the

sample ; for a partial correlation, the number of eliminated variates also

should be subtracted.
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VII

INTRACLASS CORRELATIONS AND THE
ANALYSIS OF VARIANCE

38. A type of data, which is of very common occur-

rence, may be treated by methods closely analogous

to that of the correlation table, while at the same time

it may be more usefully and accurately treated by the

analysis of variance, that is by the separation of the

variance ascribable to one group of causes, from the

variance ascribable to other groups. We shall in this

chapter treat first of those cases, arising in biometry, in

which the analogy with the correlations treated in the

last chapter may most usefully be indicated, and then

pass to more general cases, prevalent in experimental

results, in which the treatment by correlation appears

artificial, and in which the analysis of variance appears

to throw a real light on the problems before us. A
comparison of the two methods of treatment illustrates

the general principle, so often lost sight of, that tests of

significance, in so far as they are accurately carried

out, are bound to agree, whatever process of statistical

reduction may be employed.

If we have measurements of ?/ pairs of brothers,

we may ascertain the correlation between brothers in

190
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two slightly different ways. In the first place we may

divide the brothers into two classes, as for instance

elder brother and younger brother, and find the corre-

lation between these two classes exactly as we do with

parent and child. If we proceed in this manner we

shall find the mean of the measurements of the elder

brothers, and separately that of the younger brothers.

Equally the standard deviations about the mean are

found separately for the two classes. The correlation

so obtained, being that between two classes of measure-

ments, is termed for distinctness an interclass correla-

tion. Such a procedure would be imperative if the

quantities to be correlated were, for example, the

ages, or some characteristic sensibly dependent upon

age, at a fixed date. On the other hand, we may not

know, in each case, which measurement belongs to the

elder and which to the younger brother, or, such a

distinction may be quite irrelevant to our purpose ; in

these cases it is usual to use a common mean derived

from all the measurements, and a common standard

deviation about that mean. If x^, x'^ ; x.2, x^2'> ' • -5

x^', x',,, are the pairs of measurements given, we

calculate

x=—,S(x+x'),
2n

2n^ ^

When this is done, r is distinguished as an intra-

class correlation, since we have treated all the brothers
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as belono'ina' to the same class, and havino- the same

mean and standard deviation. The intraclass correla-

tion, when its use is justified by the irrelevance of any-

such distinction as age, may be expected to give a more

accurate estimate of the true value than does any of

the possible interclass correlations derived from the

same material, for we have used estimates of the mean

and standard deviation founded on 211! instead of

on 11! values. This is in fact found to be the case
;

the intraclass correlation is not an estimate equivalent

to an interclass correlation, but is somewhat more

accurate. The error distribution is, however, as we

shall see, affected also in other ways, which require the

intraclass correlation to be treated separately.

The analogy of this treatment with that of inter-

class correlations may be further illustrated by the

construction of what is called a symmetrical table.

Instead of entering each pair of observations once

in such a correlation table, it is entered twice, the

co-ordinates of the two entries being, for instance,

(jTi, ^i) and (^1, a'l). The total entries in the table

will then be 2;/, and the two marginal distributions

will be identical, each representing the distribution of

the whole 211! observations. The equations given,

for calculating the intraclass correlation, bear the same

relation to the symmetrical table as the equations for

the interclass correlation bear to the corresponding

unsymmetrical table with 11! entries. Although the

intraclass correlation is somewhat the more accurate,

it is by no means so accurate as is an interclass correla-

tion with 2n' independent pairs of observations.
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The contrast between the two types of correlation

becomes more obvious when we have to deal not with

pairs, but with sets of three or more measurements
;

for example, if three brothers in each family have been

measured. In such cases also a symmetrical table

can be constructed. Each trio of brothers will pro-

vide three pairs, each of which gives two entries, so

that each trio provides 6 entries in the table. To

calculate the correlation from such a table is equivalent

to the following equations :

x =—-,5 (x+X + x"),

s^ = :Ls{{x-xf+{x'-xf+{x"-xf],

7-V

In many instances of the use of intraclass cor-

relations the number of observations in the same

"family," is large, as when the resemblance between

leaves on the same tree is studied by picking 26 leaves

from a number of different trees, or when 100 pods

are taken from each tree in another group of cor-

relation studies. If >^ is the number in each family,

then each set of ^ values will provide k(k— i) values

for the symmetrical table, which thus may contain an

enormous number of entries, and be very laborious to

construct. To obviate this difficulty Harris introduced

an abbreviated method of calculation by which the

value of the correlation given by the symmetrical table

may be obtained directly from two distributions

:
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(i.) the distribution of the whole group of kii! observa-

tions, from which w^e obtain, as above, the values of

X and s\ (ii.) the distribution of the ii! means of

families. If x-^, x.2, . . ., x,,' represent these means

each derived from /k values, then

^S(x —x)- — n's^ {i-\-{k—i )r}

is an equation from which can be calculated the value

of r, the intraclass correlation derived from the sym-

metrical table. It is instructive to verify this fact,

for the case /^ = 3, by deriving from it the full formula

for r sciven above for that case.

One salient fact appears from the above relation
;

the sum of a number of squares, and therefore the

left hand of this equation, is necessarily positive.

Consequently r cannot have a negative value less than

— i/(/^— i). There is no such limitation to positive

values, all values up to 4-1 being possible. Further,

if k, the number in any family, is not necessarily less

than some fixed value, the correlation in the population

cannot be negative at all. For example, in card games,

where the number of suits is limited to four, the corre-

lation between the number of cards in different suits

in the same hand may have negative values down to

— ^ ; but there is probably nothing in the production of

a leaf or a child which necessitates that the number in

such a family should be less than any number however

great, and in the absence of such a necessary restric-

tion we cannot expect to find negative correlations

within such families. This is in the sharpest contrast

to the unrestricted occurrence of nesfative values
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among interclass correlations, and it is obvious, since

the extreme limits of variation are different in the two

cases, that the distribution of values in random samples

must be correspondingly modified.

39. Sampling Errors of Intraclass Correlations

The case k=2, which is closely analogous to an

interclass correlation, may be treated by the trans-

formation previously employed, namely

^ = i{Iog(i+r)-Iog(i-r)];

z is then distributed very nearly in a normal distribu-

tion, the distribution is wholly independent of the

value of the correlation p in the population from which

the sample is drawn, and the variance of z conse-

quently depends only on the size of the sample,

being given by the formula

;/-3/2"

The transformation has, therefore, the same ad-

vantages in this case as for interclass correlations.

It will be observed that the slightly greater accuracy

of the intraclass correlation, compared to an interclass

correlation based on the same number of pairs, is

indicated by the use of v! — 3/2 in place of ;/ — 3. The

advantage is, therefore, equivalent to i^ additional

pairs of observations. A second difference lies in the

bias to which such estimates are subject. For inter-

class correlations the value found in samples, whether
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positive or negative, is exaggerated to the extent of

requiring a correction,

P
2 (;/-!)'

to be applied to the average value of 2. With intra-

class correlations the bias is always in the negative

direction, and is independent of p ; the correction

necessary in these cases being +J-log

—

-, , or,

approximately, +

—

-,
. This bias is characteristic

of intraclass correlations for all values of k, and

arises from the fact that the symmetrical table does

not provide us with quite the best estimate of the

correlation.

The effect of the transformation upon the error

curves may be seen by comparing Figs. 9 and 10.

Fig. 9 shows the actual error curves of r derived from a

symmetrical table formed from 8 pairs of observations,

drawn from populations having correlation o and o-8.

Fig. 10 shows the corresponding error curves for the

distribution of z. The three chief advantages noted

in Figs. 7 and 8 are equally visible in the comparison

of Figs. 9 and 10. Curves of very unequal variance

are replaced by curves of equal variance, skew curves

by approximately normal curves, curves of dissimilar

form by curves of similar form. In one respect the

effect of the transformation is more perfect for the

intraclass than it is for the interclass correlations, for,

although in both cases the curves are not precisely

normal, with the intraclass correlations they are
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entirely constant in variance and form, whereas with

•

1 1 ! '

1

1

.1

-02 O 02 0-4

VALUE OF r OBSERVED

Fig. 9.

O -0-5 O OS

VALUE OF z OBSERVED

Fig. 10.

interclass correlations there is a slight variation in both

respects, as the correlation in the population is varied.
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Fig. lo shows clearly the effect of the bias introduced

in estimating the correlation from the symmetrical

table ; the bias, like the other features of these curves,

is absolutely constant in the scale of z.

Ex, 34. Accuracy of an observed intraclass cor-

relation.—An intraclass correlation -6000 is derived

from 13 pairs of observations : estimate the correlation

in the population from which it was drawn, and find

the limits within which it probably lies.

Placing the values of r and z in parallel columns,

we have

TABLE 36

r. z.

Calculated value + •6000 + -6930
Correction + -0400

Estimate + •6249 + -733°
Standard error ± -2949
Upper limit . + •8675 + 1-3228

Lower limit . + •1421 + -1432

The calculation is carried though in the z column,

and the corresponding values of r found as required

from the Table V. B (p. 189). The value of r is

obtained from the symmetrical table, and the corre-

sponding value of z calculated. These values suffer

from a small negative bias, and this is removed by

addincr to z the correction ; the unbiased estimate of 2

is therefore -7330, and the corresponding value of r,

•6249, is an unbiased estimate, based upon the sample,

of the correlation in the population from which the

sample was drawn. To find the limits within which this
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correlation may be expected to He, the standard error

of z is calculated, and twice this value is added and

subtracted from the estimated value to obtain the

values of z at the upper and lower limits. From
these we obtain the corresponding values of r. The
observed correlation must in this case be judged

significant, since the lower limit is positive ; we shall

seldom be wrong in concluding that it exceeds •14

and is less than -'^'j.

The sampling errors of the cases in which k

exceeds 2 may be more satisfactorily treated from the

standpoint of the analysis of variance ; but for those

cases in which it is preferred to think in terms of

correlation, it is possible to give an analogous trans-

formation suitable for all values of k. Let

a transformation, which reduces to the form previously

used when k=2. Then, in random samples of sets of

k observations the distribution of errors in z is inde-

pendent of the true value, and approaches normality

as 11! is increased, though not so rapidly as when k=2.

The variance of z may be taken, when n' is sufficiently

large, to be approximately

2{k—\){ll —2)'

To find r for a given value of z in this transforma-

tion, Table V. B may still be utilised, as in the

following example.

Ex. 35. Extended use of Table V.B.—Find the
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r corresponding to ^ = + 1-0605, whenvalue of

k= 100.

First deduct from the given value of z half the

natural logarithm of {k—\)\ enter the difference as

*'^" in the table and multiply the corresponding

value of " r " by y^ ; add k — 2 and divide by 2(y^— i).

The numerical work is shown below :

TABLE 37

z .

iIog(Z'-i) = 41og99

"^"
"r"
/&'V"='ioo"r"- •

k-1 . . .

. +1-0605
2-2975

. - 1-2370
--8446

. -84-46

. 98

2r{k- i) = i98r
r .

• 13-54
+ -0684

Ex. 36. Significance of intraclass correlation

from large samples.—A correlation +-0684 was found

between the "ovules failing" in the different pods

from the same tree of Cercis Canadensis, 100 pods

were taken from each of 60 trees (Harris's data).

Is this a significant correlation?

As the last example shows, z = 1-0605 ; the standard

error of z is -0933. The value of z exceeds its standard

error over 1 1 times, and the correlation is undoubtedly

significant.

When 71! is sufficiently large we have seen that,

subject to somewhat severe limitations, it is possible

to assume that the interclass correlation is normally

distributed in random samples with standard error

I —

sf n —



INTRACLASS CORRELATIONS 201

The corresponding formula for intraclass correlations,

using k m 3. class, is

\/hk{k—l)H'

The utility of this formula is subject to even more

drastic limitations than is that for the interclass correla-

tion, for n' is more often small in the former case. In

addition, the regions for which the formula is inappli-

cable, even when n^ is large, are now not in the neigh-

bourhood of + I, but in the neighbourhood of + i and

_——. When k is large the latter approaches zero,
ri — I

SO that an extremely skew distribution for r is found

not only with high correlations but also with very low

ones. It is therefore not usually an accurate formula

to use in testing significance. This abnormality in

the neighbourhood of zero is particularly to be noticed,

since it is only in this neighbourhood that much is to

be gained by taking high values of k. Near zero, as

the formula above shows, the accuracy of an intraclass

correlation is with large samples equivalent to that of

^k{k-i)n' independent pairs of observations; which

gives to high values of k an enormous advantage in

accuracy. For correlations near -5, however great k

be made, the accuracy is no higher than that obtain-

able from gn'ji pairs ; while near + i it tends to be

no more accurate than would be n' pairs.
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40. Intraclass Correlation as an Example of the Analysis

of Variance

A very great simplification is introduced into

questions involving intraclass correlation when we

recognise that in such cases the correlation merely

measures the relative importance of two groups of

factors causinor variation. We have seen that in theo
practical calculation of the intraclass correlation we

merely obtain the two necessary quantities kns^ and

ns^ ^y\ -{ (k — \)r^ , by equating them to the two

quantities
k>i' n'

S {x— xf-, kS {x — xf,
1 1 •''

of which the first is the sum of the squares {kn' in

number) of the deviations of all the observations from

their general mean, and the second is k times the sum

of the squares of the n' deviations of the mean of

each family from the general mean. Now it may
easily be shown that

kn' n' M
^{x-xf = k^{x-5cf^^{x-x^\
1 1 ' 1

'

in which the last term is the sum of the squares of

the deviations of each individual measurement from

the mean of the family to which it belongs. The

following table summarises these relations by showing

the number of degrees of freedom involved in each

case, and, in the last column, the interpretation put

upon each expression in the calculation of an intraclass

correlation from a symmetrical table.
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TABLE 38

Degrees of

Freedom.
Sum of Squares.

Within families .

Between families

Total

«'(/&-!)

«'-I

six-x^y

^kx^-xY-

Tlk- I

kn'

Six-xY
1

ns^k

It will now be observed that 2 of the preceding

section is, apart from a constant, half the difference of

the logarithms of the two parts into which the sum of

squares has been analysed. The fact that the form

of the distribution of 2 in random samples is inde-

pendent of the correlation of the population sampled,

is thus a consequence of the fact that deviations of

the individual observations from the means of their

families are independent of the deviations of those

means from the general mean. The data provide us

with independent estimates of two variances ; if these

variances are equal the correlation is zero ; if our

estimates do not differ significantly the correlation

is insignificant. If, however, they are significantly

different, we may if we choose express the fact in terms

of a correlation.

The interpretation of such an inequality of variance

in terms of a correlation may be made clear as follows,

by a method which also serves to show that the inter-

pretation made by the use of the symmetrical table is
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slightly defective. Let a quantity be made up of two

parts, each normally and independently distributed
;

let the variance of the first part be A, and that of the

second part, B ; then it is easy to see that the variance

of the total quantity is A + B. Consider a sample of

f^ values of the first part, and to each of these add a

sample of k values of the second part, taking a fresh

sample of k in each case. We then have ii' families of

values with k in each family. In the infinite population

from which these are drawn the correlation between

pairs of members of the same family will be

A
A+ B"

From such a set of kii! values we may make

estimates of the values of A and B, or in other words

we may analyse the variance into the portions contri-

buted by the two causes ; the intraclass correlation

will be merely the fraction of the total variance due

to that cause which observations in the same family

have in common. The value of B may be estimated

directly, for variation within each family is due to this

cause alone, consequently

kn'

^{x-x^^= n{k-\)?>.

The mean of the observations in any family is

made up of two parts, the first part with variance A,

and a second part, which is the mean of k values

of the second parts of the individual values, and

has therefore a variance B//^ ; consequently from
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the observed variation of the means of the families,

we have

kS {x^ -xf= («' _ I
) (/&A + B).

Table 38 may therefore be rewritten, writing in the

last column s^ for A + B, and r for the unbiased

estimate of the correlation.

TABLE 39

Degrees of

Freedom.
Sum of
Squares.

Within
families

Between
families

kn'

n'

«'(/§ - l)B = n's\k - i)(i - r)

(«' - l)(M + B) = («' - 1)52(1 + ik- I);-}

Total n'k - I

kn'

Six- xf
1

(«' - I)M + («'/5 - I )B = s''~{nk - I -(/(- I );-}

Comparing the last column with that of Table 38

it is apparent that the difference arises solely from

putting n' for n in the first line and 7/ — i for n in the

second; the ratio between the sums of squares is altered

in the ratio ;/ : {11' — i), which precisely eliminates the

negative bias observed in z derived by the previous

method. The error of that method consisted in

assuming that the total variance derived from ;/ sets

of related individuals could be accurately estimated by

equating the sum of squares of all the individuals from

their mean, to iis^k just as if they were all unrelated

;

this error is unimportant when // is large, as it usually

is when k= 2, but with higher values of k, data may
be of great value even when ;/ is very small, and in
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such cases serious discrepancies arise from the use of

the uncorrected values.

The direct test of the significance of an intraclass

correlation may be applied to such a table of the

analysis of variance without actually calculating r.

If there is no correlation, then A is not significantly

different from zero ; there is no difference between the

several families which is not accounted for, as a random

sampling effect of the difference within each family. In

fact the whole group of observations is a homogeneous

group with variance equal to B.

41. Test of Significance of Difference of Variance

The test of significance of intraclass correlations

is thus simply an example of the much wider class of

tests of siornificance which arise in the analysis of

variance. These tests are all reducible to the single

problem of testing whether one estimate of variance

derived from n^ degrees of freedom is significantly

greater than a second such estimate derived from n^

degrees of freedom. This problem is reduced to its

simplest form by calculating z equal to half the

difference of the natiiral logarithms of the estimates

of the variance, or to the difference of the logarithms

of the corresponding standard deviations. Then if P

is the probability of exceeding this value by chance, it

is possible to calculate the value of z corresponding

to different values of P, n-^, and n^^.

A full table of this kind, involving three variables,

would be very extensive ; we therefore give tables
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for the important regions P = -05 and P = -oi, and for

a number of combinations of n^ and n^, sufficient to

indicate the values for other combinations (Table VI.,

p. 224). We shall give various examples of the use

of this table. When both n^ and n^ are large, and

also for moderate values when they are equal or

nearly equal, the distribution of z is sufficiently nearly

normal for effective use to be made of its standard

deviation, which may be written

VK:2 \;/ 1 ;/

.

This includes the case of the intraclass correlation,

when /^ = 2, for if we have 1^ pairs of values, the varia-

tion between classes is based on ;/ — i degrees of

freedom, and that within classes is based on ;/ degrees

of freedom, so that

and for moderately large values of ;/ we may take z

to be normally distributed as above explained. When
k exceeds 2 we have

«^ = «'—!, ;/._, = (/^—
I )//

;

these may be very unequal, so that unless ;/ be quite

large, the distribution of z will be perceptibly asym-

metrical, and the standard deviation will not provide

a satisfactory test of significance.

Ex. '}^']. Sex difference in variance of stature.-—

•

From 1 1 64 measurements of males the sum of squares

of the deviations was found to be 8590 ; while from
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1456 measurements of females it was 9870: is there a

significant difference in absolute variability ?

TABLE 40

Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

Log (Mean
Square).

l/«.

Men

Women .

1 163

1455

8590

9870

7.386 1-9996

6783 1-9144

Difiference -0852

-0008599

•0006873

Sum -001547

The mean squares are calculated from the sum of

squares by dividing by the degrees of freedom ; the

difference of the logarithms is -0852, so that z is -0426.

The variance of z is half the sum of the last column, so

that the standard deviation oS. z is -02781. The differ-

ence in variability, though suggestive of a real effect,

cannot be judged significant on these data.

Ex. 38. Homogeneity of small samples.— In an

experiment on the accuracy of counting soil bacteria,

a soil sample was divided into four parallel samples,

and from each of these after dilution seven plates were

inoculated. The number of colonies on each plate is

shown below. Do the results from the four samples

agree within the limits of random sampling? In

other words, is the whole set of 28 values homogeneous,

or is there any perceptible intraclass correlation ?

[Table
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TABLE 41

209

Plate.

Sample.

I. II. III. IV.

I 72 74 78 69
2 69 72 74 67

3 63 70 70 66

4 59 69 58 64

5 59 66 58 62
6 53 58 56 58

7

Total

51 52 56 54

426 461 450 440

Mean 6o-86 65.86 64-28 62-86

From these values we obtain

TABLE 42

Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

S.D. Log S.D.

Within classes

Between classes

Total .

24

3

1446

94-96

60-25

31-65

7-762

5-626

2-0493

1-7274

27 1540-96 57-07 7-55

(Differ

--3219
ence) = 2'

The variation within classes is actually the greater,

so that if any correlation is indicated it must be

negative. The numbers of degrees of freedom are

small and unequal, so we shall use Table VI. This

is entered with n^ equal to the degrees of freedom

corresponding to the larger variance, in this case 24 ;

also, n^ = 3. The table gives 1-0781 for the 5 per cent,

point; so that the observed difference, -3219, is really

very moderate, and quite insignificant. The whole set
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of 28 values appears to be homogeneous with variance

about 57-07.

It should be noticed that if only two samples had

been present, the test of homogeneity would have been

equivalent to testing the significance of t, as explained

in Chapter V. In fact the values for 7^1 =1 in the

table of -2" (p. 224) are nothing but the logarithms of

the values, for P = '05 and -oi, in the table of/ (p. 151).

Similarly the values for 1^=\ in Table VI. are the

logarithms of the reciprocals of the values, which would

appear in Table IV. under P = -95 and -99. The

present method may be regarded as an extension of

the method of Chapter V., appropriate when we

wish to compare more than two means. Equally it

may be regarded as an extension of the methods of

Chapter IV., for if n^ were infinite z would equal

1 logA of Table III. for P = -05 and -oi, and if n-^

were infinite it would equal —\ log — for P = -95 and

•99. Tests of goodness of fit, in which the sampling

variance is not calculable a priori, but may be esti-

mated from the data, may therefore be made by

means of Table VI. (Chap. VIII.).

Ex. 39. Comparison of intraclass correlations.—
The following correlations are given (Harris's data)

for the number of ovules in different pods of the same

tree, 100 pods being counted on each tree {Cercis

Canadensis) :

Meramec Highlands . . 60 trees +-3527

Lawrence, Kansas . .22 trees +-3999



INTRACLASS CORRELATIONS 211

Is the correlation at Lawrence significantly greater

than that in the Meramec Highlands?

First we find z in each case from the formula

- = 2 {log (i +99^ -log (i - r)}

(p. 199); this gives 2'= 2-oo8 1 for Meramec and 2-1071

for Lawrence ; since these were obtained by the method

of the symmetrical table we shall insert the small

correction il^in'-i) and obtain 2-0165 for Meramec,

and 2-1304 for Lawrence, as the values which would

have been obtained by the method of the analysis of

variance.

To ascertain to what errors these determinations

are subject, consider first the case of Lawrence, which

being based on only 22 trees is subject to the larger

errors. We have % = 21, ?22 = 22 x 99 = 2178. These

values are not given in the table, but from the

value for Ui = 24, n^ = cc it appears that positive

errors exceeding -2085 will occur in rather more

than 5 per cent, of samples. This fact alone settles

the question of significance, for the value for

Lawrence only exceeds that obtained for Meramec

by -1139.

In other cases greater precision may be required.

In the table for z the five values 6, 8, 12, 24, oc are

chosen for being in harmonic progression, and so

facilitating interpolation, if we use ijii as the variable.

If we have to interpolate both for ;/i and n^, we proceed

in three steps. We find first the values of z for 71-^ =12,

7^2 = 2178, and for ;2i
= 24, 7^2=2178, and from these

obtain the required value for % = 21, 7^2= 2178.
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To find the value for n^ = 12, ;/2 = 2
1 78, observe that

60
- = -0275,

2178

for n^ = cc we have -2804, and for Hz = 60 a value higher

by -0450, so that -2804 + -0275 x -0450 = -2816 gives

the approximate value for ;^2= 2178.

Similarly for ni = 24

• 2085 + -0275 X •o569 = -2ioi.

From these two values we must find the value for

/^i = 2 1 ; now

21 7

so that we must add to the value for 7I1 = 24 one-

seventh of its difference from the value for n^=i2;

this gives

,
-0715

•2101+ =-2203,

which is approximately the positive deviation which

would be exceeded by chance in 5 per cent, of random

samples.

Just as we have found the 5 per cent, point for

positive deviations, so the 5 per cent, point for negative

deviations may be found by interchanging % and 71^ ;

this turns out to be -2978. If we assume that our

observed value does not transgress the 5 per cent, point

in either deviation, that is to say that it lies in the

central nine-tenths of its frequency distribution, we

may say that the value of 2 for Lawrence, Kansas, lies

between 1-9101 and 2-4282 ; these values being found

respectively by subtracting the positive deviations and

adding the negative deviation to the observed value.
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The fact that the two deviations are distinctly un-

equal, as is generally the case when fti and n^ are

unequal and not both large, shows that such a case can-

not be treated accurately by means of a probable error.

Somewhat more accurate values than the above

may be obtained by improved methods of interpola-

tion ; the above method will, however, suffice for all

ordinary requirements, except in the corner of the

table where n-^ exceeds 24 and n^ exceeds 30. For cases

which fall into this region, the following formula gives

the 5 per cent, point within one-hundredth of its value.

If ^ is the harmonic mean of % and it^, so that

- = - + -

then .= i6449_.7843(^-^

Similarly the i per cent, point is given approxi-

mately by the formula

2-326^ / I I

z= , ^ -1-235 -^

Let us apply this formula to find the 5 per cent,

points for the Meramec Highlands, 721 = 59, ;22=594o;

the calculation is as follows :

TABLE 43

i/«i -01695 sJh-\ 1076

i/«2 -00017 ijJh-\ -09294 First term -15288

2lh -01712 i/ni-i/n^ -01678 Second term -01316

ijk -00856 Difference -1397

A 1 16-8 Sum -1660

The 5 per cent, point for positive deviations is

therefore -1397, and for negative deviations -1660;
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with the same standards as before, therefore, we may-

say that the value for Meramec lies between 1-8768

and 2-1825 ; the large overlap of this range with that

of Lawrence shows that the correlations found in the

two districts are not significantly different.

42. Analysis of Variance into more than Two Portions

It is often necessary to divide the total variance

into more than two portions ; it sometimes happens

both in experimental and in observational data that

the observations may be grouped into classes in more

than one way ; each observation belongs to one class

of type A and to a different class of type B. In such

a case we can find separately the variance between

classes of type A and between classes of type B
;

the balance of the total variance may represent

only the variance within each subclass, or there

may be in addition an interaction of causes, so that

a change in class of type A does not have the same

effect in all B classes. If the observations do not

occur singly in the subclasses, the variance within the

subclasses may be determined independently, and the

presence or absence of interaction verified. Some-

times also, for example, if the observations are fre-

quencies, it is possible to calculate the variance to be

expected in the subclasses.

Ex. 40. Dmrnal and annual variation of rain

frequency,—The following frequencies of rain at differ-

ent hours in different months were observed at Rich-

mond during 10 years (quoted from Shaw, with two

corrections in the totals).
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The variance may be analysed as follows :

TABLE 45

Degrees of

Freedom.
Sum of

Squares.
Mean Square.

Months .

Hours
Remainder

Total .

II

23

253

6,568-58

1,539-33
3,8x9-58

597-144
66-928

15.097

287 11,927-50

The mean of the 288 values given in the table is

24-7, and if the original data had represented inde-

pendent sampling chances, we should expect the mean

square residue to be nearly as great as this or greater,

if the rain distribution during the day differs in different

months. Clearly the residual variance is subnormal,

and the reason for this is obvious when we consider

that the probability that it should be raining in the

2nd hour is not_ independent of whether it is raining

or not in the ist hour of the same day. Each shower

will thus probably have been entered several times,

and the values for neiofhbourino- hours in the same

month will be positively correlated. Much of the

random variation has thus been included in that

ascribed to the months, and probably accounts for

the very irregular sequence of the monthly totals. The
variance between the 24 hours is, however, quite

significantly greater than the residual variance, and

this shows that the rainy hours have been on the

whole similar in the different months, so that the

figures clearly indicate the influence of time of day.
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From the data it is not possible to estimate the influence

of time of year, or to discuss whether the effect of time

of day is the same in all months.

Ex. 41. Analysis of variation in experimental

field trials.—The table on the following page gives the

yield in lb. per plant in an experiment with potatoes

(Rothamsted data). A plot of land, the whole of

which had received a dressing of dung, was divided

into 36 patches, on which 12 varieties were grown,

each variety having 3 patches scattered over the area.

Each patch was divided into three lines, one of which

received, in addition to dung, a basal dressing only,

containing no potash, while the other two received

additional dressings of sulphate and chloride of potash

respectively.

From data of this sort a variety of information may
be derived. The total yields of the 36 patches give

us 35 degrees of freedom, of which 11 represent

differences among the 12 varieties, and 24 represent

the differences between different patches growing the

same variety. By comparing the variance in these

two classes we may test the significance of the varietal

differences in yield for the soil and climate of the

experiment. The 72 additional degrees of freedom

given by the yields of the separate rows consist of

2 due to manurial treatment, which we can subdivide

into one representing the differences due to a potash

dressing as against the basal dressing, and a second

representing the manurial difference between the

sulphate and the chloride ; and ']o more representing

the differences observed in manurial response in the
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different patches. These latter may in turn be divided

into 22 representing the difference in manurial response

of the different varieties, and 48 representing the

differences in manurial response in different patches

growing the same variety. To test the significance of

the manurial effects, we may compare the variance in

each of the two manurial degrees of freedom with that

in the remaining yo ; to test the significance of the

differences in varietal response to manure, we compare

the variance in the 22 desfrees of freedom with that in

the 48 ; while to test the significance of the difference

in yield of the same variety in different patches, we

compare the 24 degrees of freedom representing the

differences in the yields of different patches growing

the same variety with the 48 degrees representing the

differences of manurial response on different patches

growing the same variety.

For each variety we shall require the total yield

for the whole of each patch, the total yield for the

3 patches and the total yield for each manure ; we

shall also need the total yield for each manure for the

aggregate of the 12 varieties ; these values are given

on next page (Table 47).

[Table
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The sum of the squares of the deviations of all

the io8 values from their mean is 71-699; divided,

according to patches, in t,6 classes of 3, the value for

the 36 patches is 61-078 ; dividing this again accord-

ing to varieties into 1 2 classes of 3, the value for the

12 varieties is 43-638. We may express the facts so

far as follows :

TABLE 48

Variance.
Degrees of

Freedom.
Sum of

Squares.
Mean Square. Log (S.D.).

Between varieties

Between patches for

same variety .

Within patches .

Total .

II

24

72

43-6384

17-4401

10-6204

3-967

•727

•6890

--1594

107 71-6989

The value of z, found as the difference of the loga-

rithms in the last column, is -8484, the corresponding

I per cent, value being about -564 ; the effect of variety-

is therefore very significant.

Of the variation within the patches the portion

ascribable to the two differences of manurial treatment

may be derived from the totals for the three manurial

treatments. The sum of the squares of the three

deviations, divided by t,6, is -3495 ; of this the square

of the difference of the totals for the two potash dress-

ings, divided by 72, contributes -0584, while the square

of the difference between their mean and the total

for the basal dressing, divided by 54, gives the

remainder, -2911. It is possible, however, that the
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whole effect of the dressings may not appear in these

figures, for if the different varieties had responded in

different ways, or to different extents, to the dressings,

the whole effect would not appear in the totals. The

seventy remaining degrees of freedom would not be

homogeneous. The 2>^ values, giving the totals for

each manuring and for each variety, give us 35

degrees of freedom, of which 1 1 represent the differ-

ences of variety, 2 the differences of manuring, and

the remaining 22 show the differences in manurial

response of the different varieties. The analysis of

this group is shown below :

TABLE 49

Variance due to
Degrees of

Freedom.
Sum of

Squares.
Mean Square.

Potash dressing ....
Sulphate v. chloride .

Differential response of varieties

Differential response in patches
with same variety

Total ....

I

I

22

48

•291

1

0584
2-i9ri

8-0798

•2911

.0584

•0996

•1683

72 10-6204

To test the significance of the variation observed

in the yield of patches bearing the same variety, we

may compare the value -727 found above from 24

degrees of freedom, with -1683 just found from 48

degrees. The value of 2, half the difference of the

logarithms, is -7316, while the i per cent, point is

about -358. The evidence for unecjual fertility of the

different patches is therefore unmistakable. As is

always found in careful field trials, local irregularities
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in the nature or depth of the soil materially affect the

yields. In this case the soil irregularity was perhaps

combined with unequal quality or quantity of the dung

supplied.

There is no sign of differential response among the

varieties ; indeed, the difference between patches with

different varieties is less than that found for patches

with the same variety. The difference between the

values is not significant; ^ = -2623, while the 5 per

cent, point is about •^^.

Finally, the effect of the manurial dressings tested

is small ; the difference due to potash is indeed greater

than the value for the differential effects, which we may
now call random fluctuations, but 2 is only -3427, and

would require to be about -7 to be significant. With

no total response, it is of course to be expected, though

not as a necessary consequence, that the differential

effects should be insignificant. Evidently the plants

with the basal dressing had all the potash necessary,

and in addition no apparent effect on the yield was

produced by the difference between chloride and

sulphate ions.

[Table
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TABLE

5 Per Cent. Points of

Values

I. 2. 3- 4-

I 2-5421 2-6479 2-6870 2-7071

2 1-459- 1-4722 1-4765 I-47S7

3 I-T577 I-I284 1-1137 1-1051

4 I-02I2 •9690 -9429 •9272

5 •9441 •8777 -S441 •8236

6 .8948 •8188 •7798 •7558

7
.8606 •7777 •7347 •7080

8 •8355 •7475 .7014 •6725

9 •8163 •7242 •6757 •6450

lO •8012 .7058 •6553 -6232

II •7SS9 •6909 .6387 •6055

12 .7788 •67S6 .6250 •5907

13 7703 .6682 •6134 •5783

14 .7630 •6594 .6036 •5677

OJ
15 .7568 .6518 •5950 -5585

8 i6 •7514 •6451 •5876 •5505

0) 17 •7466 •6393 5811 •5434
i8 •7424 •6341 •5753 •5371

> 19 .7386 •6295 •570I •5315

20 •7352 •6254 •5654 •5265

21 •7322 •6216 •5612 •5219

22 .7294 •6182 •5574 •5178

23 •7269 •6151 •5540 •5140

24 .7246 •6123 •5508 • 5106

25 •72-^5 .6097 •5478 •5074

26 .7205 •6073 •5451 •5045

27 .7187 •6051 •5427 .5017

28 •717I •6030 •5403 -4992

29 •7155 -6011 •5382 -4969

30 •714I •5994 •5362 -4947

60 •6933 •5738 •5073 •4632

CO •6729 .5486 •4787 •4319
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VI

THE Distribution of

of «!•

5- 6. 8. 12. 24. oc .

2.7194 2-7276 2-7380 2-7484 2-7588 2 7693
1-4800 1-4808 1-4819 1-4830 1-4840 I 4851

1-0994 1-0953 1-0899 1-0842 1-0781 I 0716
.9168 •9093 •8993 -8885 -8767 8639
-8097 •7997 -7862 •7714 •7550 7368

•7394 •7274 -7112 -6931 -6729 6499
-6896 -6761 -6576 •6369 -6134 5862

•6525 -6378 •6175 •5945 •5682 5371
-6238 -6080 •5862 •5613 •5324 4979
•6009 •5843 •5611 •5346 •5035 4657

.5822 -5648 -5406 -5126 •4795 4387
-5666 •5487 •5234 -4941 •4592 4156

•5535 •5350 -5089 •4785 -4419 3957
•5423 •5233 -4964 -4649 -4269 3782

•5326 •5131 •4855 •4532 •4138 3628

•5241 -5042 -4760 -4428 •4022 3490
.5166 -4964 -4676 •4337 •3919 3366

•5099 •4894 -4602 •4255 •3827 3253
•5040 •4832 •4535 -4182 •3743 3151

-4986 -4776 •4474 -4116 .3668 3057

•4938 •4725 -4420 •4055 •3599 2971

•4894 -4679 •4370 -4001 •3536 2892

•4854 -4636 •4325 •3950 •3478 2818

-4817 •4598 •4283 3904 •3425 2749
•4783 -4562 •4244 -3862 •3376 2685

•4752 4529 •4209 •3823 •3330 2625

•4723 •4499 •4176 -3786 •3287 -2569

•4696 -4471 -4146 •3752 •3248 •2516

.4671 •4444 -4117 3720 •3211 • 2466

-4648 .4420 .4090 -3691 •3176 -2419

•43" •4064 •3702 •3255 -2654 -1644

•3974 .3706 •3309 •2804 •2085
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TABLE

I Per Cent. Points of

Values

I. 2. 3- 4-

I 4-1535 4-2585 4-2974 4-3175
2 2-2950 2-2976 2-2984 2-2988

3 1-7649 I-714O 1-6915 1-6786

4 1-5270 1-4452 1-4075 1-3856

5 1-3943 1-2929 1-2449 1-2 164

6 1-3103 I-I955 I-1401 1-1068

7 1-2526 I-I281 1-0672 1-0300

8 1-2106 1-0787 I-OI35 •9734

9 1-1786 I-O4II • 9724 •9299
lO I-I53S I-OII4 •9399 •8954

II 1-1333 •9874 .9136 .8674

12 1-1166 •9677 .8919 •8443

13 1-1027 •95II -8737 .8248

14 1-0909 •9370 -8581 •8082

15 1-0807 •9249 •8448 •7939
^' i6 1-0719 •9144 •8331 .7814
o

17 1-064

1

.9051 •8229 •7705

a i8 1-0572 .8970 -8138 •7607

> 19 1-0511 .8897 -8057 •7521

20 I-0457 •8831 -7985 •7443

21 1-0408 .8772 .7920 -7372
22 1-0363 •8719 • 7860 •7309

23 1-0322 -8670 -7806 • 7251

24 1-0285 -8626 -7757 .7197

25 1-0251 -8585 -7712 • 7148
26 I-0220 •8548 .7670 •7103

27 1-0191 -8513 •7631 • 7062
28 I-O164 -8481 -7595 .7023

29 I-OI39 -8451 -7562 -6987

30 I-OI16 -8423 -7531 -6954

60 •9784 -8025 -7086 -6472

cc -9462 -7636 • 6651 -5999
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VI.

—

Continued

THE Distribution of z

227

of «!•

5- 6. 8. 12 24. '^
.

4-3297 4-3379 4-3482 4-3585 4-3689 4-3794
2-2991 2-2992 2-2994 2-2997 2-2999 2-3001

1-6703 1-6645 1-6569 1-6489 1-6404 1-6314
I-37II 1-3609 1-3473 1-3327 1-3170 1-3000
I-I974 1-1838 1-1644 1-1457 1-1239 1-0997
1-0843 i-o68o 1-0460 I-02l8 •9948 •9643
1-0048 -9864 •9614 -9335 •9020 •8658

•9459 •9259 .8983 •8673 .8319 .7904
• 9006 .8791 .8494 •8157 • 7769 •7305
•8646 •8419 •8104 -7744 •7324 .6816

•8354 .8116 •7785 -7405 •6958 -6408
•8111 .7864 .7520 •7122 •6649 -6061

.7907 .7652 •7295 -6882 .6386 •5761

•7732 .7471 .7103 -6675 -6159 •5500
•7582 •7314 •6937 6496 •5961 -5269

•7450 .7177 .6791 -6339 •5786 •5064

•7335 •7057 .6663 -6199 •5630 •4879
•7232 -6950 •6549 -6075 •5516 •4712
•7140 •6854 •6447 •5964 •5366 •4560
•7058 .6768 •6355 -5864 •5253 •4421

•6984 -6690 -6272 -5773 •5150 •4294
•6916 -6620 -6196 •5691 •5056 -4176
•6855 •6555 -6127 •5615 •4969 •4068
• 6799 -6496 -6064 •5545 •4890 •3967
•6747 -6442 •6006 •5481 •4816 •3872
•6699 -6392 •5952 -5422 •4748 •3784
•6655 -6346 .5902 •5367 •4685 .3701
•6614 -6303 •5856 •5316 •4626 •3624
.6576 •6263 •5813 -5269 •4570 •3550
•6540 •6226 •5773 -5224 •45^9 -3481

.6028 .5687 .5189 -4574 •3746 •2352

•5522 •5152 •4604 •3908 -2913



VIII

FURTHER APPLICATIONS OF THE
ANALYSIS OF VARIANCE

43. We shall in this chapter give examples of the

further applications of the method of the analysis of

variance developed in the last chapter in connexion

with the theory of intraclass correlations. It is im-

possible in a short space to give examples of all the

different applications which may be made of this

method ; we shall therefore limit ourselves to those

of the most immediate practical importance, paying

especial attention to those cases where erroneous

methods have been largely used, or where no alterna-

tive method of attack has hitherto been put forward.

44. Fitness of Regression Formulae

There is no more pressing need in connexion with

the examination of experimental results than to test

whether a given body of data is or is not in agree-

ment with any suggested hypothesis. The previous

chapters have largely been concerned with such

tests appropriate to hypotheses involving frequency

of occurrence, such as the Mendelian hypothesis of

segregating genes, or the hypothesis of linear arrange-

ment in linkage groups, or the more general hypotheses
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of the independence or correlation of variates. More

frequently, however, it is desired to test hypotheses

involving, in statistical language, the form of regres-

sion lines. We may wish to test, for example, if the

growth of an animal, plant or population follows an

assigned law, if for example it increases with time in

arithmetic or geometric progression, or according to

the so-called " autocatalytic " law of increase ; we may

wish to test if with increasing applications of manure,

plant growth increases in accordance with the laws

which have been put forward, or whether in fact the

data in hand are inconsistent with such a supposition.

Such questions arise not only in crucial tests of widely

recognised laws, but in every case where a relation,

however empirical, is believed to be descriptive of the

data, and are of value not only in the final stage of

establishing the laws of nature, but in the early stages

of testing the efficiency of a technique. The methods

we shall put forward for testing the Goodness of Fit

of regression lines are aimed not only at simplifying

the calculations by reducing them to a standard form,

and so making accurate tests possible, but at so dis-

playing the whole process that it may be apparent

exactly what questions can be answered by such a

statistical examination of the data.

If for each of a number of selected values of the

independent variate x a number of observations of

the dependent variate y is made, let the number of

values of x available be a ; then a is the number

of arrays in our data. Designating any particular

array by means of the suffix p, the number of observa-



230 STATISTICAL METHODS

tions in any array will be denoted by n^^, and the mean

of their values by y^ ; y being the general mean of

all the values oi y. Then whatever be the nature of

the data, the purely algebraic identity

S(^ -5f = S
!^///v -J'T-} + SS(J -J, )^-

expresses the fact that the sum of the squares of the

deviations of all the values of y from their general

mean may be broken up into two parts, one repre-

senting the sum of the squares of the deviations of the

means of the arrays from the general mean, each

multiplied by the number in the array, while the

second is the sum of the squares of the deviations of

each observation from the mean of the array in which

it occurs. This resembles the analysis used for intra-

class correlations, save that now the number of

observations may be different in each array. The
deviations of the observations from the means of the

arrays are due to causes of variation, including errors

of grouping, errors of observation, and so on, which

are not dependent upon the value of x ; the standard

deviation due to these causes thus provides a basis for

comparison by which we can test whether the devia-

tions of the means of the arrays from the values

expected by hypothesis are or are not significant.

Let Yp represent in any array the mean value

expected on the hypothesis to be tested, then

will measure the discrepancy between the data and the

hypothesis. In comparing this with the variation
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within the arrays, we must of course consider how

many degrees of freedom are available, in which the

observations may differ from the hypothesis. In some

cases, which are relatively rare, the hypothesis specifies

the actual mean value to be expected in each array
;

in such cases a degrees of freedom are available,

a being the number of the arrays. More frequently,

the hypothesis specifies only the form of the regression

line, having one or more parameters to be determined

from the observations, as when we wish to test if the

regression can be represented by a straight line, so

that our hypothesis is justified if any straight line fits

the data. In such cases to find the number of desfrees

of freedom we must deduct from a the number of

parameters obtained from the data.

Ex. 42. Test of straightness of regression line.—
The following data are taken from a paper by A. H.

Hersh on the influence of temperature on the number

of eye facets in Drosophila melanogaster, in various

homozygous and heterozygous phases of the "bar"

factor. They represent females heterozygous for

"full" and "double-bar," the facet number beino-

measured in factorial units, effectively a logarithmic

scale. Can the influence of temperature on facet

number be represented by a straight line, in these

units ?

[Table
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TABLE 50

Temperature ° C. i 5°- 17 19°. ' 1°. 23°. 25°. 2 7°- 29°- 31°- Total.

+ 8-07 3 ]
I 5

+ 7-07 5 2! 5 I 13

+ 6-07 13 :' 3 23

+ 5 -07 25 <:) 2 I • • 37

+ 4-07 22 IC) 16 2 50

+ 3-07 12 IC) 12 "e "i 3 44
+ 2-07 7 f 14 16 2 2 46
+ 1-07 3 ^I 14 21 8 9 59
+ -07 i 7 26 7 19 I 63

- -93 .. 7 12 II 24 3 I 59
- i'93 I 9 14 22 8 6 60
- 2-93 2! I 5 12 15 15 4 54
- 3-93 2 19 18 44 10 I 94
- 4-93 I 4 4 26. 6 6 47
- 5-93 2 2 19 14 13 50
- 6-93 2 II 28 9 50
- 7-93 3 I 8 8 8 28

- 8-93 I 2 5 5 13

- 9-93 4 4 8

-10-93 10 2 12

-11-93 I I 2 4
-12-93 •5 1-5 2

-13-93 •5 •5 I

-14-93
-15-93 I I

Total ()o 54 83 I 00 86 122 I 37 98 53 823

There are 9 arrays representing 9 different

temperatures. Taking a working mean at — 1-93

we calculate the total and average excess over the

working mean from each array, and for the aggre-

gate of all 9. Each average is found by dividing

the total excess by the number in the array ; three

decimal places are sufficient save in the aggregate,

where four are needed. We have
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TABLE 51

Array. 15- 17- 19. 21. 23- 25- 27. 29. 31- Aggregate.

Total \
excess/

Mean \
excess/

583

6-478

294

5-444

367

4.422

225

2-250

-43

- -500

+ 37

+ -303

-369

-2-693

-463-5

-4-730

- 306-5

-5-783

4-324

+ •3937

The sum of the products of these nine pairs of

numbers, less the product of the final pair, gives the

value of

S{«/j"^ -J')'} = 12,370,

while from the distribution of the aggregate of all the

values ofy we have

S(jj/_jf =16,202,

whence is deduced the following table :

TABLE 52

Variance.
Degrees of

Freedom.
Sum of

Squares.
Mean Squ:xre.

Between arrays .

Within arrays

Total .

8

814

12,370

3,832 4-708

822 16,202

The variance within the arrays is thus only about

4-7 ; the variance between the arrays will be made up

of a part which can be represented by a linear regres-

sion, and of a part which represents the deviations of

the observed means of arrays from a straight line.
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To find the part represented by a linear regression,

calculate

S(.r— :v)" = 4742-2

1

and

S(.r-;r)0'-r')= -7535-38,

which latter can be obtained by multiplying the above

total excess values by x — x\ then since

(7535-38)"'
^^ -^^-^ ^ ^ = 1 1,074.
4742-21

we may complete the analysis as follows :

TABLE 53

Variance between Arrays due to
Degrees of

Freedom.
Sum of

Squares.
Mean Square.

Linear regression

Deviations from regression .

Total .

I

7

11,974

396 56-6

8 12,370

It is useful to check the figure, 396, found by

differences, by calculating the actual value of Y for

the regression formula and evaluating

S{«,(/',-Y,)n;

such a check has the advantacj^e that it shows to which

arrays in particular the bulk of the discrepancy is due,

in this case to the observations at 23 and 25°C.

The deviations from linear regression are evidently

larger than would be expected, if the regression w^ere

really linear, from the variations within the arrays.

For the value of z, we have
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TABLE 54

Degrees of

Freedom.
Mean Square. Natural Log. h Log,

7

814

56.6

4-708

Difference (z)

4-0360

1-5493

2-oi8o

.7746

1-2434

while the i per cent, point is about -488. There can

therefore be no question of the statistical significance

of the deviations from the straight line, although the

latter accounts for the greater part of the variation.

Note that Sheppard's adjustment is not to be

applied in making this test ; a certain proportion both

of the variation within arrays, and of the deviations

from the regfression line is ascribable to errors of

grouping, but to deduct from each the average error

due to this cause would be unduly to accentuate their

inequality, and so to render inaccurate the test of

significance.

45. The "Correlation Ratio" v

We have seen how, from the sum of the squares

of the deviations of all observations from the greneral

mean, a portion may be separated representing the

differences between different arrays. The ratio which

this bears to the whole is often denoted by the symbol

>/^ so that

and the square root of this ratio, '/, is called the correla-
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tion ratio ofjv on x. Similarly if Y is the hypothetical

regression function, we may define R, so that

R2 = S[;./Y-/;^KS(j/-jO^

then R will be the correlation coefficient between jv and

Y, and if the regression is linear, R^ = r^, where r

is the correlation coefficient between x and y. From

these relations it is obvious that n exceeds R, and thus

that n provides an upper limit, such that no regression

function can be found, the correlation of which with

y is higher than >/•

As a descriptive statistic the utility of the correla-

tion ratio is extremely limited. It will be noticed that

the number of degrees of freedom in the numerator of

r?' depends on the number of the arrays, so that, for

instance in Example 42, the value of n obtained will

depend, not only on the range of temperatures explored,

but on the number of temperatures employed within a

given range.

To test if an observed value of the correlation

ratio is significant is to test if the variation between

arrays is significantly greater than is to be expected,

in the absence of differentiation, from the variation

within the arrays ; and this can be done from the

analysis of variance (Table 52) by means of the table

of z. Attempts have been made to test the significance

of the correlation ratio by calculating for it a standard

error, but such attempts overlook the fact that, even

with indefinitely large samples, the distribution of >/

for undifferentiated arrays does not tend to normality,

unless the number of arrays also is increased without
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limit. On the contrary, with very large samples, when

N is the total number of observations, N»/^ tends to be

distributed as is y^ when n, the number of degrees of

freedom, is equal to (a-i), that is, to one less than

the number of arrays.

46. Blakeman's Criterion

In the same sense that if measures the difference

between different arrays, so j?^ — R^ measures the

aggregate deviation of the means of the arrays from

the hypothetical regression line. The attempt to

obtain a criterion of linearity of regression by com-

paring this quantity to its standard error, results in

the test known as Blakeman's criterion. In this

test, also, no account is taken of the number of the

arrays, and in consequence it does not provide even

a first approximation in estimating what values of

rf — r^ are permissible. Similarly with >/^ with zero

regression, so with >/^ — r^ the regression being

linear, if the number of observations is increased

without limit, the distribution does not tend to nor-

mality, but that of N(>;^-r") tends to be distributed as

is x^ when 11 = a — 2. Its mean value is then [a — 2),

and to icfnore the value of a is to disregard the main

feature of its sampling distribution.

In Example 42 we have seen that with 9 arrays

the departure from linearity was very markedly

significant ; it is easy to see that had there been 90

arrays, with the same values of >;^ and r% the departure

from linearity would have been even less than the

expectation based on the variation within each array.
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Using Blakeman's criterion, however, these two oppo-

site conditions are indistinguishable.

As in other cases of testing goodness of fit, so in

testing regression lines it is essential that if any

parameters have to be fitted to the observations, this

process of fitting shall have been efficiently carried out.

Some account of efficient methods has been o^iven

in Chapter V. In general, save in the more compli-

cated cases, of which this book does not treat, the

necessary condition may be fulfilled by the procedure

known as the Method of Least Squares, by which the

measure of deviation

is reduced to a minimum subject to the hypothetical

conditions which govern the form of Y.

In the cases to which it is appropriate this method

is a special application of the Method of Maximum
Likelihood, from which it may be derived, and which

will be more fully discussed in Chapter IX.

47. Significance of the Multiple Correlation Coefficient

If, as in Section 29 (p. 142), the regression of

a dependent variate y on a number of independent

variates x'l, x.^, Xo, is expressed in the form

Y = b^x\ -\- ba.,+ ^3.1-3,

then the correlation between y and Y is greater than

the correlation of y with any other linear function of

the independent variates, and thus measures, in a sense,

the extent to which the value oiy depends upon, or is

related to, the combined variation of these variates.
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The value of the correlation so obtained, denoted by R,

may be calculated from the formula

R^ = {^SGr,j) + /;,SGr,j) + d^(x,f) } -f S(f).

The multiple correlation, R, differs from the correla-

tion obtained with a single independent variate in that

it is always positive ; moreover, it has been recognised

in the case of the multiple correlation that its random

sampling distribution must depend on the number of

independent variates employed. The exact treatment

is in fact strictly parallel to that developed above

(Section 45) for the correlation ratio, with a similar

analysis of variance.

In the section referred to we made use of the fact

that

if 7/ is the number of observations of y, and J> the

number of independent variates, these three terms will

represent respectively 71' — i, 11! —p— i, and p degrees

of freedom. Consequently the analysis of variance

takes the form :

TABLE 55

Variance due to Degrees of Freedom. Sum of Squares.

Regression function

Deviations from the regression

function ....
Total

11 -p - I

l\^{x^y^ + . . .

n - I S(>'^)

it being assumed that y is measured from its mean

value.
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If in reality there is no connexion between the

independent variates and the dependent variatejj^ the

values in the column headed "sum of squares" will

be divided approximately in proportion to the number

of degrees of freedom ; whereas if a significant con-

nexion exists, then the / degrees of freedom in the

regression function will obtain distinctly more than

their share. The test, whether R is or is not significant,

is in fact exactly the test whether the mean square

ascribable to the regrression function is or is not

significantly greater than the mean square of devia-

tions from the regression function, and may be carried

out, as in all such cases, by means of the table of 2.

Ex. 43. Significance of a multiple correlation.—
To illustrate the process we may perform the test

whether the rainfall data of Example 24 was signifi-

cantly related to the longitude, latitude, and altitude

of the recordinof stations. From the values found in

that example, the following table may be immediately

constructed :

TABLE 56

Variance due to
Degrees of

Freedom.
Sum of

Squares.
Mean Square. \ Log..

Regression formula

Deviations

Total

3

53

791-7

994-9

263-9

18-77

2-7878

1-4661

56 1786-6

The value of ^^ is thus 1-3217 while the i per cent.

point is about -714, showing that the multiple correla-
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tion is clearly significant. The actual value of the

multiple correlation may easily be calculated from the

above table, for

R' = 79i7-M786-6 = -443i,

R = .6657;

but this step is not necessary in testing the significance.

48. Technique of Plot Experimentation

The statistical procedure of the analysis of variance

is essential to an understanding of the principles under-

lying modern methods of arranging field experiments.

The first requirement which governs all well-planned

experiments is that the experiment should yield not

only a comparison of different manures, treatments,

varieties, etc., but also a means of testing the signifi-

cance of such differences as are observed. Conse-

quently all treatments must at least be duplicated, and

preferably further replicated, in order that a comparison

of replicates may be used as a standard with which to

compare the observed differences. This is a require-

ment common to most types of experimentation ; the

peculiarity of agricultural field experiments lies in the

fact, verified in all careful uniformity trials, that the

area of ground chosen for the experimental plots may
be assumed to be markedly heterogeneous, in that its

fertility varies in a systematic, and often a complicated

manner from point to point. For our test of signifi-

cance to be valid the difference in fertility between plots

chosen as parallels must be truly representative of the

differences between plots with different treatment

;

and we cannot assume that this is the case if our plots

R
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have been chosen in any way according to a pre-

arranged system ; for the systematic arrangement of

our plots may have, and tests with the results of uni-

formity trials show that it often does have, features in

common with the systematic variation of fertility, and

thus the test of significance is wholly vitiated.

Ex. 44. Accuracy attained by 7'andom arrange-

ment.—The direct way of overcoming this difficulty

is to arrange the plots wholly at random. For

example, if 20 strips of land were to be used to

test 5 different treatments each in quadruplicate, we

might take such an arrangement as the following,

found by shuffling 20 cards thoroughly and setting

them out in order :

TABLE 57BCACEEEADA
3504 3430 3376 3334 3253 3314 3287 3361 3404 3366BCBDDBADCE
3416 3291 3244 3210 3168 3195 3330 3118 3029 3085

The letters represent 5 different treatments ; beneath

each is shown the weight of mangold roots obtained by

Mercer and Hall in a uniformity trial with 20 such

strips.

The deviations in the total yield of each treatment

are
A B C D E

+ 290 +216 -59 -243 -204;

in the analysis of variance the sum of squares corre-

sponding to " treatment " will be the sum of these

squares divided by 4. Since the sum of the squares
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of the 20 deviations from the general mean is 289,766,

we have the following analysis :

TABLE 58

Variance due to
Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

Standard
Deviation.

Treatment

Experimental error .

Total .

4

15

19

58-725

231,041

14,681

15.403

15.251

I2I-I

124-1

123-5289,766

It will be seen that the standard error of a single plot

estimated from such an arrangement is 124-1, whereas,

in this case, we know its true value to be 123-5 ; ^^^^

is an exceedingly close agreement, and illustrates the

manner in which a purely random arrangement of

plots ensures that the experimental error calculated

shall be an unbiased estimate of the errors actually

present.

Ex. 45. Restrictions ttpon random arrangement.—
While adhering to the essential condition that the

errors by which the observed values are affected shall

be a random sample of the errors which contribute to

our estimate of experimental error, it is still possible

to eliminate much of the effect of soil heterogeneity,

and so increase the accuracy of our observations, by

laying restrictions on the order in which the strips are

arranged. As an illustration of a method which is

widely applicable, we may divide the 20 strips into

4 blocks, and impose the condition that each treat-
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ment shall occur once in each block ; we shall then

be able to separate the variance into three parts

representing (i.) local differences between blocks, (ii.)

differences due to treatment, (iii.) experimental errors
;

and if the five treatments are arranged at random

within each block, our estimate of experimental error

will be an unbiased estimate of the actual errors in

the differences due to treatment. As an example of

a random arrangement subject to the above restriction,

the following was obtained :

AECDB CBEDA ADEBC C E B A D.

Analysing out, with the same data as before, the

contributions of local differences between blocks, and

of treatment, we find

TABLE 59

Variance due to
Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

Standard
Deviation.

Local differences

Treatment
Experimental error

Treatment + error

3

4
12

i6

154,483

40,859

94,424
135,283

51,494
10,215

7,869

8,455

88-7

92-0

The local differences between the blocks are very

significant, so that the accuracy of our comparisons

is much improved, in fact the remaining variance is

reduced almost to 55 per cent, of its previous value.

The arrangement arrived at by chance has happened

to be a slightly unfavourable one, the errors in the

treatment values being a little more than usual, while

the estimate of the standard error is 88-7 against a
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true value 92-0. Such variation is to be expected,

and indeed upon it is our calculation of significance

based.

It might have been thought preferable to arrange

the experiment in a systematic order, such as

ABCDE EDCB A ABCDE EDCB A,

and, as a matter of fact, owing to the marked fertility-

gradient exhibited by the yields in the present example,

such an arrangement would have produced smaller

errors in the totals of the five treatments. With such

an arrangement, however, we have no guarantee that

an estimate of the standard error derived from the

discrepancies between parallel plots is really repre-

sentative of the differences produced between the

different treatments, consequently no such estimate of

the standard error can be trusted, and no valid test

of significance is possible. A more promising way of

eliminating that part of the fertility gradient which is

not included in the differences between blocks, would

be to impose the restriction that each treatment should

be "balanced" in respect to position within the block.

Thus if any treatment occupied in one block the first

strip, in another block the third strip, and in the two

remaining blocks the fourth strip (the ordinal numbers

adding up to 12), its positions in the blocks would be

balanced, and the total yield would be unaffected by

the fertility gradient. Of the many arrangements

possible subject to this restriction one could be chosen,

and one additional deo-ree of freedom eliminated
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representing the variance due to average fertility

gradient within the blocks. In the present data,

where the fertility gradient is large, this would seem to

give a great increase in accuracy, the standard error

so estimated being reduced from 92-0 to 73-4. But

upon examination it appears that such an estimate is

not genuinely representative of the errors by which

the comparisons are affected, and we shall not thus

obtain a reliable test of significance.

49. The Latin Square

The method of laying restrictions on the distribu-

tion of the plots and eliminating the corresponding

decrees of freedom from the variance is, however,

capable of some extension in suitably planned experi-

ments. In a block of 25 plots arranged in 5 rows and

5 columns, to be used for testing 5 treatments, we can

arrange that each treatment occurs once in each row,

and also once in each column, while allowing free

scope to chance in the distribution subject to these

restrictions. Then out of the 24 degrees of freedom,

4 will represent treatment ; 8 representing soil differ-

ences between different rows or columns, may be

eliminated ; and 1 2 will remain for the estimation of

error. These 1 2 will provide an unbiased estimate of

the errors in the comparison of treatments provided

that every pair of plots, not in the same row or column,

belong equally frequently to the same treatment.

Ex. 46, Do2ibly restricted arrangements. — The

following root weights for mangolds were found by

Mercer and Hall in 25 plots ; we have distributed
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letters representing 5 different treatments in such

a way that each appears once in each row and

column.
TABLE 60

Total of

Row.

D376
B3I6
C326
E3I7
A 321

Total of "( .(
column j ^ ^

E371
D338
A 326
B343
c 332

C355
E336
B335
A 330
D317

B356
A 356
I) 343
C327
E318

A 335
c 332
E330
D336
B306

•793
1678
1660

1653

1594

1710 1673 1700 1639 8378

Analysing out the contributions of rows, columns,

and treatments we have

TABLE 6r

Differences between
Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

S.D.

Rows
Columns
Treatments
Remainder

Total .

4

4
4

12

24

4240-24
701-84

330-241

1754-32/

7026-64

130-3

292-8

11-41

17-11

By eliminating the soil differences between different

rows and columns, the mean square has been reduced

to less than half, and the value of the experiment as

a means of detecting differences due to treatment is

therefore more than doubled. This method of equal-

ising the rows and columns may with advantage be

combined with that of equalising the distribution over
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different blocks of land, so that very accurate results

may be obtained by using a number of blocks each

arranged in, for example, 5 rows and columns. In

this way the method may be applied even to cases

with only three treatments to be compared. Further,

since the method is suitable whatever may be the

differences in actual fertility of the soil, the same

statistical method of reduction may be used when, for

instance, the plots are 25 strips lying side by side.

Treating each block of five strips in turn as though they

were successive columns in the former arrangement,

we may eliminate, not only the difference between the

blocks, but such differences as those due to a fertility

gradient, which affect the yield according to the order

of the strips in the block. When, therefore, the

number of strips employed is the square of the number

of treatments, each treatment can be not only balanced

but completely equalised in respect to order in the

block, and we may rely upon the (usually) reduced

value of the standard error obtained by eliminating

the corresponding degrees of freedom. Such a double

elimination may be especially fruitful if the blocks of

strips coincide with some physical feature of the field

such as the ploughman's "lands," which often pro-

duce a characteristic periodicity in fertility due to

variations in depth of soil, drainage, and such factors.

To sum up : systematic arrangements of plots in

field trials should be avoided, since with these it is

usually possible to estimate the experimental error in

several different ways, giving widely different results,

each way depending on some one set of assumptions
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as to the distribution of natural fertility, which may
or may not be justified. With unrestricted random

arrangement of plots the experimental error, though

accurately estimated, will usually be unnecessarily

large. In a well-planned experiment certain restric-

tions may be imposed upon the random arrangement

of the plots in such a way that the experimental error

may still be accurately estimated, while the greater

part of the influence of soil heterogeneity may be

eliminated.

It may be noted that when, by an improved method

of arranging the plots, we can reduce the standard

error to one-half, the value of the experiment is

increased at least fourfold ; for only by repeating the

experiment four times in its original form could the

same accuracy have been attained. This argument

really underestimates the preponderance in the scien-

tific value of the more accurate experiments, for, in

agricultural plot work, the experiment cannot in

practice be repeated upon identical conditions of soil

and climate.

49- 1. The Analysis of Covariance

It has been shown that the precision of an experi-

ment may be greatly increased by equalising, among
the different treatments to be compared, certain

potential sources of error. Thus in dividing the area

available for an agricultural experiment into blocks,

in each of which all treatments are equally represented,

the differences of fertility between the different blocks

of land, which without this precaution would be a
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source of experimental error, have been eliminated

from the comparisons, and, by the analysis of variance,

are eliminated equally from our estimate of error.

In the Latin square any differences in fertility between

entire rows, or between entire columns have been

eliminated from the comparisons, and from the

estimates of error, so that the real and apparent

precision of the comparison is the same as if the

experiment had been performed on land in which the

entire rows, and also the entire columns, were of equal

fertility.

A strictly analogous equalisation is widely applied

in all kinds of experimental work. Thus in nutritional

experiments the growth rates of males and females may

be distinctly different, while nevertheless both sexes

may be equally capable of showing the advantage of

one diet over another. The effect of sex, on the

growth rates compared, will, therefore, be eliminated

by assigning the same proportion of males to each

experimental treatment, and, what is more often

neoflected, eliminating the averasfe difference between

the sexes from the estimate of error. Notably

different reactions are often found also in different

strains or breeds of animals, and for this reason

each strain employed should be used equally for all

treatments. The effect of strain will then be eliminated

from the comparisons, and may be easily eliminated

by the analysis of variance from the estimate of

error. It is sometimes assumed that all the animals

in the same experiment must be of the same strain,

and adequate replication is in consequence believed
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to be impossible for lack of a sufficient quantity

of homogeneous material. The examples already-

discussed show that this requirement is superfluous,

and adds nothing to the precision of the comparisons

actually attained. Indeed while adding nothing to

the precision, this course detracts definitely from the

applicability of the results ; for results obtained from

a number of strains are evidently applicable to a

wider range of material than results only established

for a single strain ; and, working from highly homo-

geneous material, there is a real danger of drawing

inferences, which, had we had a wider inductive basis,

would have been seen to be insecure.

There are, however, many factors relevant to the

precision of our comparisons, which, while they cannot

be equalised, can be measured, and for which we may
reasonably attempt to make due allowance. Such are

the age and weight of experimental animals, the initial

weight being particularly relevant in experiments on

the growth rate. In field experiments with roots the

yield is often notably aflfected by the plant number,

and if we have reason to be willing to ignore any

effect our treatments may have on plant number,

it would be preferable to make our comparisons on

plots with an equal number of plants. Again, although

we cannot equalise the fertility of the plots used for

different treatments, the same land may be cropped

in a previous year under uniform treatment, and the

yields of this uniformity trial will clearly be relevant

to the interpretation of our experimental yields. This

principle is of particular importance with perennial
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crops, for there is here continuity, not only of the soil,

but of the individual plants growing upon it ; and the

much more limited facilities for confirming results on a

new, or unused, plantation make it especially important

to increase the precision of such material as we have.

Ex. 46-1. Covariance of tea yields in successive

periods.—T. Eden gives data for successive periods

each of fourteen pluckings from sixteen plots of tea

bushes intended for experimental use in Ceylon. The

yields are given in per cent, of the average for each

period, but the process to be exemplified would apply

equally to actual yields. We give below (Tables 6i-i,

61-2) data for his second and third periods, which

for our purpose may be regarded as preliminary and

experimental yields respectively. The sixteen plots

are arranged in a 4x4 square.

TABLE 6i-i

Preliminary Yields of Tea Plots.

88 102 91 88 369

94 no 109 118 431

109 105 "5- 94 423
88 102 91 96 377

379 419 406 396 1600

TABLE 6i-2

Experimental Yields of Tea Plots.

90 93 85 81 349

93 106 114 121 434
114 106 1 1

1

93 424

92 107 92 102 393

389 412 402 397 1600
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Let us suppose the area in the experimental period

had been occupied by a Latin square in four treatments.

Of the 15 degrees of freedom, 6 representing differences

between rows and columns would then be eliminated,

and the remaining 9 would be made up of 3 for

differences between treatments, and 6 for the estima-

tion of error. Since no actual treatment differences

were applied, we shall use all 9 for the estimation of

error. The experimental yields then give

TABLE 6i-3

Analysis of Experimental Yields.

Degrees of

Freedom.
Sum of

Squares.

aiean
Square.

Rows

Columns .

Error

3

3

9

1095-5

69-5

875.0 97-22

Total . 15 2040-0 136-00

Even after eliminating the large variance among

rows, the residual variance is as high as 97-22 ;
the

standard error of a single plot is, therefore, about

9-86 per cent., and that for the total of four plots

about 4-93 per cent.

It is, however, evident that a great part of this

variance of yield in the experimental period has been

foreshadowed in the yields of the preliminary period.

A glance at the table will show that of the eight plots

which were above the average in the experimental
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period, seven were above the average in the pre-

liminary period. In fact, by choosing sets of plots

which in the first period yielded nearly the same total

for each set, and assisfnincr these sets to treatments in

the experimental period, we might have very materially

reduced the experimental error of our treatment com-

parisons. The equalisation of the total preliminary

yields has often been advocated, but seldom practised

for reasons which will become apparent. The common
sense inference that sets of plots, giving equal total

yields in the preliminary period, should under equal

treatment give equal totals in the experimental period,

implies that the expectation of subsequent yield of any

plot is well represented in terms of the preliminary

yield by a linear regression function. The important

point is that the adjustments of the results of the

experiment appropriate to any regression formula (of

which the linear form is obviously the most important)

may be made from the results of the experiment

themselves without taking any notice, in the arrange-

ment of the plots, of the previous yields. The method

of regression also avoids two difficulties which are

encountered in the equalisation of previous yields,

namely that the advantage of eliminating differences

between rows and columns (or blocks) would often

have to be sacrificed to equalisation, and that such

equalisation as would be possible would always be

inexact.

The adjustment to be made in the difference in

yield between two plots, the previous yields of which

are known, is evidently the difference to be expected
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in the subsequent yields, judged from the difference

observed between plots treated alike. The appropriate

coefficient of linear regression is given by the ratio of

the covariance to the variance of the independent

variate, which in this case is the variance in the

preliminary yields ascribable, in our experimental

arranofement, to error. To find this variance of the

independent variate, the preliminary yields are analysed

in exactly the same way as the experimental yields.

TABLE 6i-4

Analysis of Preliminary Yields.

Degrees of

Freedom.
Sum of

Squares.

Rows

Columns

Error

3

3

9

745-0

213-5

567-5

Total . 15 1526-0

A third table, this time an analysis of the covariance

of the preliminary and the experimental yields, is con-

structed by using at every stage, products of the yields

in these two periods in place of squares of yields at

either one period.

The exact similarity of the arithmetic in construct-

ing these three tables may be illustrated by taking out

in parallel the contributions of "columns" to each

table. In Tables 6i-i and 61-2 the mean of the

column totals is 400, the deviations in the first columns

are —21 and — 11 ; denoting these by x and jk, the
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squares and products of these pairs of numbers are

written in parallel below :

—

TABLE 6i-5

.r2 xy /

441
361

36
16

+ 231
+ 228
+ 12

+ 12

121

144

4

9

854 + 483 278

Dividing these totals each by 4 (the number of

plots contributing to each), we have the corresponding

entries in the triple table :

—

TABLE 6i-6

Sums of Squares and Products.

Degrees of

Freedom.
*" xy y-

Rows , i Xi -
-'.

Columns . T''^^ .

Error . f^'^ .

3

3

9

745-0

213-5

567-5

837-0

I20-75

654-25

1095-5

69-5

875-0

Total 15 1526-0 1612-00 2040-0

in which the variances of the two variates, and their

covariances are analysed in parallel columns.

Relationships expressed either by regression or by

correlation, between the two variates, may now be

determined independently for the different rows of the

table. In particular we need the^ratio 654-25/567-5

representing the regression o{y on x, for plots treated



THE ANALYSIS OF VARIANCE 257

alike, after eliminating the differences between rows

and columns. This is evidently the correct allowance

to be deducted from any experimental yield jk, for each

unit by which the corresponding x is in excess of the

average.

The correction, being linear, may be applied to

individual plots, or to the composite totals represented

by rows, columns or treatments. More compre-

hensively, the result of applying the correction and

analysing the variance of the adjusted yields, may be

derived directly from the analysis of sums and products

already presented. For, if b stand for the regression

coefficient, comparisons of adjusted yields will be in

fact comparisons of quantities i^y — bx). Now

(
J _ bxf = bKx"- 2bxy +f" ;

so that, to obtain the sum of squares for the adjusted

yields in any line, we need only multiply the entries in

the table already constructed by b^, — 2b and unity, and

add the products.

In the present example b= 1-1529, <^^= 1-3291,

TABLE 6i-7

Analysis of Adjusted Yields.

Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

Rows

Columns .

Error

3

3

8

155-8

74-8

120-7

51-93

24-93

15-09

Total 14 351-3 25-09
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It will be noticed that the total number of degrees

of freedom has been diminished from 15 to 14, to

allow for the one adjustable constant in the regression

formula, and that this one degree has been subtracted

from the particular line from which the numerical

value of the regression has been estimated. In this

line in fact, b has been chosen so that

and consequently, so that

S0'-^x)^ = S(y)-S^Gi7)/SCi-^);

showing that the entry in this line is always diminished

by the contribution of one degree of freedom. In the

other lines the entry may be either increased or

diminished by the adjustment.

Comparing the analysis of the adjusted yields

with that obtained without using the preliminary

pluckings, the most striking change is the reduction

of the mean square error per plot from 97-22 to 15-09,

in spite of the reduction in the degrees of freedom
;

showing that the precision of the comparison has

been increased over six-fold. A second point should

also be noticed. The large difference in yield between

different rows, which appears in the original analysis,

has fallen to about one-seventh of its original value.

It appears therefore that the greater part of this

element of heterogeneity may be eliminated in

favourable cases by the use of preliminary yields
;

but this does not diminish the importance, when

such preliminary yields are available, of eliminating

from the comparisons differences between the larger
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areas of land, blocks, rows, columns, etc. In fact the

elimination of rows and columns is more important in

the adjusted yields, where it reduces the mean square

from 25-09 to 15-09, than in the unadjusted yields,

where it reduced it from 136 to 97-2. If, for example,

we take an experiment with 10 per cent, error in the

means of treatments, to have unit value, the elimination

of rows and columns in the unadjusted yields only

increased the value from 2-94 to 4-12, a net gain of

I -18 units ; while, the same elimination in the adjusted

yields increases the value from 15-94 to 26-51, a net

gain of 10-57 units, or about nine times as much.

An examination of the process exemplified in

the foregoing example shows that it combines the

advantages and reconciles the requirements qf the

two very widely applicable procedures known as

regression and analysis of variance. Once the simple

procedure of building up the covariance tables is

recognised, there will be found no difficulty in applying

the analysis to three or more variates and the complete

set of their covariances, and so making allowance

simultaneously for two or more measurable but un-

controlled concomitants of our observations. These

observations are treated as the dependent variate, the

variability of which may be partially accounted for in

terms of concomitant observations, by the method of

multiple regression. Thus, if we were concerned to

study the effects of agricultural treatments upon the

purity index of the sugar extracted from sugar-beet, a

variate which might be much affected by concomitant

variations in (a) sugar percentage, and (d) root weight,
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an analysis of covariance applied to the three variates,

purity, sugar percentage and root weight, for the

different plots of the experiment, would enable us to

make a study of the effects of experimental treatments

on purity alone ; i.e.^ after allowance for any effect they

may have on root weight or concentration, without

our needing to have observed in fact any two plots

agreeing exactly in both root weight and sugar

percentage.

In such a research it would again be open to the

investigator to eliminate not merely the mean root

weight of the plots, but, if he judged it profitable, also

its square, so using a regression non-linear in root

weight. Again, if he possessed not merely the mean

root weight for the different plots, but the individual

values of which the mean is the average, he could

eliminate simultaneously mean root weight and mean

square root weight, or, in other words, make his purity

comparisons with corrections appropriate to equalising

both the means and the variances of the roots from

the different plots.

In considering, in respect to any given body of data,

what particular adjustments are worth making, it is

sufficient for our immediate guidance to note their

effect upon the residual error. If, in example 46-1,

we compare Tables 61-3 and 61-7, it is apparent that

we may divide the 9 degrees of freedom for error

of unadjusted yields into two parts, one of which

comprises the i degree of freedom eliminated by the

regression equation, and the other the 8 degrees of

freedom remaining after this equation has been used
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for adjusting the yields. This analysis of error is

shown below.

TABLE 6i-8

Analysis of Residual Error.

Degrees of

Freedom.
Sum of

Squares.

Mean
Square.

Regression .... I 754-3 754-3

Error of adjusted yields 8 120-7 15-09

Error of unadjusted yields . 9 875-0

The great advantage of making due allowance for the

preliminary yields is evidently due to the very large

share of the residual error which is contained in the

I degree of freedom specified by our regression formula.

We need not test the significance of a regression before

using it, but any advantage it may confer will be slight

unless it is in fact significant.

The chief advantage of the analysis of covariance

lies, however, not in its power of getting the most out

of an existing body of data, but in the guidance it is

capable of giving in the design of an observational

programme, and in the choice of which of many con-

comitant observational programmes shall in fact be

recorded. The example of the tea yields shows that

in that case the value for experimental purposes of a

plantation was increased six-fold by the comparatively

trifling additional labour of recording separately the

yields from different plots for a period prior to the

experiment. With annual agricultural crops, to crop

the experimental area in the previous year is nearly
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to double the labour of the experiment. What is

often more serious, a year's delay is incurred before

the result is made available. Analysis of covariance

on successive yields on uniformly treated land shows

that the value of the experiment is usually increased,

but seldom by more than about 60 per cent., by a

knowledge of the yields of the previous year. It seems

therefore to be always more profitable to lay down an

adequately replicated experiment on untried land than

to expend the time and labour available in exploring

the irregularities of its fertility.

In most kinds of experimentation, however, the

possibilities of obtaining greatly increased precision

from comparatively simple supplementary observations

are almost entirely unexplored, and, indeed, in many

fields the possibility of making a critically valid use

of such observations is scarcely recognised. The

probability that methods of experimentation can be

greatly improved, either by a great increase of pre-

cision, or by a proportionate decrease in the labour

required, is naturally greatest in these fields.



IX

THE PRINCIPLES OF STATISTICAL
ESTIMATION

50. The practical importance of using satisfactory-

methods of statistical estimation, and the widespread

use in statistical literature of inefficient statistics, in

the sense explained in Section 3, makes it necessary for

the research worker, in interpreting his own results,

or studying those reported by others, to discriminate

between those conclusions which flow from the nature

of the biological observations themselves, and those

which are due solely to faulty methods of estimation.

As an example which brings out the main prin-

ciples of the theory, and which does not involve data

so voluminous that we cannot easily try out a variety

of methods, we shall choose the estimation of linkage

from the progeny of self-fertilised heterozygotes. Thus

for two factors in maize. Starchy v. Sugary and Green v.

White base leaf we may have (W. A. Carver's data)

such observations as the following seedling counts :

TABLE 62

Starchy. Sugary.

Total.

Green. White. Green. While.

1997 906 904 32 3839

2G3
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51. The Significance of Evidence for Linkage

It is a useful preliminary before making a

statistical estimate, such as one of the intensity of

linkage, to test if there is anything to justify estimation

at all. We therefore test the possibility that the two

factors are inherited independently. If such were the

case the two factors, each segregating in a 3 : i ratio,

would give the four combinations in the ratio 9 : 3 ' 3 '- i,

or with expectations, and corresponding contributions

to x^ shown in Table 63.

TABLE 63

Expectation . 2159-4 719-8 719-8 239-9

Difference {d) - 162-4 + i86-2 + 184-2 -207-9

d'^jin 12-21 48.17 47-14 180-17 287-69

Since for 3 degrees of freedom the i per cent,

point is only 11-34, the observed values are clearly in

contradiction to the expectations. Such a result would,

however, be produced either by linkage or by a

departure from the 3 : i ratios ; the test may be made

specific by analysing x^ i^ito its components as in

Section 22. For this purpose, designating the four

observed frequencies by a, b, c, d, and their total by

n, the deviations from expectation in the ratio of

starchy and sugary will be measured by

x={a-\-b)-z{c+d) =+95,

that of the other factor by

y=:{a-\-c)-l{b-\-d) =+87,
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while to complete the analysis we need

^ = «-3^-3^+9rtf= -3145-

Then dividing the square of each discrepancy by

its sampling variance, namely 372 for x and y, and

<^n for z, we have the components

x"--^3« . . •784

y-rzn . •657

22 Hrgn . 286•273

Total . . 287-714

agreeing with the former total as nearly as its limited

accuracy will allow. The conclusion is evident that

neither of the single factor ratios is abnormal, and that

all but an insignificant fraction of the discrepancy is

ascribable to linkage. The principles on which the

deviations x, y, and z are constructed will be made

more clear in Section 55.

52. The Specification of the Progeny Population for

Linked Factors

When, as in the present case, the results are to be

interpreted in terms of a definite theory, the specifica-

tion of the population consists merely in following out

the logical consequences of that theory. The theory

we have to consider is that in both male and female

gametogenesis, while each gamete has an equal chance

of bearing the starchy or the sugary gene, and again

of bearing the gene for green or white base leaf, yet

the parental combinations Starchy White and Sugary

Green are produced more frequently than the recom-

bination classes Starchy Green and Sugary White.

If the probability of the two latter classes is/ in female
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gametogenesis and p' in male gametogenesis, the

probability of the four types of ovules and of pollen

will be
TABLE 64

Starchy. Sugary.

Green. White. Green. 1 White.

Ovules

Pollen \P'

\{1-P) \P

\P'

Assuming as part of the hypothesis that each

grain of pollen will with equal probability fertilise

each ovule, and that the seeds and seedlings produced

will be equally viable, the probability that a seedling

will be the double recessive Sugary White, which can

only happen if both pollen and ovule carry these

characters, will be \pp' . The probability of each of

the other three classes of seedlings may be deduced

at once, for the total probability of the two Sugary

classes is \ irrespective of linkage, which leaves

4(1 ~PP') ^^^ ^^^ Sugary Green class. Similarly the

probability of the Starchy White class is J(i —pp'),

leaving ^(2 +//') for Starchy Green.

Since these probabilities involve only the quantity

//', it is only of this and not of the separate values of

p and /' that the data can provide an estimate. We
shall therefore illustrate the problem of estimating the

unknown quantity pp', which we may designate by 0.

If/ and/' were equal, then ^Q would give the recom-

bination fraction in both sexes, and if these are unequal

it will always give their geometric mean. The data
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before us, however, throw direct light only on the

value of 0. It is to be observed that in the case of

coupling, when both dominant genes are received from

the same grandparent, exactly the same specification

is used, only it is i — >JQ instead of ,JS which is to be

interpreted as the recombination fraction.

The statistical problem now takes the definite form :

the probabilities of four events are

1(2+0), i{i-e), \{i-e), \e-

estimate the value of the parameter Q from the observed

frequencies a, b, c, d.

53. The Multiplicity of Consistent Statistics

Nothing is easier than to invent methods of estima-

tion. It is the chief purpose of this chapter to explain

how satisfactory methods may be distinguished from

unsatisfactory ones. The late development of this

branch of the subject seems to be chiefly due to the

lack of recognition of the number and variety of the

plausible statistics which present themselves. We
shall consider five of these.

In our example we may observe that the probability

of the first and fourth class increases, and that of the

two other classes diminishes as is increased. The

expression
a — b — c-\-d

will therefore afford a convenient estimate of Q. To
make a consistent estimate on these lines, we substitute

the expected values

-(2+a, 1-0, I -a, 0),
4
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for a, b, c, and d, and finding the result to be nO, we

define our estimate, Ti, by the equation

nT^ = a — b — c-\-d.

Alternatively, we might take the expression for 2

in Section 51, which appears there as a measure of

linkage for the purpose of testing its significance ; sub-

stituting the expected values, as before, we obtain

n[/\B — i), and may define a new estimate. To, by the

equation
n{^i:.^- i) = a- lb- y+gd

or ^7iT^ = 2a — 2b— 2c-{-iod.

Obviously any number of similar estimates may be

formed by the same method.

Instead of considering the sum of the extreme

frequencies a and d we might have considered their

product. The ratio of the product ad to the product

be clearly increases with ; on substitution we have

an equation for a third estimate in the form

e{2+e) _ad
{i-ef be'

a quadratic equation of which T3 is taken to be the

positive solution.

As a fourth statistic we shall choose that given by

the method of maximum likelihood. This method

consists in multiplying the logarithm of the number

expected in each class by the number observed, sum-

ming for all classes and finding the value of 6 for which

the sum is a maximum.

Now,

a\og {2-\-e) + b\og (i-O)+^log(i-0) -{-dlogB
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may be seen, by differentiating with respect to 9, to be

a maximum if

a d bArc

2 + + "f^'

leading to the quadratic equation

iiQ- — {a— 2b — 2c— d)Q— 2d= o,

of which the positive solution, T4, satisfies the condi-

tion of maximum likelihood.

Finally, for any value adopted for 0, we shall be

able to make a comparison of observed with expected

frequencies, and to calculate the discrepancy, x^

between them. In fact x^ can be expressed in the form

^ - n\2+d^ i-e'^ i-e'^ e)
'''

and the value for which this is a minimum will be the

positive solution of the equation of the 4th degree

a^ _, ^_ ^-+ ^"^

{2+ef '

e-' {i-ey

a statistic which we shall designate by T5.

54. The Comparison of Statistics by means of the Test
of Goodness of Fit

All the statistics mentioned, except the last, are

easily calculated. The reader should calculate the

first four, and verify that the value of the fifth given

below approximately satisfies its equation. For each

statistic we may calculate the numbers expected in

the four classes of seedlings, and compare them with

those observed. This is done in Table 65, where also

the values of yj derived from this comparison are

given.
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TABLE 65

Comparison of Five Statistical Estimates of Linkage.

Method.

Recombination
per cent.

Numbers
expected

I. 2. 3- 4- 5-

057046 •045194 •035645 -035712 •035785

23-88 21-26 18-880 18-898 18-917 Observed
1974-25 1962-875 1953-711 1953-775 1953-845 1997
905-00 916.375 925-539 925-475 925-405 906
905-00 916-375 925-539 925-475 925.405 904
54-75 43-375 34-211 34-275 34-345 32
9-717 3-86o 2-0158 2-0154 2-OIS3 ...

In the actual values of the estimates the first three

methods differ considerably, but the last three are

closely alike ; so closely that the expectations of

methods (3) and (5) differ from those of (4) by only

about one-fifteenth of a seedlinof in each class. In the

comparisons between the numbers expected and those

observed, the most important discrepancies are in the

fourth class, where method (2) gives a large and

method (i) a very large discrepancy. The contrast

between the first three methods in the values of x^ is

very striking. For two degrees of freedom—not three

because on fitting a linkage value one degree should

be eliminated—a value above 9-21 should only occur

once in a hundred trials. The value given by method

(2) is not in itself significant, but since its value is

nearly double that of methods (3), (4), and (5) we may
be sure that the test of goodness of fit, if correct for

the latter, must be highly erroneous for method (2),

as well as for method (i). The general theorem which

this illustrates is that the test of goodness of fit is only

valid when efficient statistics are used in fittingr ao
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hypothesis to the data ; in this case, as will be seen

in the next section, methods (3), (4), and (5) are efficient,

while methods (i) and (2) are not.

55. The Sampling Variance of Statistics

A more searching examination of the merits of

various statistics may be made by calculating the

sampling variance of each. Since the subject of

sampling variance is usually treated by somewhat

elaborate mathematical methods, it will be as well to

give a number of simple formulae by which the majority

of ordinary cases may be treated.

First, if ji; is a linear function of the observed

frequencies, such as

-- "' Z'ja+ k.-^b+ k.^c+ k^d,

then, designating the theoretical probability of any

class by/, the mean value of ^' will be

n^i^pk).

The random sampling variance of x is given by

the formula

\N{,x) = ^{pk^-')-^\pk\ ... (A)

and if the mean value of x is zero, the variance of x

becomes simply

Further, if a second linear function of the fre-

quencies, y, is specified by coefficients, k , then the

covariance of x and y is

«S(/M')-

In view of this theorem the choice of the linear func-

tions used for analysing x" in Section 51 will no longer
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appear arbitrary, and the values taken for their sampling

variance will be apparent. For the values oip are

j^(9> 3) 3> 0>

and for x the values of k are

I, I, -3, -3>

giving
S(/^) = o, S(/X'-^) = 3.

so that the variance is yi, the value adopted. For y
we evidently have the same values, with the additional

fact that the mean value of xy is zero. For z again

S(/A^) = o, S(;^^2) = 9,

while the mean values of xz and_)/s are each zero. In

analysing x' into its components we always use linear

functions of the frequencies, the mean value of each

being zero, and such that all the covariances shall

vanish.

It should be noted that the mean of .r^' is only zero

in the absence of linkage. When linkage is present the

values of p are

1(2 + 0, 1-0, 1-0, 0),

cflvinof for the covariance of :t' and i',

;/S(//l'^) = ?<40-i).

and for the correlation between them,

K40-I).

A statistic used for estimation will not be a linear

function of the frequencies, for it must tend to a finite

value as the sample is increased indefinitely ; it will,

however, often be of the form

T = i {k.a^- k.-^b+ k.,c-{-k.d),
n

as in our example are Tj and T,.
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For such cases a convenient formula is

;zV(T) = S(//^2)_02 .
. . . (B)

the statistic being supposed to be consistent. Now
for Tj, k is always +1 or - i, and we have at once

^ n

while for To, with k = \,
-i -\, 2^, and / =

^{2 + 0, I -0, 1 -6, 6) it is easy to find

1+60-40-^

These two sampling variances are very different

;

if 6 is small (close linkage in repulsion), the variance

of T2 is only a quarter of that of T^, and we may say

that To utilises four times as much of the available

information as does Ti. This advantage diminishes,

but persists over the whole range of repulsion linkages,

for at = ^ the latter variance is only three-quarters

of the former. The variances become equal at = ^,

at which value the coupling recombination, i — ^6,

is about -29, and for closer linkage than this, in the

coupling phase, Tj is the better statistic.

The standard error to which either estimate, T,

is subject is, of course, found by taking the square

root of the variance ; it will be of more practical

interest to find the standard error of the recombination

fraction, ^6. For this purpose the above variances

are divided by 4.6, before taking the square root.

Putting = -O357, in the variances, we then have the

two estimates of the recombination percentage,

23-88 + 4-268 and 2I-26 + 2-348,

T
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from the first of which we might judge roughly that

the recombination per cent, lay between 15-3 and 32-4,

while the second indicates the much closer limits i6-6

to 26-0.

For any function of the frequencies, whether the

sample number n appears explicitly or not, we can

obtain the approximation to the sampling variance

appropriate to the theory of large samples in the form

i...^>_c/.r3TV\_/aT\
n

2

Vm = S|/^g-j|-^g-j, . . . (C)

a formula which involves the differential coefficients of

the function in question with respect to each observed

frequency, and to the total, n. After differentiation

the expectation /;^ is substituted for each frequency a.

If we apply formula (C) to the function

F = log iad) - log ibc) = log { T3(2 + T3) } - 2 log (I - T3),

the values of dF/da are

I I II
a b c d

while, since n does not appear explicitly, SF/9;2 = o.

Hence, substituting /;z for a, and the known values of

/ in terms of 0, we have

4'^ J
2 + ' 1-0 ' 0(i_(^)(2 + 0)

To obtain the variance of T3 we must divide this

by the square of d¥jdT^, putting T3 equal to Q after

differentiation ; but

^F _ I 21
dT-J+Y,-^i-T,"'Y;
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hence
20(£-0)(2 + 0)

For the variance of the statistic which satisfies the

conditions of maximum Hkelihood a very simple and

direct general method is available. The expression

obtained by direct differentiation, and which, equated

to zero, gave the equation for T4 in Section 53, was

a b-\-c d
2+ 1-0 '

If this is differentiated again with respect to 0, and

the expected values substituted for a, b, c, and d, we

obtain

4V2+0^ 1-0^0;'

and this is simply equated to - i/V(T4), giving

20(1-0) (2 + 0)
;.V(T,) = :

I+2(

the same expression as we have obtained for the

sampling variance of To. This expression is of great

importance for our problem, for it has been proved

that no statistic can have a smaller sampling variance,

in the theory of large samples, than has the solution

of the equation of maximum likelihood. This group

of statistics (to which the minimum x^ solution also

always belongs), which agree in their sampling variance

with the maximum likelihood solution, are therefore of

particular value, and are designated efficient statistics,

on the ground that for large samples they may be

said to make use of the whole of the relevant information
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available, whereas less efficient statistics such as T^ and

Ta utilise only a portion of it.

The expression for the minimum variance

20(1-0) (2 + 0)

(i+20);z

represents, therefore, an intrinsic property of the data,

irrespective of the methods of estimation actually used.

For large samples we may interpret its reciprocal

(1+20);?

20(1-0) (2 + 0)

as a numerical measure of the total amount of informa-

tion, relevant to the value of 0, which the sample

contains ; and it is evident that each seedling observed

contributes a definite amount of information, measured

by
1+20

20(1-0) (2 + 0)

relevant to the estimation of the value of 0. This

consideration affords a basis for the exact treatment

of sampling problems even for small samples, for once

the amount of information in the data can be calculated,

the amount extracted by any proposed method of

analysis may be evaluated likewise, though this may

be difficult, and a comparison of the two quantities

gives an objective measure of the efficiency of the

method proposed in conveying the relevant information

available.

The actual fraction of the information utilised by

inefficient statistics in large samples is obtained by

expressing the random sampling variance of efficient
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statistics as a fraction of that of the statistic in question.

Thus for Ti and T2 we have the fractions,

E(T.) = V(TJ^V(T,) =
(-^^^±f^).

which rises to unity at 0= i, but is less at all other

values ; and

E(T,) = V(T.)^V(T,)=^,Mg&&+|_..

which rises to unity at = ^, falling to zero if 6 = 0,

or 6= I.

Fig. 1 1 shows the course of these fractions ex-

pressed as a percentage, for all values of the recombina-

100

H :

y-^ ^^^^^--"^
z 80 / ^^-^N.
w / j^^ >v
u / ^y^ \^
« / y^ ^v

a, 60 / yy \
>- / y^ \
u / y'^ \
Z

40 : "y -y^
V

y / y^ \

E / X \
ta / .^ \
tti 20J^

.

\
10 20 30 40 50 40 30 20

REPULSION COUPLING
RECOMBINATION PER CENT.

Fig. II.—Efficiency of Tj and Tg for all values of d. T,, T4, and Tg
having lOO per cent, efficiency throughout the range, are

represented by the upper line.

tion percentage, iJQ for repulsion, and i — ^Q for

coupling. It will be seen that for our actual value of

about 19 per cent, in repulsion, the efficiency of Ti is

about 13 per cent., while that of Tg is about 44 per

cent. The use of Ti wastes about seven-eighths of
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the information utilised by T3, T4, and T5, while

the use of To wastes more than half of it. In other

words, Tj is only as good an estimate as should be

obtained from a count of 503 seedlings, while Tg is as

good as should be obtained from 1661 out of the 3839

actually counted.

The standard error of the efficient estimates of

recombination value is 1-545 percent., giving probable

limits of 15-8 to 2 2-0 for the true value. The use of

inefficient statistics is therefore liable to give not

merely inferior estimates of the value sought, but

estimates which are distinctly contradicted by the

data from which they are derived. The value 23-88

per cent, obtained for Ti differs from the better esti-

mates by more than three times the standard error of

the latter. It is highly misleading to derive such an

estimate from data which themselves prove it to be

erroneous.

The second respect in which the use of inefficient

statistics is liable to be misleading is in the use of the

X" test of goodness of fit. Using Ti, we should

naturally be led to conclude that the simple hypo-

thesis of linked factors was in ill accord with the

observations and that the results must be complicated

by some such additional factor as differential viability.

Finding only 32 double recessives against an expecta-

tion of 55 it would be natural to draw the conclusion

that this genotype suffered from a low viability

;

whereas the data rightly interpreted give no significant

indication of this sort. In the second place, whether

the discrepancy is ascribed to differential viability or
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not, its existence would provide a very good reason

for distrusting the linkage value obtained from such

data ; if, on the contrary, satisfactory methods of

estimation are used, the grounds for this distrust are

seen to fall away.

56. Comparison of Efficient Statistics

It has been seen that the three efficient statistics

tested give closely similar results. This is in accordance

with a general theorem that the correlation between

any two efficient statistics tends to + i, as the sample

is indefinitely increased. The conclusions drawn from

their use will therefore ordinarily be equivalent. It

appears from Fig. 1 1 that, for special values of 6,

Ti and To also rank as efficient.

T2 is efficient when 6 is J, or in the absence of

linkage. This accords with the use of -^ in Section 51

for testing the significance of linkage, for we are then

testing the hypothesis that the factors are unlinked,

and the test may be applied simply by seeing whether

or not 2"^ exceeds (say) 3672. Any test based upon an

efficient estimate of linkage "compared to its standard

error must agree with this. It is by no means un-

common to find statistics such as T2 which provide

excellent tests of significance, yet which become

highly inefficient in estimating the magnitude of a

significant effect. An outstanding example of this is

the use of the third and fourth moments to measure

the departure from normality of a frequency curve.

The third and fourth moments provide excellent tests

of the significance of the departure from normality,
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but when the distribution is one of the Pearsonian

types differing considerably from the normal, the third

and fourth moments are very inefficient statistics to

use in estimating the form of the curve. This is the

more noteworthy as the method of moments is ordin-

arily used for this purpose. The fact is that the

efficiency of each of these statistics rises to looper cent,

only for the normal form, just as that of T^ reaches

lOO per cent, only for zero linkage; but that the

efficiency depends on the form of the curve, just as

that of To depends on the value of 0, and falls rapidly

away as we leave the special region of high efficiency.

The statistic, Tj, is fully efficient when 6=i,

that is, for very high linkage in the coupling phase
;

and therefore in the theory of large samples, should

give an estimate equivalent to Tg, T4, and T5. This

extreme case, 0=i, is interesting in bringing out a

limitation of the theory of large samples, which it is

sometimes important to bear in mind ; for the theory

is valid only if none of the numbers counted, a, d, c,

and d, are very small. Now for high linkage in coup-

ling the recombination types, d and c, may be very

scarce. It is true that for any proportion of crossing-

over, however small, it is possible theoretically to take

a sample so big that d and c will be large enough

numbers ; and in such cases the theory of large

samples is justified. But it is also true for a sample

of any given size, that linkage may be so high that

seedlings of types d and c will be few ; then, it is easy

to see that some of the efficient statistics will fail. If,

for example, either ^ or ^ is zero, Tg will necessarily
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be unity, indicating complete linkage, whereas two or

three seedlings in the other recombination class will

show that crossing-over has really taken place. In

the same way T5 also fails, for it makes the recombina-

tion fraction proportional to JU^-^c\ while Tj and T4

make it proportional to ^ + ^. In general the equation

for minimising x^ is never satisfactory when some of

the classes are thinly occupied, as one might expect

from the nature of x" \ the method therefore fails

whenever the number of classes possible is infinite, as it

usually is when we are concerned with the distributions

of continuous variates. The two remaining efficient

statistics Ti and T4 give equivalent estimates

b-^-c

n

for the recombination fraction, when the linkage is

very high. Of course, as shown by Fig. 11, for any

incomplete linkage the efficiency of Tj is slightly

below 100 per cent., so that the exact value of T4 is

slightly preferable. Ti, however, does provide a

distinctly better estimate than T3 or Tg if b and c are

small.

57. The Interpretation of the Discrepancy x^

The statistic obtained by the method of maximum

likelihood stands in a peculiar relation to the measure

of discrepancy, x^ and an examination of this relation

will serve to illuminate the method, using degrees of

freedom, which we have adopted in Chapter IV., and

throughout the book. It has been stated that although

in the distribution of a given number of individuals
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among four classes there are three degrees of freedom,

yet if, as in the present problem, the expected numbers

have been calculated from those observed by means of

an adjustable parameter (0), then only two degrees of

freedom remain in which observation can differ from

hypothesis. Consequently the value of x" calculated

in such a case is to be compared with the values

characteristic of its distribution for two degfrees of

freedom. This principle has been disputed, but the

common-sense considerations upon which it was based

have since received complete theoretical verification.

In the present instance we can in fact identify the two

decrees of freedom concerned. For the observed

numbers in each class will be entirely specified if we

know :

.) The number in the sample
;

.) The ratio of starchy to sugary plants
;

.) The ratio of green to white base leaf;

(

(i

(ii

(iv.) The intensity of linkage.

Now if the expected series agrees in items (i.) and

(iv.), it can only differ in items (ii.) and (iii.) and these

will be completely given by the two quantities x and y
defined by

x=a-^b-lc-id,

y= a-^b-\-c-T,d,

specifying the ratios by linear functions of the

frequencies.

The mean values of x and y are zero, and the

random sampling variance of each is 3;^. In the

absence of linkage their deviations will be independent,
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but if linkage is present the mean value of xy has

been found to be
1-40-3«—^ ,

3

and the correlation between x and jk to be

1-40

The simultaneous deviation of x and y from zero

will therefore be measured (compare Section 2>'^) by

This expression, which of course depends upon 6,

is a quadratic function of the frequencies ; in this it

resembles x^ and on comparing term by term the two

expressions it appears that

where I is the quantity of information contained in the

data as defined in Section 55.

This identity has two important consequences ; first

that x^ = Q^ for the particular value of given by the

equation of maximum likelihood, and for no other value.

At this point, then, even for finite samples, the devia-

tions between observation and expectation represent

precisely the deviations in the two single factor ratios.

The second point is that for any value of d, y^

is the sum of two positive parts of which one is Q^,

while the other measures the deviation of the value of

d considered from the maximum likelihood solution
;
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this latter part is the contribution to y^ of errors of

estimation, while the discrepancy of observation from

hypothesis is measured by Q^ only.

Fig. 12 shows the values of x^ and Q^ over the

reofion coverinor the three efficient solutions.

•03564 66 68 70 72 74 76 78 80 82 -03584

VALUES OF e

Fig. 12.—Graphs of x^ and Q- for varying 6 in the neighbourhood of the

efficient estimates.

The contact of the graphs at the maximum likeli-

hood solution, makes it evident why the solution based

on minimum y^ should be of no special interest,

although x^ is a valid measure of discrepancy between

observation and hypothesis. As the hypothetical

value, 0, is changed the value of Q^ changes, and,

although this change is very minute, it gives the line

a sufficient slope to make an appreciable shift in the

point of contact.

If we set aside the portion ascribable to errors of
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estimation, which satisfactory methods of estimation

will always reduce to a trifling amount, it is apparent

that the measure of discrepancy, x^ hi our chosen

problem, merely measures the deviation from expecta-

tion of the two single factor ratios, and its significance

must therefore be judged by comparison with expecta-

tion for two degrees of freedom. Such a comparison

will give an objective test dependent only on the data,

and independent of our methods of treating it, if and

only if the error of estimation measured from the

maximum likelihood solution is sufficiently small.

This, of course, where the theory of large samples is

applicable, will be true if any efficient statistic is used
;

it will always be true for the method of maximum
likelihood.

57- 1. Fragmentary Data

It very frequently happens, in a statistical enumera-

tion, that only a portion of the whole sample is

completely classified, the remaining members showing

various degrees of incompleteness in their classification.

Since the treatment of such data appears extremely

troublesome, it is proper to lay great stress upon

completeness of classification, whenever this is possible.

In many cases, however, some degree of incompleteness

is unavoidable, and the problem of framing an adequate

statistical treatment, which shall utilise the whole of

the information actually available, should be fairly

faced. It will be shown that if approached in the

right manner, and on the basis of a comprehensive

theory of estimation, such problems offer no insuper-

able difficulties. We may again find a good example
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in the estimation of linkage, remembering that the

type of difficulty to be discussed occurs in statistical

work of all kinds.

Ex. 48. Tedin, working with two linked factors in

Pisum, Ar and Oh, obtained by selfing the double

heterozygote a progeny of 216 plants which could be

classified as 99 OhAr 71 ohAr and 46 ar. The
factor Oh could not be discriminated in the last group

of plants, and, as is inevitable with moderate numbers

and high linkage in repulsion, the proportions of this

progeny give little information as to linkage value.

From 62i of the OhAr group progenies were raised by

self- fertilisation, which enabled their parents to be

classified
; 3 were homozygous for Ar but not for Oh,

8 for Oh and not for Ar, while 52 were heterozygous

for both factors. Further, all of these 52 showed

repulsion. Finally, of 47 plants of the ohAr group

the progenies raised showed only 3 to be heterozygous

for Ar, the remaining 44 being homozygous.

We may now set out the distribution of those no
plants which in the end were completely classified

alongside a table showing the relative frequencies with

which plants completely specified should fall into the

several classes, the recombination proportion being

represented by/.
TABLE 66

Ar
Ar

Ar
ar

ar
ar

OhOh 8 -

Ohoh 52 -

ohoh 44 3
-
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TABLE 67

287

Ar
Ar

Ar
ar

ar
ar

OhOh f 2/(1 -p) (I -pY

Ohoh 2/(1 -/) 2/2 2(1 -pf 2/(1 -/)

ohoh (I -pf 2/(1 -/) /^

Next we have 60 plants, less completely classified

as follows :

—

TABLE 68

Ar Ar
Ar ar

ar
ar

OhOh

Ohoh /

36 -

ohoh 24 -

TABLE 69

Ar Ar
Ar ar

ar
ar

OhOh]

Ohoh J

2+/- 1-/2

ohoh I-/2 P'

and finally 46 plants, of which the classification is still

less complete

:

[Table 70
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TABLE 70

Ar Ar
Ar ar

ar
ar

OhOh^

Ohoh

ohoh
,

- 46

TABLE 71

Ar Ar
Ar ar

ar
ar

OhOh

Ohoh

ohoh
,

3 I

If now it may be assumed that those plants, which,

within any class, are incompletely specified, are a

random sample of the members of that class, we may

apply the method of maximum likelihood, as in Section

53, by multiplying the logarithm of the expectation

in any class by the number recorded in that class,

and adding all classes together, irr'espective of the

completeness of classification. When the expectations

of any two classes are the same, the numbers in such

classes may therefore be pooled, and we obtain

(8 + 3 + 3) log [2/(1 -/)i + 52 log {2(1 -/)-j+44 log (I -pf
+ 36 log (2+/) + 24 log (I -/-)

+ 46 log (i)
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as the logarithm of the likelihood, which is to be

maximised. Any constant factor, such as 2, in the

expectations makes a constant contribution to this

quantity, independent of /, and may therefore be

ignored. In particular the expectation in the arar

class being entirely independent of/, the number in

that class makes no contribution whatever to our

knowledge of the linkage, and the whole class must be

ignored. With these simplifications, and using the

fact that the logarithm of a product is the sum of

the logarithms of its factors, the expression to be

maximised reduces to

14 log/+ 206 log (i -p) + z6 log (2+/2) + 24 log (l -/2).

By differentiating this expression with respect to

p, we obtain the equation of maximum likelihood

in the form

i4_ ^ , 7^ _ 48/ ^
/ I -/ 2 +/- I -p' '

the first two terms are due to plants completely

classified, and may be expected to contain the bulk

of the desired information, the latter pair including

the supplementary information due to the 60 Ar

plants less completely classified. From the former

only we should judge that / was nearly 14.^220,

or between 6 and 7 per cent. The exact estimate

of the method of maximum likelihood may be most

rapidly approached by substituting likely values for

p and interpolating. Thus putting p equal to -06

and -07 we obtain :

—
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TABLE 72

/ = -o6. P = -o7- / = -o638.

14/p . . .

- 206/(1 -/)

72 //(2 +f^) .

233-33

-219-15

2-l6

-2-89

200-00

-221-51

2-51

-3-38

219-436

- 220-038

2-292

-3-075
\

Total . + 13-45 -22-38 -1-385

The result of substituting -06 being 13-45, while

with 'oy we obtain —22-38, the true value which

gives zero must be near to -06 + -01 (13-45 -i- 35-83),

or -0638. The effect of substituting this value is

shown in the final column, which serves both as a

check to the previous work, and as a basis, if such

were needed, for a more accurate solution. The

improved value is -06345, from which as an exercise

in the method, the student may rapidly obtain a still

more accurate value.

57-2. The Amount of Information: Design and Precision

The standard error to be attached to such an

estimate is derived directly from the amount of

information in the data. In cases in which the data

are fragmentary, we proceed as usual in differentiating

the left-hand side of the equation of maximum likeli-

hood, and in changing the sign of the terms, but

in substituting the expected for the observed frequencies

note should be taken of the basis on which these are

expected, as well as of the expectation in the classes
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which do not appear in our sample. Thus in the

classification of the first year the expectations from

216 plants are 54(2+/^) OhAr and 54(1-/^) ohAr;

these will make contributions to the information

available of

-54(2+/^)#r^) +54(1 -/-)#.
2/

dp\2-\-p-J ^^^ ^ ^ dp i-p-'

and this, a very trifling amount numerically, is the

amount of information available from the first year's

classification.

If we now consider the 47 ohAr plants from

which progenies were grown, we have expectations

47(1 -Pf ^ (i -/")ArAr and 47 x 2/(1 -/) ^ (i -p'^)

Arar. The additional information which these will

contribute will be

l-P ^2 (l-/)2 p d-\ 2p(l-p)— 4.7 l02" — Qd -^— locr ^ ~
^^i+p df'^ i-p-^ ^^i-hp dp-^ Y-p''-

'

which may be separated into the two parts, correspond-

ing to the numerator and denominator of the terms

following log

/ 2 2p
I

2 \

,. 2(1 +/a

The additional information per plant of this group

is therefore

pi^-p'f
^^

U 2
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Finally, the observed distribution of the 63 ArOh
plants into 52 ohAr/Ohar, 11 OhOh/Arar or Ohoh/ArAr,

and o OhOh/ArAr or OhAr/ohar, must be replaced by

the expectations

^^^J2(i -P)\ 4/(1 -P\ 3/

The additional information per plant in this group

is therefore

^T7^{"^'
-/)' ^2 log (I -/)'+4Xi -/) ^siog/Ci -/-)

+ 3/ —^ log/^ - (2 +/^) ^, log (2 +/^)
|,

4
I

4 /I-/
,

/> \
I

6 2(2 -/>^)
.

which may be reduced to

4(2+ 2/ -/2)

At 6-345 per cent, recombination the numerical

contribution per plant under (A), (B) and (C) are

•006051, 29-76 and 35-58. The second year's

classifications thus give nearly 5000 and 6000 times

as much information per plant as the first year's

classification. On the actual numbers available the

total information is 3642. The reciprocal of this,

•0002746 is the variance of the recombination fraction
;

whence 2^746 is the variance of the recombination per-

centage, and 1-657 per cent, is the standard error.

The advantage of examining the amount of

information gained at each stage of the experiment

lies in the fact that the precision attainable in the

majority of experiments is limited by the amount of
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land, labour and supervision available, and much

guidance may be gained as to how these resources

should best be allocated, by considering the quantity

of information to be anticipated. In the experiment

in question, for example, it appears that progenies

from OhAr plants are somewhat more profitable than

those from ohAr plants.

If on the contrary, our object is merely to assign

a standard error to a particular result, we may estimate

the amount of information available directly by differ-

entiating the expression for 8L/c^ in the equation of

maximum likelihood, using the actual numbers recorded

in the classes observed. We should then obtain

14 206 _ 72{2-f) 48(1 +/-)

this gives 3725 as the total amount of information

upon which our estimate has been based, and 1-638

as the standard error of the estimate of the recombina-

tion percentage. It should be noted that an estimate

obtained thus is in no way inferior to one obtained

from the theoretical expectations ; only that it gives

no guidance as to the improvement of the conduct

of the experiment. It might be said that owing to

chance, the experiment has given a somewhat higher

amount of information than should be expected from

the numbers classified.

The difference between the amount of information

actually supplied by the data, and the average value

to be expected from an assigned set of observations

is of theoretical interest, and being often small requires

the rather exact calculations illustrated above. For
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the purpose of merely estimating the precision of the

result attained a much briefer method may be indicated.

The values obtained in Table 72 show that for a

change of -oi in/, the value of 3L/9/ falls by 35-83 ;

from this the amount of information may be estimated

at once to be 3583 units, and the standard error to

be 1-67 per cent,, a sufficiently good estimate for

most purposes.

In some cases this very crude approximation will

not be good enough. It really estimates the amount

of information appropriate to a value about 6-5 per

cent., half-way between the two trial values. We
want its value at 6-345 P^^ cent, the actual value

obtained from our estimate. An improved value

may easily be obtained where three trial values have

been used. From/ = -06 and/ = -0638, we have

13-45 + 1-385

38
-3904

at/ = -0619.

From/ = -0638 and/ = -07

-1-385 + 22-38 „,^-^ ^ = 3386
•62

^^

at/ = -0669.

Whence for/ = -06345 we should take

-00155 X 3386+ -00345 X 3904 ..,_
^55 = 3^43.

corresponding to a standard error 1-635 P^'' cent.,

a result of amply sufficient accuracy, obtained without

the evaluation of the algebraical expressions for

quantity of information.
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58. Summary of Principles

In any problem of estimation innumerable methods

may be invented arbitrarily, all of which will tend to

give the correct results as the available data are increased

indefinitely. Each of these methods supplies a formula

from which a statistic, intended as an estimate of the

unknown, can be calculated from the observed fre-

quencies. These statistics are of very different value.

A test of five such statistics in a simple genetical

problem has shown that a particular group of them

give closely concordant results, while the estimates

obtained by the remainder are discrepant. This dis-

crepancy is particularly marked in the misleading

values found for x^-

An examination of the sampling errors shows that

the concordant group have in large samples a variance

equal to that of the maximum likelihood solution, and

therefore as small as possible. These are efficient

statistics ; the variances of the inefficient statistics are

larger, and may be so large that their values are quite

inconsistent with the data from which they are

derived.

Efficient statistics give closely equivalent results if

the samples are sufficiently large, but when the theory

of large samples no longer holds, such statistics, other

than that obtained by the method of maximum
likelihood, may fail.

The measure of discrepancy, x^ n^ay be divided

into two parts, one measuring the real discrepancy

between observation and hypothesis, while the other
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measures merely the discrepancy between the value

adopted and that given by the method of maximum

likelihood.

The amount of information supplied by the data

is capable of exact measurement, and the fraction of

the information available which is utilised by any

inefficient statistic, can thereby be calculated. The

same method may, though more laboriously, be

applied to compare efficient statistics when the sample

of data is small.

The method of maximum likelihood is directly

applicable to fragmentary data, of which part is less

completely classified than the remainder. Each

fraction then contributes to the total amount of

information utilised, according to the completeness

with which it is classified. The knowledge of the

amount of information supplied by the different

fractions may be profitably utilised in planning the

allocation of labour, and other resources, to observations

of different kinds.

It will be readily understood that the extensive

investiofation which we have oriven to two somewhat

trivial genetical examples is not necessary to their

practical treatment. Its purpose has been to elucidate

principles which are applicable to all problems involv-

ing statistical estimation. In practice one need seldom

do more than solve, at least to a good approximation,

the equation of maximum likelihood, and calculate

the sampling variance of the estimate so obtained.
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