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Preface

ix

In a massive article on probability theory written for the seventh edition of the En-
cyclopaedia Britannica, the mathematician and actuary Thomas Galloway com-
mented:

About the same time [when Pierre Rémond de Montmort’s and Jacob Bernoulli’s 
works on probability appeared in 1708 and 1713, respectively], Demoivre 
began to turn his attention to the subject of probability, and his labours, which 
were continued during a long life, contributed greatly to the advancement of 
the general theory, as well as the extension of some of its most interesting 
applications.1

A few pages later Galloway adds:

Since the time of Demoivre, the English treatises on the general theory of 
probability have neither been numerous, nor, with one or two exceptions, very 
important. Simpson’s Laws of Chance (1740) contains a considerable number 
of examples, in the solution of which the author displays his usual acuteness 
and originality, but as they belong entirely to that class in which the chances 
are known a priori, they give no idea of the most interesting applications of 
the theory. Dodson’s Mathematical Repository contains a large selection of the 
same kind. The Essay in the Library of Useful Knowledge, by Mr. Lubbock, 
gives a more comprehensive and philosophical, though an elementary view of 
the subject; but by far the most valuable work in the language is the Treatise in 
the Encyclopedia Metropolitana, by Professor De Morgan, 1837. In this very able 
production, Mr. De Morgan has treated the subject in its utmost generality, and 
embodied, within a moderate compass, the substance of the great work of Laplace.
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One gets the distinct, and correct, impression from these quotations that Abraham De 
Moivre was Britain’s leading probabilist of the eighteenth century. And not much else 
occurred in British probability until the nineteenth century. I will hold to that last sen-
tence and later expand on it, despite possible protests from the fans of Thomas Bayes. 
Many, including me, have chased Bayes,2 an obscure Presbyterian minister who had 
no impact on the subject of probability in his own lifetime and only a little afterward. 
Few have given Abraham De Moivre the treatment he truly deserves. 

The first part of the quotation that I have given from Galloway underlines the 
secondary theme of this book. De Moivre began working as a pure mathematician. As 
he became established, he moved into applications, to finance in particular, where he 
made some fundamental contributions. His work in probability and its applications 
was often motivated by questions that his friends, patrons, colleagues, and clients 
posed to him. This is the major theme of the book. The eighteenth century operated 
on the connections, professional and personal, that a person established with others. 
De Moivre had a fairly wide network of friends and patrons and often benefited 
from it. In describing his life and work, I will elaborate on De Moivre’s connections, 
which have usually stayed below the surface in many treatments of his work.

I was motivated to write this book after spending the past twenty-five years 
studying the development of probability in Britain. One of my favorite projects was 
collaborative work with Christian Genest.3 We spent many pleasant hours examining 
and expanding on Matthew Maty’s original biography of Abraham De Moivre.4 
Since that time I continued on my own and found even more material related to De 
Moivre’s life and work. 

Greatly encouraged by Stephen Stigler, I first tried to write a book on the 
development of probability in eighteenth-century Britain. After getting about 
halfway to completion, it became more than obvious to me that what I was writing 
was a prelude to De Moivre’s work, a description of his work, and a postlude that 
looked at the impact of his work in Britain. It made more sense to devote the entire 
book to De Moivre. What I present here are the fruits of my labor over the past three 
years or so.

In this new effort I had a problem. In 1968, Ivo Schneider wrote a very lengthy 
article in German about De Moivre and his work.5 I do not read German at all, so 
most of his paper was inaccessible to me. I was able to access some of the material 
through those who understand German, such as Anders Hald. They have interpreted 
Schneider’s work in their English publications on the history of probability.6 There 
was some advantage to my lack of German. I was forced to read and interpret 
what De Moivre had written, independently, for the most part, of someone else’s 
interpretation. 

De Moivre wrote a number of articles in Latin. My surviving Latin from 
high school is limited but much greater than my nonexistent German. I was greatly 
helped in this area in several ways. The first is Bruce McClintock’s translation of 
De Mensura Sortis.7 The second is that several of De Moivre’s articles, or parts of 
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them, were translated in the eighteenth century and appear in publications called 
Miscellanea Curiosa, written to give the general public of the eighteenth century 
access to papers in Philosophical Transactions. The third is that I have been blessed 
with a graduate student, Elizabeth Renouf, who decided after a degree or two in 
classics to follow a career in statistics. Finally, during an internet search I came 
across a French publication that I eagerly purchased. It is a translation into French 
by Jean Peyroux of De Moivre’s Miscellanea Analytica8 and it has been very useful 
to me. My French is much better than my Latin. And so with the French translation 
in one hand and the Latin original in the other, accompanied by a French-English 
dictionary on my desk in case of emergency, I was able to get a good grasp of De 
Moivre’s work in his Miscellanea Analytica. 

Although De Moivre left his papers to his friend George Lewis Scott, these 
papers apparently have not survived. Consequently, the information cobbled 
together on De Moivre’s life comes from many sources, some published (including 
some of De Moivre’s letters to others) and some from manuscripts held in various 
libraries in Britain and elsewhere. Collecting the information has been a paper chase 
that has been both challenging and rewarding. I have spent many pleasant hours in 
libraries and have corresponded with many helpful librarians. I have also benefited 
enormously from Google Books which has allowed me to read many obscure 
eighteenth-century publications while sitting in my office.
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By the end of his life, Abraham De Moivre was viewed by some of his contemporaries 
as a religious skeptic.1 It was, however, religion that shaped the course of his early 
life and was the source of disruption in his mathematics education. The Moivre2 
family were Huguenots, Calvinist Protestants in a predominantly Catholic France. 

The Reformation of the sixteenth century and the introduction of John Calvin’s 
teaching into France resulted in intermittent persecution of Protestants beginning in 
the 1530s. This escalated as powerful political forces came into play. The French 
Wars of Religion, running from the 1560s to near the end of the century, were a 
struggle for power between the Catholic House of Guise and the Protestant House 
of Bourbon. The wars ended when the Protestant Henry of Navarre became King 
Henry IV of France and converted to Catholicism. In 1598 Henry proclaimed the 
Edict of Nantes, providing some religious freedoms to the Huguenots. The edict was 
revoked in 1685 by his grandson, Louis XIV, as he centralized the power of the state 
and control over the Roman Catholic Church on himself. Louis made it illegal to 
practice as a Protestant, and all Protestant churches and schools were closed.

Abraham De Moivre was born on May 26, 1667, in Vitry-le-François,3 a town 
situated about 175 kilometers east of Paris in the province of Champagne (as it was 
known under the Ancien Régime).4 In 1544 the ancient town of Vitry had been put 
to the torch during one of the military clashes between the Holy Roman Emperor 
Charles V and François I, the reigning French king. The next year François ordered 
a new town to be built nearby according to the latest ideas in Renaissance town 
planning and fortification.5 The new walled town, laid out on a rectangular grid 
system, was named Vitry-le-François after the king. From a military standpoint, it 
was strategically placed to command two major transportation routes, although the 
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fortifications were not completed until the 1580s. Since Vitry-le-François sat at the 
crossroads between Paris and major centers to the east, including Switzerland, it 
was soon exposed to the new religious ideas coming out of Switzerland. By the 
early 1560s there was a Huguenot pastor resident in the town tending to a growing 
congregation.7 At the time of De Moivre’s birth, the town had a thriving and sizable 
Huguenot community. The population had also expanded beyond the walls of the 
original town, numbering about 12,000 in 1685.8

Prior to Abraham’s birth, the Moivre family had lived in Vitry-le-François 
for a few generations. Abraham’s great-grandfather, Aggée de Moivre, worked in 
the leather industry. Leather tanning was a major industry in Vitry-le-François; 
there were at least ten tanneries in the town prior to 1685.9 With continued success 
of the tanning industry in Vitry-le-François, the following generation of Aggée de 
Moivre’s family became solidly part of the merchant class. Abraham’s grandfather, 
Daniel de Moivre, was a merchant; Abraham’s father, also Daniel, was a surgeon. 
Another relative, Jean de Moivre was a portrait painter, executing many portraits of 
Protestants in Vitry-le-François in the early 1640s.10 On May 25, 1665, when he was 
37 years of age, Abraham’s father married Anne Bureau of Paris at the Protestant 
church in Heiltz-le-Maurupt,11 a town about 22 kilometers from Vitry-le-François. 
About two years after Abraham’s birth in 1667, his brother Daniel was born.

As youngsters, the Moivre children were originally educated in Vitry-le-
François. When they first entered school, Protestant education in France was 
already in a state of flux.12 As it developed in the sixteenth century, the Huguenots 
had a school system that extended from primary education to the university level, 
the petite école to the académie. The primary curriculum included both religious 

Vitry-le-François in 1634 (from the Canadian Centre for Architecture collection).6
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instruction and education in Latin and Greek authors, culminating in the study 
of rhetoric through classical works such as Cicero’s De Oratore. From there the 
student could progress to higher studies in the academies by taking logic, ethics, 
and metaphysics. Students destined for the ministry received theological training 
in the academies. Government-imposed restrictions on the Protestant education 
system began in 1670, when Abraham De Moivre was three years old. In that year, 
teachers in the Huguenot primary schools “were forbidden to teach any subjects 
beyond reading, writing, and arithmetic.”13 Only one teacher was allowed per school 
and there were restrictions on enrollment that made it difficult for students to study 
in a Huguenot school if it did not already exist in their hometown. Restrictions and 
regulation continued to tighten after 1670 until 1685, the year of the revocation of 
the Edict of Nantes. In 1685 any remaining Huguenot academies that had survived 
this restrictive atmosphere were closed.

For twenty years or more prior to Abraham De Moivre reaching school age, the 
town school in Vitry-le-François underwent several administrative reorganizations. 
Known as the Collège de Vitry, both Protestant and Catholic children were taught at 
the school. For over 45 years it was run by a Protestant layman, Jean Garnier. In 1649, 
when Garnier became too old to handle his duties, the city decided to contract out the 
teaching. Initially, it was to the Catholic Order of Minims. After some scandals over 
student behavior, the contract next went to the Oratorians, another Catholic order. 
In 1665, there was a Catholic mission to Vitry-le-François to convert Protestants. 
The Collège de Vitry was turned over to the Fathers of the Christian Doctrine 
(Pères de la doctrine Chrétienne).14 This was a Catholic teaching order of priests, 
originally founded in 1592 during the Counter-Reformation to instruct students in 
Roman doctrine and to stem the spread of Calvinism,15 the very theology underlying 
French Protestantism. The Fathers of the Christian Doctrine tried to convert their 
Protestant students, an act which made many Huguenot townspeople unhappy. Very 
soon the Fathers came to an agreement with the citizens that Protestant students 
would be taught the same as other children in the school, but would be excused from 
all prayers, instruction in the Catholic catechism, and other religious exercises.16 
Abraham De Moivre initially took lessons in Latin from a local Catholic priest.17 
After a year with the priest, he moved on to receive instruction from the Fathers 
of the Christian Doctrine at the Collège de Vitry. Apart from this schooling, De 
Moivre also received private tutoring in arithmetic. This situation continued until 
about 1678 when De Moivre’s father, dissatisfied with the arithmetic tutor as well 
as with the school run by the Fathers of the Christian Doctrine, sent his son to the 
Protestant Academy in Sedan, a town near the Belgian border northeast of Paris and 
about 115 kilometers north of Vitry-le-François. There Abraham transferred into the 
traditional education system of the Huguenots. 

Although many laypeople like De Moivre attended the academy, its raison 
d’être was the training of theology students for the ministry. Of the ten faculty 
members, three were in theology. The faculty complement at the academy in Sedan 
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was about ten. They taught subjects in theology, Hebrew, Greek, jurisprudence, 
mathematics, philosophy, and rhetoric. The study of Hebrew and Greek was related 
to theological training. Students were expected to be able to read the Old and New 
Testaments in their original languages. The day-to-day life of the students also had a 
religious foundation. It was the norm for students to board with the professors or with 
the regents of the academy. This would ensure that students said their prayers every 
morning and evening in the home. Classes, which were opened with prayer, went 
from Monday to Friday, about seven hours a day, with only a few weeks of vacation 
in the year. Wednesdays were devoted mainly to sermon writing, presumably by 
the theology students. On Saturdays students typically spent their time studying the 
catechism, making disputations in Greek or Latin, or reciting what they had learned 
during the week.18

The more eminent professors at Sedan in the late 1670s were Pierre Bayle, 
who taught philosophy and history, Jacques du Rondel, who taught rhetoric and 
Greek, and Pierre Jurieu, who taught theology.19 The faculty complement may have 
been reduced during De Moivre’s time due to the restrictions and pressures imposed 
by the Royal authorities. For example, there is no record of a mathematics professor 
at Sedan after 1672. 

The system divided studies into six grades, one being the most senior and 
six the most junior. These were not grades by year, but grades by mastering certain 
topics. By the time De Moivre reached Sedan he had already completed the third 
grade of his studies. In terms of the curriculum at Sedan, he would have already 
mastered topics in Latin grammar, some Latin authors such as Ovid and Cicero, and 
an introduction to Greek. The second grade at Sedan consisted of Greek for New 
Testament studies, more Ovid as well as Virgil, and rhetoric.

At Sedan, De Moivre studied Greek in his first year and followed that with 
rhetoric in the next under Rondel. He may also have had some lessons in arithmetic 
from Rondel. Matthew Maty, Moivre’s first biographer, provides an anecdote told 
to him by De Moivre, showing the mathematician’s arithmetical interests at Sedan.

Whenever his teacher [probably Rondel], who was not so keen on arithmetic as 
he was on Greek, found the table of his pupil forever strewn with calculations, 
he could not help wondering what does this little rogue intend to do with those 
numbers?20

De Moivre was about thirteen years old at the time. 
Despite the lack of a regular mathematics professor at Sedan, De Moivre 

studied François le Gendre’s book L’Arithmétique en sa perfection with the help 
of a fellow student. First published in 1648,21 L’Arithmétique was probably the 
best known French commercial arithmetic book. It went through many editions 
and continued to be in print into the early nineteenth century. The book contains 
some of the elementary topics that De Moivre taught as a tutor in mathematics after 

© 2011 by Taylor & Francis Group, LLC



19

 Early Life in France    

his arrival in England. There are descriptions of the common practical methods of 
addition, subtraction, multiplication, and division by hand, including methods for 
whole numbers and fractions. Also covered are the extraction of square roots and 
cube roots, as well as methods such as the rule of false position and the rule of three. 
After covering the basics, there are discussions of practical business arithmetic, 
again with worked-out examples. Topics in this section include finding the value of 
one country’s or area’s currency in terms of another’s ( francs bordelois into livres 
de gros of Flanders and vice versa, for example) and translating the weights and 
measures of one country or area into those of another. The topics related to geometry 
are devoted to finding the areas of plane figures: triangles, rectangles, trapeziums, 
and rhombuses. What may have caught De Moivre’s attention is a section containing 
challenge problems. These questions appear to build on the reader’s knowledge with 
examples that are different from the usual problems in the book. 

In 1680, De Moivre returned to his home in Champagne. He intended to return 
to Sedan to study with Pierre Bayle, but in 1681 the academy was suppressed by the 
French authorities, who turned the building over to the Jesuits for a fee of 20,000 
livres. Many of the faculty members left France, as was to become typical after 
the closure of the Protestant academies. Bayle and Jurieu took refuge in Rotterdam 
where they obtained teaching positions at the École illustre; Rondel went to the 
University of Maastricht. Soon Bayle and Jurieu had a serious falling out. (Jurieu 
accused Bayle of treasonous activities.)22 Bayle was removed from his position but 
remained in Rotterdam for the rest of his life. 

At home, De Moivre tried self-study in mathematics by reading Jean Prestet’s 
Éléments de mathématiques, but, at the age of only fourteen, he had difficulty 
understanding some of the initial concepts in the book. As Maty relates,

Unfortunately, the young man found in the introduction to this treatise a 
preliminary discussion on the nature of our ideas, and since he did not know 
what an idea was—he had never had the good fortune to hear Mr. Bayle on the 
subject—he closed the book without ever reading it.23

With Sedan closed, De Moivre then went to the Protestant Academy at Saumur 
in 1682. It was situated about 385 kilometers southwest of Vitry-le-François. 
Like Sedan, Saumur had upwards of nine professors covering several areas of the 
humanities. Like Sedan, there is no surviving record of a mathematics professor at 
Saumur during De Moivre’s time there. 

From 1682 to 1684 while he was at Saumur, De Moivre studied logic and 
mathematics, finally coming to grips with Prestet’s work. Despite the absence of 
a mathematics teacher, it was at Saumur that De Moivre came across a copy of 
Christiaan Huygens’s 1657 treatise, De Ratiociniis in ludo aleae, and read it.24 This 
work, the first published work in probability theory, came about as a result of a visit 
that Huygens made to Paris in 1655. There Huygens learned of the correspondence 
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between Blaise Pascal and Pierre de Fermat regarding the classical probability 
problems of the day: the division of stakes and problems related to the throw of dice. 
Probably motivated by the challenge of the difficulty of these problems, Huygens 
solved them himself and then proceeded to write his treatise, originally in Dutch and 
then translated into Latin by his teacher Frans van Schooten. In addition to providing 
solutions to the two classical probability problems, Huygens set out five challenge 
problems at the end of the book accompanied by numerical answers.25

De Moivre met two teachers at Saumur who almost certainly might have been 
of assistance to him in England once they had all fled France. These were Abraham 
Meure, who taught Greek and rhetoric, and Jacques Cappel, who taught Hebrew.

At Saumur, De Moivre was introduced to ideas in physics put forward 
by René Descartes. De Moivre’s teacher in physics at Saumur, known only as a 
Scotsman named Mr. Duncan,26 was not satisfactory as a teacher. And so in 1684 
De Moivre went to Paris to study physics at the Collège d’Harcourt, a college at 
that time associated with l’Université de Paris. The textbook that De Moivre most 
likely would have used in his studies at Saumur and Harcourt was Jacques Rohault’s 
Traité de physique, first published in 1671. It went through several editions, and 
soon after its initial publication became the standard physics textbook in both France 
and England. Rohault was an expositor and systematizer of Descartes’ approach 
to physics.27 Compared to Isaac Newton’s Principia Mathematica, which was 
published in 1687, Rohault’s approach to physics was very nonmathematical. 

It was Descartes’ approach to celestial mechanics with which Newton clashed 
in his Principia. Some key elements of the Cartesian system were that matter is 
indivisible and impenetrable. Consequently, the existence of a vacuum was not 
possible and so planets travelled in their orbits not because of gravitational attraction, 
but through vortices. French scientists in the late seventeenth and early eighteenth 
centuries spilled much ink trying to justify the necessity of this swirling cosmic 
matter that would allow the planets to move in their orbits.28

After a year at Harcourt, De Moivre once again returned home and then went 
to visit relatives in Burgundy. He continued his mathematical studies on his own by 
reading the first six books of Euclid and other works in elementary plane geometry. 
During his initial reading of Euclid, he got stuck on Proposition V in Book I, which 
states that the angles at the base of an isosceles triangle are equal. It is the first 
difficult proposition in Euclid and was known as the pons asinorum (bridge of 
fools) since that is where many initiates to Euclid come to grief with their studies of 
geometry. One of De Moivre’s Burgundian relatives helped him with the proposition 
and the rest of Euclid became smooth sailing. Upon finishing Euclid, De Moivre 
went on to topics in trigonometry, perspective, mechanics, and spherical triangles. 

It was at this time, as part of the increasing pressure on Huguenots exerted by 
the authorities, that Huguenot surgeons such as De Moivre’s father were prohibited 
from practicing their profession.29 Shortly thereafter, Louis XIV revoked the Edict of 
Nantes, thus suppressing Protestant education throughout France as well as closing 
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Protestant churches. The Protestant church at Vitry-le-François, for example, which 
had been built in 1613, was acquired by the Fathers of the Christian Doctrine in 
1685. The other four Protestant churches in the area around Vitry-le-François were 
torn down.30 Protestant ministers who did not convert to Catholicism were expelled 
from the country, while the laity was forbidden to leave on pain of being sent to 
the galleys (essentially prison ships). Despite the restrictive law on emigration, 
thousands fled to other countries.

Accompanied by his father, Abraham De Moivre returned to Paris where he 
was tutored in mathematics by Jacques Ozanam. At the time Ozanam was about 45 
years old and was making a comfortable living at tutoring and writing mathematics 
books, mostly for instructional purposes. In terms of social class, De Moivre, coming 
from the merchant class, was a typical Ozanam student.31 In terms of mathematical 
ability, De Moivre claimed, at least late in life, that he was superior to Ozanam in 
mathematics.32 Under Ozanam, De Moivre studied the geometry of solids: cones, 
pyramids, cylinders, and spheres. He also honed his chess-playing skills with 
Ozanam, a skill that, once he arrived in England, was useful to him when interacting 
with some of his aristocratic chess-playing patrons. 

In Vitry-le-François the Moivres had connections to some local government 
officials who were fellow Protestants. These connections become apparent after 
the revocation of the Edict of Nantes. There was an individual in Vitry-le-François 
named Claude de Marolles who was interested in mathematics, specifically algebra. 
His kinsman, Louis de Marolles was an official in the courts of justice in Sainte-
Menehould, about 55 kilometers from Vitry-le-François.33 The extended Marolles 
family was one of the three leading Protestant families in Champagne;34 Claude was 
one of the leaders in the Protestant church in Vitry-le-François, which the Moivre 
family would have attended. De Moivre was connected to the Marolles through 
mathematics. Claude taught Louis algebra at which Louis became very adept, to 
the point that he wrote a manuscript treatise on algebra containing many difficult 
problems. After the revocation of the Edict of Nantes, Louis de Marolles was one of 
those caught and arrested while trying to leave France. Prior to sending him to the 
galleys and certain death, an attempt was made to convert Marolles to Catholicism; 
presumably the conversion of a senior member of a prominent Protestant family 
would make good propaganda for the state. In June or July of 1686 Marolles was sent 
to La Tournelle in Paris, a former royal palace turned into a prison. The young De 
Moivre visited Marolles at La Tournelle, probably as a friend of the family bringing 
comfort and help to the prisoner. During Marolles’ confinement, he so consistently 
refused to convert that the clergy in charge of him began to spread rumors that he 
had lost his mind. To show that he was not insane, Marolles proposed a mathematical 
problem that he would solve. De Moivre later reported that the problem was taken 
from one of Ozanam’s books.35 

De Moivre’s father, Daniel, was also detained in Paris, but somehow was able 
to send his family to England. His final imprisonment occurred on December 9, 1687, 
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on the orders of the Marquis de Seignelay, one of the ministers in Louis’ government 
and son of the famous Jean-Baptiste Colbert. Daniel de Moivre (described only as “le 
chirurgien Moivre”) was held at the Prieuré de Saint-Martin-les-Champs, a location 
in Paris different from where the authorities held Marolles.36  He was released April 
27, 1688, which meant that the authorities had broken him and he had recanted his 
Protestant beliefs. Daniel de Moivre died in Paris; he would have been about sixty 
years of age. This situation lends credence to an anecdote attributed to Abraham 
De Moivre and recounted about one hundred years after it may have occurred. The 
story runs,

I have heard my father say that De Moivre being one day in a Coffee-house in 
St. Martin’s Lane, much frequented by Refugees and other French, overheard a 
Frenchman say that every good subject ought to be the religion of his King—‘Eh 
quoi donc, Monsieur, si son roi professe la religion du diable, doit-il suivre?’ [Well 
then, Sir, if his king professes the religion of the devil, should he follow him?]37

(There are some inaccuracies in the full anecdote, so its reliability is in question.38)
During the incarceration of his father, Abraham De Moivre, along with his 

brother Daniel and his mother Anne, fled France across the English Channel despite 
Louis’ laws prohibiting emigration of Huguenots.39 After their arrival in England, 
the two young men, aged 20 and 18, presented themselves to the Savoy Church, one 
of the two main French Protestant churches in London. It was situated in The Strand, 
near where Abraham De Moivre eventually lived. On August 28, 1687, Abraham and 
Daniel made their reconnaissance at the Savoy Church, or reaffirmed their loyalty 
to the Protestant faith.40 In France they had been forced to renounce their Protestant 
faith and attend Roman Catholic Church services. 

The young refugees never saw their father again. The father, in detention when 
the rest of the family fled, was only released well after mother and sons arrived in 
England. He died in Paris shortly after his release from the Prieuré de Saint-Martin-
les-Champs before he could be reunited with his family. His wife, Anne, lived for 
another twenty years in London with the younger son, Daniel.

When the two brothers made their reconnaissance at the Savoy Church, they 
signed a document saying that they would be faithful to their reaffirmed Protestant 
beliefs. Though their signatures are side-by-side as shown here from the book of 
reconnaissance, they are different, showing two distinct variations. Abraham used 
an uppercase letter to begin the particle “de” in his name. Daniel used the usual 
lowercase in the particle as well as in his given name. Also, Daniel used a typical 
variant spelling of the surname using a y instead of i. Since the older brother most 
often spelled his surname “De Moivre,” I will adhere to this throughout the book, 
rather than the strictly correct French usage “de Moivre” or just plain “Moivre.”

From an early age, Abraham De Moivre showed a great aptitude in mathematics, 
as shown by anecdotes of his experience at the academies in Sedan and Saumur, 
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followed by his course of study with Jacques Ozanan. His education in mathematics 
was a mixture of self-taught topics and topics learned from tutors. Despite the 
interruptions due to Louis XIV’s persecution of Protestants, his education prepared 
him well for his future life in England. There he established himself as a tutor in 
mathematics and was very quickly admitted to England’s scientific society.

Earliest known signatures of Abraham and Daniel De Moivre.42
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There are two types of connections that are relevant to Abraham De Moivre’s career: 
personal and intellectual. Personal connections are defined by the network of friends, 
acquaintances and colleagues that are built socially, professionally, and through the 
workplace. Certainly Abraham De Moivre met and interacted with numerous people 
during his lifetime, many of whom had a significant impact on his career. I would 
suspect that when asked to name De Moivre’s associates, historians of science 
would probably place Isaac Newton at the top of their list. There are many others 
on that list including Huguenot friends, fellows of the Royal Society, and members 
of landed families who acted as patrons for his teaching career and for his scientific 
publications. Intellectual connections are the chains of ideas that come together 
to produce new knowledge. Again, Newton, or more correctly, Newton’s work in 
mathematics and in physics (or what was called natural philosophy in Newton’s day), 
figure prominently among the ideas that stimulated De Moivre’s mathematical work. 
What can stimulate new knowledge is the bringing together of seemingly disparate 
ideas. Where Abraham De Moivre was most successful was in developing new areas 
of probability theory. There he melded together some traditional approaches to the 
calculation of probabilities with other areas of mathematics that typically had not 
been used in probability theory before. Newton’s binomial theorem and his work in 
infinite series were major stimuli for De Moivre’s work in probability.

Personal connections and intellectual connections are not separate entities that 
operate independently. Ideas are usually discussed between individuals—in direct 
conversation, in letters, and in print. The communication network for intellectuals 
that was operational during De Moivre’s lifetime is known as the Republic of 
Letters. A succinct description of this network appears on a website for a project 
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that is trying to map the network connections in the Republic of Letters from about 
1500 to 1800.

The Republic of Letters was an intellectual network initially based on the writing 
and exchange of letters that emerged with and thrived on new technologies 
such as the printing press and organized itself around cultural institutions (e.g. 
museums, libraries, academies) and research projects that collected, sorted, and 
dispersed knowledge. A pre-disciplinary community in which most of the modern 
disciplines developed, it was the ancestor to a wide range of intellectual societies 
from the seventeenth-century salons and eighteenth-century coffeehouses to 
the scientific academy or learned society and the modern research university. 
Forged in the humanist culture of learning that promoted the ancient ideal of 
the republic as the place for free and continuous exchange of knowledge, the 
Republic of Letters was simultaneously an imagined community (a scholar’s 
utopia where differences, in theory, would not matter), an information network, 
and a dynamic platform from which a wide variety of intellectual projects—
many of them with important ramifications for society, politics, and religion—
were proposed, vetted, and executed.1

As his scientific status grew, De Moivre entered into the Republic of Letters. Unlike 
some of the mathematical giants of his day, such as Johann Bernoulli and Gottfried 
Leibniz who left large collections of correspondence, De Moivre appears to have 
been only moderately active in the Republic of Letters. This may be partly attributed 
to the reality De Moivre faced in making a living through private tutoring.

Personal Connections
Eighteenth-century English society was all about making personal connections and 
keeping them. To survive and get ahead, individuals needed to establish contacts with 
other people who could help them in some way. As one historian of the eighteenth 
century has put it, people fit into the English social strata of the time

by their personal connections with others, especially authority figures: fathers, 
masters, husbands, parsons, patrons…. People had to shift for themselves. There 
was no all-encompassing welfare estate, no comprehensive system of social 
services, guaranteeing care from cradle to grave. How one made out depended 
on skills in the games of deference and condescension, patronage and favour, 
protection and obedience, seizing opportunities and making the most of them.2

Arriving with no English connections, De Moivre successfully survived 
and flourished within this system, first as a tutor to landed families and then as a 
consultant on annuity valuations.
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When the Moivre brothers and their mother first arrived in London, the only 
people they likely would have known were fellow Huguenots who had fled France at 
about the same time or earlier. Among this group would be relatives, former teachers 
from Sedan and Saumur, and fellow townspeople from Vitry-le-François. One 
probable relative is Judic Morel, who was likely from Vitry-le-François.3 After her 
arrival in London, in 1693 she married Hugues Le Sage from Alençon. Hugues and 
Judic’s son, John (or Jean) Le Sage, whom Abraham De Moivre once referred to as 
his cousin, became a prominent London silversmith.4 In 1718 Le Sage was living in 
the upper end of St. Martin’s Lane, which is near where the Moivre brothers lived.5 
Another refugee from De Moivre’s hometown is Isaac Garnier. He fled to England 
in early 1682, five years before the Moivre brothers. Originally trained in France in 
medicine and pharmacy, it is likely that Garnier knew Daniel De Moivre senior, a 
surgeon. Soon after Garnier’s arrival in England, he was appointed to the position of 
Royal Apothecary under Charles II.6 Two former teachers from Saumur, Abraham 
Meure and Jacques Cappel, made their living in London as teachers. Meure arrived 
in England with his family in 1685 or the next year.7 Subsequently, he ran a school 
in Hog Lane (now the upper part of Charing Cross Road).8 Cappel initially followed 
the more typical activity of someone in his station by becoming a tutor in an English 
household. Beginning in 1699 he tutored Martin Folkes for about seven years.9 
Folkes became a friend and student of Abraham De Moivre and later in life served as 
President of the Royal Society. After his time with the Folkes family, Cappel worked 
as a teacher at a dissenting academy in London.10

Throughout his life Abraham De Moivre made connections with several others 
in the Huguenot community. A list of some of his known Huguenot friends shows 
that they came from a wide variety of backgrounds, ranging from business to literary 
to military to political, with perhaps more emphasis on the literary. Pierre Des 
Maizeaux and Michel de la Roche were active in the Republic of Letters, where their 
paths sometimes intersected with De Moivre’s. They were literary journalists who 
wrote reviews in French-language journals published in the Low Countries. These 
journals informed continental Europeans about newly published English books. They 
also wrote for other journals that made English audiences aware of French-language 
work. Pierre-Antoine Motteux, author and playwright, wrote for English audiences; 
his most noted works are translations of Rabelais and Cervantes. Another writer, 
Pierre Coste, did translation work for Isaac Newton and the philosopher John Locke. 
Matthew Maty, who wrote De Moivre’s biography a year after the mathematician’s 
death, was a writer and physician. Two years after De Moivre’s death, Maty became 
a librarian in the British Museum. He founded Journal Britannique, one of the 
later French-language publications out of the Low Counties that reviewed English 
publications for a French audience. It was in Journal Britannique that Maty initially 
published his biography of De Moivre in 1755. Among other Huguenots of De 
Moivre’s circle, Peter de Magneville and Isaac Guion were businessmen. The nature 
of Magneville’s business is unknown, other than that he travelled extensively; Guion 
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was a distiller. Peter Davall was a barrister and John Seguin was a cavalry officer in 
the Horse Guards.11 Some of these individuals studied mathematics with De Moivre. 
Many were part of an émigré circle that met socially for intellectual discussions.

Other Huguenots that De Moivre knew were from the second generation. They 
had been able to take advantage of the patronage system that was part of the fabric 
of English society. Hector Berenger de Beaufain became Collector of Customs 
in South Carolina and Francis Fauquière, a director of the South Sea Company, 
became Lieutenant Governor of Virginia. Both were fellows of the Royal Society. 
Fauquière’s father had worked for Newton at the Mint. The patronage system only 
went so far in rewarding the children of immigrants; both Berenger de Beaufain and 
Fauquière were sent to the colonies. Another Huguenot friend of De Moivre, Isaac 
Leheup, made enough money to be able to run for a seat and to sit as a Member of 
Parliament, but climbed no further up the patronage ladder.

There were two areas of London to which Huguenot refugees generally 
gravitated. One was the Leicester Fields/Soho area in the City of Westminster, which 
included three parishes: St. Anne Soho, St. Giles-in-the-Fields, and St. Martin-in-
the-Fields. The Church of St. Martin-in-the-Fields is situated at the bottom of St. 
Martin’s Lane. Today this is in the heart of London’s West End theatre district. 
A short walk away, St. Anne and St. Giles are immediately to the northwest and 
northeast of St. Martin-in-the-Fields, respectively. In the eighteenth century, the area 
was part of the western suburbs of London. The other settlement area for Huguenots 
in London was Spitalfields in the eastern suburbs of London. The Spitalfields area 
was largely populated by textile workers, while in Westminster the Huguenots were 
associated with the more well-to-do. In the western suburbs there were Huguenots 
who manufactured luxury, items running the gamut from clocks to wigs and from 
guns to goldwork.12 Some patrons of the Huguenots lived in the same area or close 
by. George Parker, 2nd Earl of Macclesfield, lived in the parish of St. Martin-in-the-
Fields, while Charles Spencer, 3rd Earl of Sunderland, lived a short distance away 
in Piccadilly.

The Moivre brothers lived in these western suburbs among fellow Huguenots 
that included the Guion, Le Sage, and Meure families. At his death in 1754, Abraham 
De Moivre was living in the Parish of St. Anne.13 This was the same general area 
where his brother Daniel De Moivre resided at his death in 1733.14 Abraham was 
buried in the graveyard attached to the Church of St. Martin-in-the-Fields.15 In 1707, 
Daniel was living in Earle (now Earlham) Street close to the Seven Dials, a road 
junction where seven streets converge. Located in the Parish of St. Giles-in-the-
Fields, the Seven Dials is a short walk up St. Martin’s Lane through St. Andrew’s 
Street (now Upper St. Martin’s Lane). When the astronomer Jerome Lalande visited 
England in 1763, he wrote in his diary, “J’ai vû le café de Slaughter où Newton allait 
tous les jours dans St. Martins Street, et la place de M. Moivre [I saw Slaughter’s 
Coffehouse where Newton went every day in St. Martin’s Street, and Mr. Moivre’s 
rooms].”16 From 1711 until his death in 1727, Newton lived in St. Martin’s Street, 
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which runs into Leicester Square; Slaughter’s Coffeehouse was nearby in St. 
Martin’s Lane. A reasonable inference from Lalande’s diary is that at the end of his 
life Abraham De Moivre lived in St. Martin’s Lane, probably at the upper end since 
that area is part of the Parish of St. Anne. Unfortunately, there is no way to know 
for sure. Neither Abraham nor Daniel paid enough rent to show up in the Poor Law 
Rates, the taxation method of the time.18 Abraham’s lodgings were large enough, 
however, that he employed a servant by the name of Susanna Spella.19

De Moivre and his friends, whether Huguenot or not, met socially and for busi-
ness purposes in coffeehouses. Abraham De Moivre himself frequented Slaughter’s 

Rainbow 
Co�eehouse

Pons
Co�eehouse

Slaughter’s
Co�eehouse

Coffeehouses in St. Martin’s Lane in 1756.17
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Coffeehouse. He could also be seen at Pons Coffeehouse and the Rainbow Cof-
feehouse. Pons was situated in Cecil Court and the Rainbow in Lancaster Court, both 
off St. Martin’s Lane. Their approximate locations are shown on the 1756 map of the 
St. Martin’s Lane area.20 Newton’s house is off the map but is situated nearby, to the 
west of Pons Coffeehouse. Daniel’s 1707 residence at the Seven Dials was next to 
Digory’s Coffeehouse. The location of this coffeehouse is again off the map, but just 
above the end of St. Martin’s Lane.

London coffeehouses of the eighteenth century might be viewed as “information 
central.” There one could read one or more of the many London newspapers, exchange 
news verbally with other patrons, pick up one’s mail, and obtain news and notices 
of new books and other publications.21 Abraham De Moivre had his mail delivered 
to Slaughter’s Coffeehouse. Sometimes called “penny universities,” coffeehouses 
also served as informal centers of learning and debate. There is a story, probably 
apocryphal, that early in his career De Moivre gave lectures in coffeehouses on 
natural philosophy. He was unsuccessful in this endeavor, partly because of his poor 
English.22 Coffeehouses were also places where a wide variety of business could be 
transacted. For example, subscriptions to a life insurance scheme could be obtained 
at Digory’s Coffeehouse in 1710.23 The same coffeehouse served as a consulting 
office in 1702 for a surgeon treating venereal disease.24 Coffeehouses even served 
as lost and found depots.25 Some coffeehouses specialized in and attracted certain 
clientele, perhaps the most famous being Lloyd’s Coffeehouse, which evolved 
into a center for marine insurance. Pons Coffeehouse attracted many Huguenots, 
especially from the military, and the Rainbow Coffeehouse was where the Huguenot 
intelligentsia met, led by Pierre Des Maizeaux.26 Patrons of Slaughter’s Coffeehouse 
met to play chess and whist. When they were first published, copies of Edmond 
Hoyle’s A Short Treatise on the Game of Whist, Philip Stamma’s The Noble Game 
of Chess, and François-André Philodor’s Analyse du jeu des Échecs were sold from 
Slaughter’s.27 These were the leading manuals on card games and chess in their time 
and for many years to come. Slaughter’s was another haunt for Huguenots and, prior 
to the establishment of the Royal Academy of Arts in 1768, it was also a meeting 
place for artists.28

Coffeehouses were places where merchants, teachers and professional men 
could mix with the landed elites. In addition to Newton, Abraham De Moivre may 
have met Charles Spencer, 3rd Earl of Sunderland, at Slaughter’s Coffeehouse. 
Sunderland was an avid chess player, one of the best in England.29 De Moivre 
also played chess; he had honed his skills with Ozanam in Paris. He also applied 
his mathematical skills to chess by providing an elegant solution to the knight’s 
tour problem—how to cover all 64 squares of a chess board using a knight’s move 
without hitting the same square twice.30 He probably solved this mathematical 
problem around 1718. The French mathematician and aristocrat Pierre Rémond de 
Montmort saw De Moivre’s solution that year and found one of his own.31 Although 
Sunderland was a fellow of the Royal Society, as was Newton and De Moivre, 
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Sunderland was an inactive member and may not have attended any meetings.33 
Instead, chess may have been De Moivre’s entry into Sunderland’s society.

During his career, De Moivre crossed paths with a number of aristocrats and 
landed families. He tutored many of this group’s children in mathematics. The 
subscription list to his 1730 book, Miscellanea Analytica, is a who’s who of early 
eighteenth century Whig politics in England.34 Most notable among the names in 
the list is Robert Walpole, England’s first prime minister and the ultimate player 
in patronage politics. Also included in the list is Walpole’s son Edward as well as 

Slaughter’s Coffeehouses in the nineteenth century.32 (© Trustees of the British Museum.)

De Moivre’s solution to the knight’s tour problem.
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Robert Walpole’s close associate Charles, 2nd Viscount Townshend, and two of his 
sons, Thomas and William. De Moivre had connections that went into the upper 
reaches of British politics. His connections were also long lasting. Robert Spencer, 
4th Earl of Sunderland, and Diana Spencer, later Duchess of Bedford, and both 
children of the 3rd Earl of Sunderland, also appear on the subscription list, although 
it is unlikely that either of them received tutoring from De Moivre. The 3rd Earl 
of Sunderland died at least six years before his children subscribed to Miscellanea 
Analytica; the children appear on the subscription list for no discernable reason other 
than their father’s connection to De Moivre.

De Moivre was elected a fellow of the Royal Society in 1697. This provided him 
with another network of associates that included mathematicians and scientists, as well 
as aristocrats interested in science. De Moivre knew all the British mathematicians of 
his day, but was especially close to Edmond Halley, William Jones, Isaac Newton, and 
Brook Taylor. Compared to other mathematicians in the Royal Society at the beginning 
of the eighteenth century, Astronomer Royal John Flamsteed described De Moivre as 
“an honester and abler man than any of them.”35 Once plugged into the Royal Society 
network, De Moivre made connections within the international scientific community 
through the Republic of Letters. Prominent among De Moivre’s international contacts 
were the Swiss mathematician Johann Bernoulli and his nephew Nicolaus Bernoulli, 
as well as the French mathematician Pierre Varignon. 

Intellectual Connections
What occupied the minds of several mathematicians in the latter half of the 
seventeenth century and well into the eighteenth century were problems related to 
curves—finding the tangent to a curve at a given point, finding areas under curves 
(called quadrature), and finding lengths of curves (called rectification). The problems 
were all related through the newly developing differential and integral calculus that 
was discovered by Newton and his German counterpart, Gottfried Leibniz. On the 
Newtonian side are fluxions. Fluxions give tangents to curves. In the Leibnizian 
version of calculus, derivatives provide tangents. Newton’s approach to fluxions 
is different from differential calculus today, which is more in tune with Leibniz’s 
approach. Quadrature is to integral calculus as fluxions are to differential calculus. 
Once De Moivre arrived in England, one of his first mathematical interests was in 
finding new ways to obtain quadratures.

How Newton viewed curves, for example those of the form y = (1 – x 2) n 
that he studied in the mid-1660s, was in a very Euclidean way. Definition 2 of 
Book I of Euclid’s Elements states, “A line is breadthless length.”36 By the late 
seventeenth century there were several commentaries on this definition. The 
first English translation of Euclid, done in 1570 by Henry Billingsley, provides 
a second definition in order to enhance the understanding of Euclid’s original: “A 
line is the moving of a pointe, as the motion or draught of a pin or pen to your 
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sense maketh a line.”37 Another commentary from 1685 provides more insight into 
motion and lines.

’Tis commonly said, that a Line is produc’d by the motion of a Point; which 
ought to be carefully observ’d; for motion may on that manner produce any 
quantity whatsoever; but here, we must imagine a Point to be only so mov’d, 
as to leave one trace in the space, through which it passes, and then, that trace 
will be a line.38

In Newton’s mathematical worldview, a curve would be traced by the point of 
intersection of a horizontal and a vertical line moving through time.39 From a modern 
viewpoint, the curve at time t during the tracing of it would be situated at the point 
(x(t), y(t)), so that Newton’s variables x and y can be viewed as functions of time. 
In Newton’s jargon, x and y are called fluents or flowing quantities; in this case they 
flow with time. The value of x(t) is the distance at time t on the horizontal line from 
0 to the point of intersection with the vertical line and y(t) is the distance, also at 
time t, on the vertical line from 0 to the point of intersection with the horizontal line. 
The fluxion is the rate at which these fluents change over time. Newton denoted the 
fluxion of x as ẋ and the fluxion of y as ẏ. In modern calculus notation, ẋ = dx(t)/dt 
and ẏ = dy(t)/dt. The tangent to the curve is ẏ/ẋ, which in modern calculus notation 
would be the derivative dy/dx. The basic problems in Newtonian calculus are to find 
a fluxion of a given fluent and to find the original fluent from a given fluxion. The 
problem of finding quadratures is directly related to the problem of finding fluents 
from given fluxions.

One of the techniques to find quadratures and fluxions of curves is based on 
the binomial theorem. Newton developed a general version of the theorem in 1665. 
The theorem provides an expression for the expansion of (1 + x) n . The expression 
is given by the series

( ) ( )( ) ( )( )2 3 41 1 2 1 2 ( 3)
1 .

1 1 2 1 2 3 1 2 3 4
n n n n n n n n nn x x x x

− − − − − −
+ + + + −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅


The result had been known for the case in which n is an integer. Newton was able 
to obtain the expansion when n is a fractional number. Typical of Newton, he did 
not publish his work, but instead referred to results of it in his correspondence 
in the 1670s.40 The first printed version of the general expression of the binomial 
theorem appeared in a 1688 tract by the physician Archibald Pitcairne, who 
attributed the result to the mathematician David Gregory, friend and fellow 
Scot.41

How Newton obtained the quadrature of a curve in the mid-1660s using the 
binomial theorem is illustrated with a particular curve within a family of curves of 
interest to Newton. The curve is given by y = (1 – x2)7/2 and is shown in the diagram. 
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On using Newton’s binomial theorem, this curve can be expressed as 
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Prior to Newton’s work, the English mathematician John Wallis was able to find 
the quadrature of simple curves of the form y = x m , where m is a positive integer. 
The quadrature of this curve for values of  between 0 and some number a is given 
by am + 1/(m + 1).42 In order to find quadratures for curves such as y = (1 – x 2)7/2, 
it is necessary only to expand (1 – x 2)7/2  using the binomial theorem and then to 
apply Wallis’s result term by term to the infinite series. 

The binomial theorem can also be used to obtain fluxions, for example the 
fluxion of xn. The modern approach to calculus would have us find

[ ] [ ]
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+ −
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where ∆t is an increment of time. Newton’s approach was similar but different. 
In an infinitely small period of time, which Newton denoted by o, the fluent x is 
augmented by its moment to become x + oẋ after that period of time. The fluxion of 
x is determined from

( )
.

n nx ox x
o

+ −

On using the binomial theorem and after a little simplification, the fluxion can be 
written as

1 2 2 2 3 3 3( 1) ( 1)( 2)
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.
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When o is small but finite, then o/o = 1. After applying this result, then when  
“vanishes,” the expression, and hence the fluxion, reduces to nx n –1ẋ . 

In his book The Analyst, the philosopher and Bishop of Cloyne George 
Berkeley pointed to logical problems with this approach.43 The term o is assumed 
nonzero at the beginning of the proof and then set to zero to conclude the proof, 
Berkeley said. This is a logical fallacy: an assumption and its negation are both 
assumed in order to obtain the proof. The expression nx n –1ẋ  for the fluxion is 
correct, but the mathematical foundations of the calculus behind obtaining it would 
not be properly established until the nineteenth century.

Another example of the use of the binomial theorem is the infinite power 
series expansion of the natural logarithm of a number 1 + a. To use seventeenth- 
and eighteenth-century jargon, the hyperbolic logarithm of 1 + a is the area under 
the hyperbolic curve y = (1 + x) –1 between 0 and the number a. Given that the 
binomial expansion of (1 + x) –1 is 1 – x + x2 – x3 + …, then the area under the 
hyperbola is a – a2/2 + a3/3 – a4/4 + … on using Wallis’s result to find the area 
under the curve given by y = xm. This infinite series expansion for the natural or 
hyperbolic logarithm of 1 + a was found by Nicholas Mercator in 1668, independent 
of Newton’s binomial theorem.44 Hyperbolic or natural logarithms is a prominent 
feature of some important areas of De Moivre’s mathematical work.

The study of series expansions of various types became a staple of the 
British mathematical diet in the late seventeenth and early eighteenth centuries. 
This was not necessarily the case for the continental part of the Republic of 
Letters, as can be seen by comments from the mathematician and prominent 
member of the French Académie des sciences Pierre de Maupertuis. When 
James Stirling’s Methodus Differentialis and Abraham De Moivre’s Miscellanea 
Analytica were published in 1730, Maupertuis commented that “this business 
of series, the most disagreeable thing in mathematics, is no more than a game 
for the English; this book [Stirling’s] and that of M. de Moivre are the proof.”45 
These are books that contain a substantial amount of material on infinite series. 
The game that Maupertuis complained of was, however, substantial. Many of 
the more complex series expansions from the seventeenth and early eighteenth 
centuries may be found in Giovanni Ferraro’s The Rise and Development of the 
Theory of Series up to the Early 1820s.46

In the first edition of Doctrine of Chances, published in 1718, De Moivre states 
that problems in probability could all be solved using the binomial theorem and 
infinite series.47 The application of the binomial theorem to probability can be easily 
described. When n is a positive integer, the expansion of (a + b)n is expressed as

( )1 2 2 3 31 ( 2)( 1) ,
1 1 2 1 2 3

n n n n nn n nn n na a b a b a b b− − −⋅ − ⋅ −⋅ −
+ + + + +

⋅ ⋅ ⋅


using the binomial theorem. In that form it may be applied to problems in probability 
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in three ways. (1) If a stands for success and b for failure, then the coefficient of the 
term a ib n –i in the expansion is the number of ways of obtaining i successes and  n – i 
failures. (2) If a is the number of chances leading to success and b is the number 
leading to failure, then the number of chances of obtaining i successes and  n – i failures 
is the same coefficient as before times the number computed from a ib n –i. (3) If a is 
the probability of success and b the probability of failure, then the probability of 
obtaining i successes and n – i failures is again the same coefficient times a ib n –i.

Prior to De Moivre’s work in probability, there were two British mathematicians, 
one English and one Scottish, who used applications of the binomial theorem to 
solve probability problems. Both knew De Moivre and both were fellows of the 
Royal Society. The first is Francis Robartes—amateur scientist and mathematician, 
Whig politician, and younger son of the 1st Earl of Radnor. His work on the 
binomial appears in John Harris’s Lexicon Technicum in an article entitled “Play.”48  

The article is a loose translation of Christiaan Huygens’s 1657 tract on probability, 
De ratiociniis in ludo aleae. Robartes used the binomial expansion to solve the 
classical problem of the division of stakes, one of the problems that led Blaise Pascal 
and Pierre de Fermat to the initial development of the probability calculus in 1654. 
There are also hints of the use of a binomial expansion in a paper on probability that 
Robartes presented to the Royal Society in 1692 but did not publish.49 The other 
is John Arbuthnot—physician, mathematician, and satirical writer. He was also 
the friend and fellow countryman of Archibald Pitcairne and David Gregory. His 
use of the binomial expansion is part of his paper to the Royal Society on divine 
providence.50 There Arbuthnot used the expansion to show that the probability of an 
equal number of male and female births in any year would be very small in a large 
population.

It was in 1687, the year when Abraham De Moivre arrived in London, that 
Newton published his magnum opus Principia Mathematica. Actually, it was 
Edmond Halley who brought the manuscript to press and the same Edmond Halley 
who encouraged Newton to write the manuscript. The Newton scholar Bernard 
Cohen has given an excellent and succinct summary of the Principia’s contents and 
its novelty.

Newton’s Principia is a remarkable book on many levels. It contains original 
results in pure mathematics (theory of limits and geometry of conic sections), it 
develops the primary concepts of dynamics (mass, momentum, force), it codifies 
the principles of dynamics (three laws of motion), and it shows the dynamical 
significance of Kepler’s three laws of planetary motion and of Galileo’s 
experimental conclusion that bodies with unequal weights will fall freely (at 
the same place on earth) with identical accelerations and speeds. It develops the 
laws of curved motions, the analysis of pendulums, and the nature of motions 
constrained to surfaces, and it shows how to deal with the motion of particles in 
continually varying force fields. Newton also indicates the way to analyze wave 
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motions, and he explores the manner in which bodies move in various resisting 
mediums. The crown of all appears in the final book 3, in which he discloses 
the Newtonian system of the universe—regulated by gravity, by the action of 
a general force, of which one particular manifestation is the familiar terrestrial 
weight. Here Newton treats at length of the orbits of planets and their satellites, 
the motions and paths of comets, and the production of tides in the sea.51

The exposition of mathematics in the Principia relied heavily on geometry, rather 
than on the newly emerging calculus. Further, the mathematics was complex enough 
that it could be read only by skilled mathematicians. The Principia went through 
two more editions during Newton’s lifetime. Although the new generation of 
mathematicians in the early eighteenth century were familiar with the calculus, the 
Principia retained its geometrical approach and remained that way in England until 
the middle of the eighteenth century.52 It was the geometry in it that first attracted De 
Moivre to the Principia.

The Principia had an enormous impact on science for well over a century 
after its publication. The ideas in the Principia were quickly adopted in England 
by scientists of the day. An English translation by Andrew Motte came out two 
years after Newton’s death, and there were several publications that tried to explain 
the general ideas in the book. On the Continent, the major early adherents to 
Newtonianism were the Bernoulli brothers, Jacob and Johann, soon followed by 
their students and other members of the Bernoulli family. The twist on the Continent 
was that these mathematicians dropped Newton’s geometrical approach and used 
the new calculus, the Leibnizian version in particular, to deal with the issues and 
topics raised in the Principia.53 They also tended to side with Leibniz in the priority 
dispute that arose between Newton and Leibniz over the discovery of the calculus. 
Up to the first quarter of the eighteenth century, there was some resistance in France 
to the complete acceptance of Newtonian cosmology. Several prominent members 
of the French Académie royale des sciences continued to try to justify the Cartesian 
system of vortices over Newton’s theory of gravitation to account for how celestial 
bodies travelled in their orbits.54 By the late 1730s the Principia had made such 
inroads on the Continent that two Minim friars, Francis Jacquier and Thomas Le 
Seur, published their own edition of the Principia with commentary. The complete 
text of Newton’s third edition was accompanied by a proposition-by-proposition 
commentary using Leibnizian calculus that was equal in length to the original text.

Akin to Darwin’s Origin of Species in the nineteenth century, the Principia 
had an immediate impact on religious belief as well as on scientific enquiry. Through 
mathematics, Newton had demonstrated regularity and unity in the physical working 
of the cosmos. This supported a shift in the religious or philosophical thinking 
among several intellectuals, both clerical and lay. For some believers, the Principia 
strengthened the biblical role of God, the creator; God was the maker or designer 
of a well-ordered mechanistic universe whose operation could be predicted through 
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mathematics. For others, God lost his biblical role as the king or shepherd of his 
people and was reduced only to the role of creator. The commonly used analogy was 
that God was a clockmaker who built his clock, got it running, and then left it to run 
on its own.55

The ideas in the Principia also impacted the interpretation of random events, 
the study of which, through games of chance, was one of Abraham De Moivre’s 
major occupations. Newton had shown that the universe was subject to mathematical 
laws. Probabilists like De Moivre showed that random events also followed certain 
mathematical laws, although not in a deterministic way. The consequence of this 
insight is that the outcomes of random events are no longer subject to fate or fickle 
fortune.
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Although De Moivre had left religious turmoil behind in France, he stepped into the 
midst of Protestant unrest in England. During the seventeenth century, England had 
its own problems with respect to religion and politics. There had been a civil war 
in the mid-seventeenth century which saw the king deposed and executed, and the 
Church of England disestablished as the state church. Upon the Restoration in 1660, 
the Church of England was again made the state church and other denominations 
that did not adhere to the established church were subjected to discriminatory acts of 
Parliament. When Charles II died in 1685, his brother James was proclaimed king. 
However, James II had openly converted to Catholicism. The situation was tolerated 
by the political and religious elites until James’s wife gave birth to a boy, an heir 
who would be raised a Catholic. Fear of further religious and political upheaval in 
England spread; James was deposed in the Revolution of 1688 and replaced by his 
Protestant daughter Mary and her husband, William of Orange. James fled to France 
and, supported by Louis XIV, plotted his return to the throne, as did his son after 
James’s death in 1701. One of the key players who brought William and Mary to 
the throne was William Cavendish, 1st Duke (at the time 4th Earl) of Devonshire. 
A Whig peer, Devonshire was one of a group of seven who had invited William of 
Orange to invade and was instrumental in the decisions of the Convention Parliament 
of 1689 that made William and Mary joint monarchs.

About two years after his arrival in England, De Moivre had an audience with 
Devonshire.1 This interview was a significant one because Devonshire, a powerful 
Whig nobleman, was taking time to meet with De Moivre who, at the time, was a 
nobody. As such, De Moivre would not have just come in off the street to see Devon-
shire, but must have had a letter of introduction or a reference from someone else. 
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De Moivre’s sponsor was likely Isaac Garnier, the apothecary to Charles II who had 
fled France in 1682.2 In view of their professions in Vitry-le-François, Isaac Garnier 
as an apothecary and medical practitioner and Daniel De Moivre senior as a surgeon, 
the two Protestant families undoubtedly knew one another in France. Abraham De 
Moivre’s connection to the Garnier family continued well beyond their common ori-
gins in Vitry-le-François. Garnier’s elder son, Isaac Junior, married Eleanor Carpen-
ter, the sister of Lord George Carpenter, 1st Baron Carpenter of Killaghy.3 In 1738, 
De Moivre dedicated the second edition of Doctrine of Chances to the first baron’s 
only child, Lord George Carpenter, 2nd Baron Carpenter. Isaac Garnier’s younger 
son, Thomas, subscribed to De Moivre’s Miscellanea Analytica, published in 1730.

Regardless of how the meeting was arranged between De Moivre and 
Devonshire, it helped to propel De Moivre forward in his future career as both tutor 
and scientist. One of the results of the meeting was that De Moivre was probably 
hired to tutor one of the duke’s younger sons, James, as well as the elder son and 
heir, William, later 2nd Duke of Devonshire.4 This was an early step in a long career 
of working as a mathematics tutor, and in a sense, followed in the footsteps of De 
Moivre’s own tutor, Jacques Ozanam. However, there are two major differences 
between Ozanam’s and De Moivre’s teaching careers. While Ozanam taught 
children of the bourgeoisie, De Moivre typically taught the children of aristocrats 
and families with landed interests. Secondly, while Ozanam died nearly penniless, 
De Moivre died comfortably holding £1600 in capital invested in annuities.5 The 
second and unexpected result of the meeting with Devonshire was De Moivre’s first 
brush with Britain’s scientific community. Late in life, De Moivre told his friend 
and biographer Matthew Maty that as he approached the duke’s house, he saw a 
man whom he did not know come out of the house. De Moivre later discovered 
that the man was Isaac Newton, with whom he eventually became close friends. 
While waiting in an anteroom for the duke, De Moivre noticed a copy of Newton’s 
Principia Mathematica and glanced through it. As Maty writes,

The illustrations it contained [several geometrical diagrams] led him to believe 
that he would have no difficulty reading it. His pride was greatly injured, 
however, when he realized that he could make neither head nor tail of what he 
has just read, and rather than propel him to the forefront of science, as he had 
anticipated, his studies as a young scholar had merely qualified him for a new 
development in his career. He rushed out to buy the Principia, and as the need to 
teach mathematics as well as the long walks he was thus forced to take around 
London left him scarce free time, he would tear out pages from the book and 
carry them around in his pockets so that he could read them during the intervals 
between the lessons.6

In France, De Moivre had been well trained in geometry and Cartesian physics. 
Therein, the standard Cartesian text, Rohault’s Traité de physique, was relatively 
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nonmathematical in contrast to Newton’s Principia, which was filled with geometri-
cal arguments and diagrams. 

On December 16, 1687, very soon after their arrival in London, the Moivre 
brothers, Abraham and Daniel, were made denizens of England.7 This legal status 
gave them the ability to buy land in their new country and came at a monetary cost 
of about £25—indicating the brothers were far from destitute when they arrived in 
England.8 A few years later in 1706, Abraham, but not his brother, became a full 
citizen of England.9 This also came at a cost of about £65, which was more than 
the annual salary of £60 that a well-placed clergyman would make.10 As part of 
becoming a naturalized Englishman, De Moivre had to receive the sacrament of 
Holy Communion in the Church of England. De Moivre, with two of his Huguenot 
friends, Gideon Nautanie and John Mauries, as well as many other Huguenots, 
received the sacrament on December 9, 1705, at St. Martin-in-the-Fields Church. 
The three new citizens each in turn attested to the other two taking Communion at 
the church.11

In the 1690s De Moivre tried to regularize his teaching by obtaining a permanent 
teaching position. Two Royal Academies were proposed in 1695, one to be situated 
in Covent Garden near where De Moivre lived. Instruction in the academies would 
be given in a variety of subjects including languages, mathematics, and music. De 
Moivre was listed as one of the two mathematics teachers and his brother Daniel 
as a flute teacher. Expecting a significant response to the opening of the academies, 
entrance was by lottery. There were 40,000 tickets, sold at a price of £1 each, from 
which 2,000 winners would be drawn. The winners were to gain entrance to the 
academies and could take the subject of their choice. For a variety of reasons, the 
lottery scheme fell apart and the school masters themselves opened the academies 
to general subscription.12 This was also unsuccessful and the entire project failed. 
Abraham De Moivre continued to work as a private tutor in mathematics and his 
brother continued teaching the flute privately.

The political sympathies of Huguenot refugees generally lay in the direction 
of the Whig faction,13 and Devonshire was a leading Whig politician. In light of 
the failed attempt to regularize his teaching career, De Moivre soon expanded his 
tutoring clientele, probably through Devonshire’s connections. Indeed, many of De 
Moivre’s students were from leading Whig families. One very prominent Whig, 
closely connected politically to the Duke of Devonshire, was Robert Walpole, 
who is considered to be Britain’s first prime minister. It is likely that De Moivre 
tutored Walpole’s eldest son, Edward. Moreover, while he was in power, Robert 
Walpole ran an enormous web of political patronage. Many of the subscribers to De 
Moivre’s 1730 Miscellanea Analytica were part of Walpole’s web; many of the same 
subscribers were tutored by De Moivre.14 Another possible source of students for 
De Moivre via Devonshire was through Devonshire’s own family ties. Devonshire’s 
distant cousin Elizabeth Cavendish married Ralph Montagu, 1st Duke of Montagu. 
In 1706 Montagu hired De Moivre to tutor his son John.15 Over time, De Moivre 
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tutored several members of the extended Montagu family, including the amateur 
mathematician and Member of Parliament Edward Montagu. Although a good 
mathematician in his day, he is mainly known today for being the husband of author 
and literary hostess Elizabeth Montagu, “Queen of the Bluestockings.”16

As noted already, the typical social background of the students that De Moivre 
taught runs a narrow gamut from the aristocracy and their relatives to the landed gentry 
and families acquiring landed status. Despite this general trend, De Moivre did not 
find his students exclusively from among the sons of the elite. Some of his students 
came from the Huguenot refugee community or were recommended to him by other 
Huguenot tutors living in England. One of his students from the very early 1690s 
was Peter de Magneville. In the latter part of the 1690s Magneville was working or 
studying with Johann Bernoulli, who at the time held the chair of mathematics at the 
University of Groningen in the Netherlands. Later, after his brother Jacob’s death in 
1705, Bernoulli took his brother’s professorship in mathematics at the University of 
Basel. Other Huguenot students include Michel de la Roche and Peter Davall, who 
became a journalist and a barrister, respectively. Other Huguenots who were likely 
students of De Moivre include Francis Fauquière, son of Newton’s deputy at the 
Mint, and Isaac Guion, son of a Huguenot distiller of the same name. Martin Folkes, 
who was not of Huguenot descent, studied with De Moivre in his youth. Folkes’s 
original tutor was Jacques Cappel, formerly a teacher at Saumur. It is probable that 
De Moivre came to tutor Folkes through Cappel’s recommendation. 

Many of De Moivre’s tutor-student relationships turned into life-long 
friendships. For example, in his will Peter de Magneville left £20 to De Moivre, 
as well as another £20 to Michel de la Roche, “in consideration of our antient 
friendship.”17 Martin Folkes and Edward Montagu, both tutored by De Moivre prior 
to 1710, dined with their former teacher on his eightieth birthday in 1747.18 The 
same Montagu showed solicitousness and other signs of close friendship. Writing to 
his wife at their country home in 1751, Montagu asked his wife to send wheatears, 
an avian delicacy, to De Moivre, care of Pons Coffeehouse, because he thought De 
Moivre might like to see how they taste.19 After Montagu became ill in the late 1760s, 
he presented the only known portrait in oil of De Moivre to the Royal Society.20 
Presumably, Montagu also commissioned the portrait from Joseph Highmore who 
painted it in 1736. 

De Moivre must have possessed a strong charisma to maintain such good 
friendships for thirty, forty, and even fifty years. In fact, hints of it come from 
travelers who met De Moivre and wrote about their experiences. Charles-Étienne 
Jordan wrote in 1735 that when he met De Moivre in London two years earlier 
during his travels, De Moivre was pleasant company and also man of wit.21 More 
than a decade later in 1747, the Huguenot clergyman Jean Des Champs arrived in 
London to settle there. Living only a third of a mile from De Moivre’s lodgings, he 
met and dined with De Moivre, thirty years his senior, several times soon after his 
arrival. He described De Moivre as très joyeuse compagnie, which a translator has 
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rendered, in an understated way, “good company.”22 In his biography of De Moivre, 
Matthew Maty adds, “Strength and depth rather than charm and liveliness were the 
hallmarks of his conversation and writing.”23

As De Moivre cultivated his connections with the Whig elite in order to 
further his career as a tutor, he also developed friendships within the French émigré 
community. The Huguenot literary intelligentsia met regularly for coffee and 
conversation at the Rainbow Coffeehouse near St. Martin-in-the-Fields Church.24 

Led by Pierre Des Maizeaux, other early members of the group included Abraham 
De Moivre, Pierre Coste, Pierre-Antoine Motteux, and Peter Davall. Despite history 
viewing De Moivre mainly as a mathematician, De Moivre was well acquainted 
with classical French literature, including the works of the poet and fabulist Jean 
de La Fontaine and of the writer of fantasy and satire François Rabelais. He also 
enjoyed the plays of Pierre Corneille and Molière (Jean-Baptiste Poquelin) and had 
read the Essais of Michel de Montaigne. He had seen Molière’s Le Misanthrope 
performed when he was a young man in France and could recite the lines of the 
play by heart. His favorites among these authors were Rabelais and Molière. Over 
the years 1693–1694, Motteux revised and completed a translation of Rabelais’ 
Gargantua and Pantagruel begun 30 years before by Sir Thomas Urquhart. One can 
imagine some of the discussion at the Rainbow Coffeehouse about what Motteux 
had done. Book V, the last book of Gargantua and Pantagruel, was thought by many 
to be spurious. However, De Moivre not only was convinced that Book V was true 
Rabelais, but also thought it the best part of the entire work.25

In his early years in England, De Moivre interacted with some of the estab-
lished mathematicians. He met Nicholas Fatio de Duillier in about 1692.26 Of Swiss 
origin, Fatio had come to England in 1687 and for a time had a close friendship with 
Newton that eventually ended with a falling out. De Moivre’s relationship with Fatio 
is fraught with contradictory claims as to the nature of their relationship. One claim 
holds that De Moivre learned Newton’s new calculus from Fatio,27 while the other, 
originating with an anecdote of Magneville, argues that Fatio received tutoring in 
mathematics from De Moivre.28 

Whatever their teacher-student relationship, they became competitors in a 
mathematical problem on cycloids proposed in 1697 by Jacob Bernoulli via his brother 
Johann. The problem is related to the brachistochrone (or curve of quickest descent) 
problem that Johann Bernoulli had posed (and solved) the year before as a challenge 
to the mathematical community. Four of the great mathematicians of the day rose to 
the challenge and also solved Johann Bernoulli’s brachistochrone problem: Newton, 
Leibniz, l’Hôpital, and Jacob Bernoulli. In a letter to Henri Basnage de Beauval, 
a prominent Huguenot exile living in Rotterdam, Johann Bernoulli reviewed the 
solutions to the brachistochrone problem in a general way and then posed his brother 
Jacob’s problem on cycloids.29 The letter was published in Basnage’s Histoire des 
ouvrages des sçavans, a highly reputable journal out of Rotterdam that published a 
wide variety of mainly nonmathematical articles, including ones by leading figures 
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in the Republic of Letters such as Christiaan Huygens and Gottfried Leibniz. Both 
De Moivre and Fatio de Duillier found the problem while reading Histoire des 
ouvrages des sçavans. They worked intensely on the problem for some time, but 
neither had any success in finding a solution.30 

De Moivre met the astronomer Edmond Halley in about 1692.31 Halley was 
acquainted with Huguenot merchants in London through the Levant Company.32 He 
had also been to Saumur in 1681 as part of his own scientific version of the Grand 
Tour on the Continent. During his tour, rather than participating in the usual cultural 
attractions, Halley visited several astronomers in France and Italy.33 At Saumur, 
Halley would have met De Moivre’s teachers rather than De Moivre himself since 
De Moivre did not attend the academy until 1682. It is probable that Halley and 
De Moivre met through mutual Huguenot acquaintances in London—either through 
Levant company connections or a former teacher from Saumur, such as Abraham 
Meure or Jacques Cappel. 

Halley often discussed mathematical problems with De Moivre, Halley having 
an application in need of a mathematical solution and De Moivre seemingly interested 
in a challenging mathematical problem to work on. Their different interests reflect 
a classification of mathematics prevalent in the eighteenth century that divided 
the subject into pure and mixed mathematics.34 The dividing line, as described in 
eighteenth-century encyclopedias,35 is based on how quantity is treated. In pure 
mathematics, quantity is considered “abstractly, and without any relation to matter 
or bodies.”  In mixed mathematics, quantity is considered “as subsisting in material 
being; e.g. length in a road, breadth in a river, height in a star, or the like.” Halley 
was a very capable mathematician with interests mainly in mixed mathematics such 
as astronomy. At least early in his career, De Moivre could be described as a pure 
mathematician in the eighteenth-century meaning of the term. 

Rubens’s stereographic projection (from the Getty Research Institute collection).
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On at least three occasions, Halley came to De Moivre for his thoughts on 
some mathematical problems. The first, motivated by issues concerning navigation 
at sea, was a problem in spherical geometry arising from projecting a sphere onto a 
plane (a stereographic projection). The problem can be explained by the engraving 
of a stereographic projection designed by Peter Paul Rubens and published in 1613.36 

The lines of longitude and latitude in the sphere held by Atlas are projected by the 
light of the putto’s torch onto circles on the ground. What De Moivre essentially told 
Halley in their discussions late in 1695 or early 1696 was that the angles at which 
the circles on the ground intersect are the same as the associated spherical angles 
on the sphere obtained by two intersecting circles on the sphere. Halley went away 
and proved the result on his own.37 The second recorded mathematical discussion 
arose in 1700 from a problem concerning refracted light in rain showers resulting 
in rainbows. De Moivre showed Halley how to obtain the ratio of refraction for 
rainwater by measuring the diameter of a secondary rainbow in the sky. The ratio 
of refraction is the ratio of the sine of the angle of incidence of a ray of light to the 
sine of the angle of refraction of the ray through the medium, in this case rainwater.38 

The ratio of refraction for a given medium is constant at all angles of incidence. 
The third discussion occurred in 1706 when Halley was involved in a publication 
of mathematical tables and some related essays.39 His part was an essay on the 
valuation of fixed-term annuities. De Moivre verified a formula Halley had obtained 
to determine the approximate interest rate when the value and term of the annuity 
were given.40 The approximation was simple as well as accurate; approximations 
that had been obtained in the 1670s required a substantial amount of calculation. All 
these interactions have a connection to areas of mathematics in which De Moivre was 
working—geometry that he had learned in France and his newly emerging interests 
in power series and solutions to polynomial equations. The determination of the 
ratio of refraction required the solution to a biquadratic equation (a fourth-degree 
polynomial with no odd powers). The determination of the interest rate required 
a power series approximation (involving powers of the interest rate that was to be 
determined) followed by the solution to a quadratic equation.

Soon after meeting Halley, De Moivre finally met the man whom he saw 
coming out of the Duke of Devonshire’s residence in 1689. Newton and De Moivre 
became good friends. Probably after Newton took up residence in St. Martin’s Street 
in 1711, they would often meet at Slaughter’s Coffeehouse in St. Martin’s Lane, after 
De Moivre had finished teaching for the day. They would then move to Newton’s 
house, which was close by, for an evening of conversation and philosophical debate. 
De Moivre came to know Newton well enough that Newton told De Moivre several 
details about his early life.41 

When Halley and De Moivre first met, Halley was assistant secretary to the 
Royal Society. It was three years after their initial meeting that Halley brought some 
of De Moivre’s work to the attention of the Royal Society. In the minutes for the 
meeting of June 26, 1695, there is an entry stating:
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Halley related that one Mr Moivre a French Gentleman had lately discovered 
to him an Improvement of the Method of Fluxions or Differentialls invented 
by Mr. Newton with a ready application thereof to Rectifying of Curve lines, 
Squaring them and their Curve Surfaces, and finding their Centers of Gravity 
&c.42

Since his first glance at it in 1689, De Moivre had read the Principia thoroughly. 
The idea for the paper that he gave to Halley, which was published in Philosophical 
Transactions,43 came out of a result in the second book of the Principia regarding the 
fluxions of products, quotients, and powers of variables.44 De Moivre was interested 
in the other side of the calculus—finding an integral, to use modern terminology. 
This operation yields areas under curves (quadrature), lengths of curves (rectifica-
tion), and centers of gravity or balance points of curves. Using some very astute 
mathematical tricks, De Moivre expanded the types of curves for which integrals or 
inverse fluxions could be found. This was well beyond the curves that Newton had 
treated in this part of the Principia. 

After reading his copy of Philosophical Transactions, the doyen mathemat-
ician of the day, John Wallis, Savilian Professor of Geometry at Oxford, wrote to 
the secretary of the Royal Society. While suggesting that the Royal Society publish 
some early letters of Newton that “are more to the purpose than that of De Moivre,” 
Wallis commented, “Who this De Moivre is, I know not.”45 This obscure foreign 
mathematician was soon to be much less obscure in Royal Society circles.

On June 16, 1697, the second of De Moivre’s papers was read before a meeting 
of the Royal Society. The subject matter once again dealt with Newton’s mathematics. 
This time it was an extension of Newton’s binomial theorem to the multinomial case. 
Where Newton had essentially obtained an infinite series expansion for curves of the 
form y = (a + bx)n, De Moivre obtained a series expansion for the curve y = (ax + 
bx2 + cx3 + dx4 + …)n.46 Election to fellowship in the Royal Society followed five 
months later on November 30, 1697, and his scientific career was well underway.47 

De Moivre continued to work on a topic related to the multinomial. Soon after his 
election, he presented a paper that showed the reader how to invert a series. Given 
the equation py + qy2 + ry3 + sy4 + … = ax + bx2 + cx3 + dx4 + …, De Moivre was 
able to solve for y alone as a power series in x.48 

In 1700, he, in a sense, returned to his youth by taking up a classical problem in 
geometry. In this work he studied the resulting solid shapes obtained when segments 
of the Lune of Hippocrates are rotated about an axis. A lune is the crescent-shaped 
figure obtained by overlapping two circles and removing the area of the larger circle. 
The Lune of Hippocrates, first studied by Hippocrates of Chios in the fifth century 
BCE, is obtained when one circle is twice the area of the other and the circumference 
of the smaller circle passes through the center of the larger one. De Moivre’s 1700 
paper may have been motivated by a letter from John Wallis published the previous 
year in Philosophical Transactions.49 It was about the areas under parts of the Lune 
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of Hippocrates. Wallis read De Moivre’s paper, as well as the entire issue, the day he 
received his copy of Philosophical Transactions. In a letter to Hans Sloane, secretary 
of the Royal Society, Wallis wrote something that any reader of De Moivre’s work 
finds at time frustratingly typical: De Moivre had merely stated his results and made 
no effort to demonstrate the validity of them. Wallis suggested to Sloane that De 
Moivre’s results could be verified using a result in Mechanica, a book Wallis had 
published in 1670.50 

By 1700 De Moivre had made a good start to his scientific career. At about the 
same time, he took some small steps into the wider Republic of Letters, one in the 
arts and one in the sciences. The arts side began with the arrival in England of Abbé 
Jean-Baptiste Dubos in 1698, about a year after the end of the Nine Years’ War, also 
known as the War of the Grand Alliance or King William’s War. Initially trained in 
theology, Dubos was working as a diplomat representing Louis XIV. He met De 
Moivre sometime before his return to France in about 1702. The scientific step was 
meeting Jacob Hermann, who had studied mathematics with Jacob Bernoulli in 
Basel. During 1701 and 1702 Hermann visited Holland, England and France to meet 
members of the scientific community.51 In England he hoped to meet Newton; he met 
De Moivre instead. On August 1, 1701, Hermann wrote from Paris to De Moivre’s 
friend Pierre Des Maizeaux.52 The letter contains some mathematical calculations 
related to a problem in physics. At the end of the letter, Hermann added a request 
that Des Maizeaux pass on his compliments to De Moivre and to other good friends. 

Both steps into the Republic of Letters were short and short-lived. Soon after 
his return to France, Dubos retired from public life and devoted himself to his studies, 
writing on history and on a theory of painting and poetry. There seems to have been 
no further contact between De Moivre and Dubos until about thirty-five years later 
when another visitor from France, art critic Abbé Jean-Bernard Le Blanc, met De 
Moivre. After Le Blanc conversed with De Moivre about Dubos’s book Reflexions 
critiques sur la poesie et sur la peinture, De Moivre sent his compliments to Dubos 
via Le Blanc and asked for a copy of a forthcoming new edition of the book. De 
Moivre’s contact with Hermann lasted a little longer. In 1706 he wrote to Hermann 

A simple lune.
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in Basel, sending his letter through Johann Bernoulli, who was now in Basel. He 
received a reply, but there is no evidence of any further correspondence, although 
De Moivre is mentioned several times between 1702 and 1718 in correspondence 
between Hermann and Johann Bernoulli. The main gist of the 1706 letter, which is 
not extant, seems to have been a report on a result obtained by a young unnamed 
friend of De Moivre.53 It was a series approximation to the number π that converges 
rapidly. The series correctly gives π to four decimal places (3.1416) after three terms 
and to six decimal places (3.141593) after five terms.

A brief look at Philosophical Transactions shows that publications flowed 
from someone like Edmond Halley; from De Moivre, it was more of a trickle—thir-
teen from De Moivre compared to more than fifty from Halley over their lifetimes. 
Further, nearly one third of De Moivre’s output of scientific papers occurred during 
the first five years of his scientific career. One reason for the difference can be attrib-
uted to De Moivre’s need to tutor during the day in order to make a living. Another 
reason is described by Maty:

I learned that it had been Mr. De Moivre’s preference from the very outset 
to work on these difficult problems at night rather than in the day, since they 
required a great deal of attention; and that, several years later, whenever he felt 
able to fix his mind on the most complex calculations even during the day, he 
could not tolerate noise in the house, as the disturbance upset his concentration.54

De Moivre lived in or near St. Martin’s Lane. During his lifetime, the east side of the 
lane housed traders and artisans while the west side was a fashionable location for 
doctors and artists.55 It could have been a noisy area during the day, particularly if 
there was significant horse and carriage traffic on a cobbled street.

In addition to introducing De Moivre to scientific society, Halley may have 
helped to establish De Moivre’s teaching career. Halley had connections to Christ’s 
Hospital, a charitable school originally located in London, now in Horsham, West 
Sussex. Halley lived near the school, had been a mathematical examiner there, and 
had consulted the school’s registers for information on youth mortality while he was 
preparing his 1693 paper on the analysis of the bills of mortality from Breslau.56 Pos-
sibly through Halley’s recommendation, De Moivre was appointed a mathematical 
examiner at Christ’s Hospital in 1698, three years after Halley last served in that 
position. The job paid £2 for a day or two of work. De Moivre continued to examine 
students until 1702. The following year he was succeeded by John Harris, author of 
Lexicon Technicum.57 De Moivre may have either given up or lost this job due to ill-
ness; by the latter part of 1702 he had contracted smallpox and was recovering from 
it by early December.58 

While Abraham was solidifying his position as a tutor, as well as an able 
mathematician within the scientific community, his brother Daniel was developing 
his career as a talented flautist.59 Daniel would have played a Baroque flute, whose 
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wooden construction in the body is more in line with a recorder, but still played 
transversely like a modern flute.60 By the time the brothers had arrived in England, 
the flute was a favorite instrument among amateur musicians, ladies and gentle-
man playing for their own amuse-
ment and pleasure. Daniel catered 
to this group as a teacher, performer, 
and composer. In 1701, he published 
his first set of pieces for solo flute, a 
collection written particularly for stu-
dents. The pieces were mainly writ-
ten in dance form:  allemandes, cou-
rants, jigs, minuets, and sarabands. A 
second collection came out in 1704 
and a third in 1715.61 All the collec-
tions were published by the prom-
inent London music publisher John 
Walsh, whose shop in the Strand was 
a short walk from where both Dan-
iel and Abraham lived. The latter two 
collections of flute music may have 
been of pieces composed for Dan-
iel’s own performances. While the 
1701 music has the title Lessons for 
a Single Flute, the later publications 
do not have the word lessons in their 
titles. De Moivre’s music was popu-
lar; Walsh republished the three col-
lections at various times in the 1720s 
and early 1730s. The only known 
recorded notice of one of Daniel’s 
concerts is in 1717 when a subscrip-
tion series of twelve concerts were 
performed by De Moivre and several 
others at Leathersellers’ Hall.62 Un-
like his publisher’s shop, the concert 
venue was some distance from home, 
a walk of about two and a quarter 
miles.

Until about 1700, or shortly 
thereafter, the Moivre brothers’ ca-
reers ran in parallel—successful but 
not outstanding in their chosen fields. 

Baroque flute, circa 1700. (Photo © Victoria 
and Albert Museum, London.)
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Soon Abraham De Moivre’s mathematical career would accelerate well beyond his 
brother’s musical one. What sparked the change in trajectory was an unpleasant 
“academic fight” that began to erupt in 1702.
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George Cheyne was a Scottish physician who had studied medicine with Archibald 
Pitcairne in Edinburgh. With Pitcairne’s sponsorship, Cheyne obtained his medical 
degree from King’s College of the University of Aberdeen. Like many other Scots, 
he moved south to London where, along with fellow physician and mathematician 
John Arbuthnot, he became part of a circle of friends and former students of 
Archibald Pitcairne and David Gregory.1 Adept at mathematics and initially unable 
to find employment as a physician in London, Cheyne became, like De Moivre, a 
teacher of mathematics to the upper classes. Unlike De Moivre, who tutored many 
students, Cheyne taught only one student, the younger brother of the Earl (later 
Duke) of Roxburghe. 

Soon after his arrival in London in 1702, Cheyne became involved in an 
“academic fight” with De Moivre over the contents of a book that Cheyne had 
published entitled Fluxionum Methodus Inversa.2 As the Latin title suggests, it was a 
book about inverse fluxions, or, in modern terms, the calculus of integration.3 Later 
interpretations of the dispute have reflected negatively on De Moivre, describing 
him as the person who fronted some of Newton’s dirty work. Certainly, this was the 
interpretation of the French mathematician and academician at the Académie royale 
des sciences Pierre Varignon, who later became one of De Moivre’s continental 
correspondents in the Republic of Letters. Writing to Johann Bernoulli on May 2, 
1711, about seven years after the height of the dispute, Varignon said that he had 
heard from a young Scottish physician visiting Paris that it was Newton who had 
provoked De Moivre to react to Cheyne’s work.4 On the other hand, Astronomer 
Royal John Flamsteed met De Moivre several times while the episode was underway 
during 1703 and was more sympathetic to De Moivre than what might be taken from 
Varignon’s comment.
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While he was still in Scotland, Cheyne wrote the manuscript for his book 
Fluxionum Methodus Inversa. Rather than containing new research on the topic of 
quadratures or on the finding of areas under curves, it was a survey of results that had 
been obtained by both British and continental mathematicians. What was new about 
the manuscript was that work on the subject up to that date was now systematized in 
one place. Cheyne put together a set of rules for obtaining quadratures and provided 
his own proofs of the results. Through Pitcairne, also in Scotland, the manuscript 
was sent to John Arbuthnot in London who took it to Newton. Cheyne wanted to 
know if the manuscript was worth publishing. Newton glanced at the manuscript and 
was lukewarm. Prior to or despite receiving Newton’s opinion, the manuscript was 
sent to a printer by February of 1702. Already Cheyne’s Scottish friends in London 
were championing it to the scientific community.5 Throughout 1702 there were 
continual delays in printing. Joseph Raphson was recruited in May to proofread the 
book as the sheets slowly came off the press. By July, Cheyne’s Scottish friends were 
silent and there were rumors that something was wrong with the book. After Cheyne 
himself arrived in London near the end of 1702, he was taken by Arbuthnot to meet 
Newton. During the meeting there was an apparent misunderstanding. According 
to the recollection of John Conduitt,6 husband of Newton’s niece, Newton thought 
Cheyne wanted money to get the book printed and offered it. Cheyne wanted Newton 
to peruse the manuscript and offer advice on the contents; he was offended by the 
offer of money. This recollection does not quite ring true since, by that time, the 
manuscript had been with the printer for several months and part of the book was 
already printed. Further, why would Newton offer money to have a book printed 
when he was lukewarm about the manuscript? With or without any offer of money 
from Newton, the printing of the book was finally completed in February of 1703, 
at which time Cheyne presented a copy to the Royal Society at one of its meetings.7 

Newton was upset by the publication of Cheyne’s book. For several years he had 
sat on his own results related to quadrature, allowing only a chosen few to see his work. 
With Cheyne’s book in print, he felt that his work was threatened. Results were now 
being published that duplicated his unpublished work. Newton hinted in his Opticks, 
published in 1704, that his work on the quadrature of curves had been plagiarized.8 If 
Varignon’s interpretation of the affair is correct, then during 1703 Newton encouraged 
his friend De Moivre to write a reply to Cheyne’s book in order to denigrate it.

Still seeking advice, Cheyne sent a copy of his book, shortly after it was 
published, through an intermediary to Johann Bernoulli in Groningen. After some 
prodding, Bernoulli sent Cheyne a list of corrections, as well as some rules for 
quadrature that he thought were easier to use.9 On receiving this, Cheyne added a 
section to his book entitled, “Addenda & Adnotanda.” Although there is a reference 
to Bernoulli at the end of the section, there is no hint that Bernoulli was mainly 
responsible for the section. Bernoulli was not happy with the added section. He felt 
that his comments had been corrupted in several places and that Cheyne’s rendering 
of the material made Bernoulli look bad in the eyes of his colleagues.10
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On reading John Flamsteed’s letters to his friend Abraham Sharp, a slightly 
different picture emerges of the role that De Moivre played in the affair. Flamsteed 
met De Moivre in early December of 1702. De Moivre had seen Cheyne’s 
manuscript prior to the printed book appearing, and was concerned by the contents 
of it. Flamsteed related the encounter to his friend Abraham Sharp in his somewhat 
idiosyncratic English:

He [De Moivre] told me hee had seen Dr Sheens book and was mightly 
concerned at something in it. he threatned to explaine the subject of it now very 
planely and to remarke severall things in it that were amiss. You may be sure 
I did not discorage him from doeing a thin that may be for the advantage of 
science: he sayes he will write in English. I advised him to doe it in French rather 
and get a freind that was by and understands both the subject and that language 
to translate it for him  which Course I hope hee will take and then wee shall have 
this business seached [searched] to the bottom.11

There is no mention of Newton in the letter. Over the course of 1703 and into 
1704, several letters between Flamsteed and Sharp mention the dispute. Had there 
been any hint that Newton was behind De Moivre’s criticism of Cheyne, Flamsteed 
likely would have said something to Sharp. When Newton became president of the 
Royal Society in 1703, Flamsteed was soon critical of him in a letter to Sharp.12 
Flamsteed pulled no punches when writing to Sharp about other people he did 
not like, such as Edmond Halley. When John Wallis died in 1703 and the Savilian 
Professorship of Geometry at Oxford became vacant, Flamsteed wrote to Sharp, 
“Dr Wallis is dead Mr Halley expects his place who now talkes sweares and drinks 
brandy like a sea captaine so that I much fear his own ill behaviour will deprive him 
of the advantage of this vacancy.” Flamsteed also praised where he thought praise 
was due, commenting to Sharp about De Moivre that “he is an honester and abler 
man than any of them.” 

My own take on the matter is that a copy of Cheyne’s as yet unpublished 
manuscript was circulating in the scientific community. De Moivre read the 
manuscript on his own, was concerned by its contents, and probably expressed his 
concerns to Newton as he had done to Flamsteed. The initiative to publish a reply 
was De Moivre’s rather than Newton’s, although Newton may have encouraged De 
Moivre once his decision was made. 

De Moivre was actually well placed to comment on Cheyne’s book. He had 
become something of an expert on the subject of quadratures; in June of 1702 
De Moivre presented a paper to a meeting of the Royal Society on this topic.13 It 
was published that year in the March/April issue of Philosophical Transactions; 
Flamsteed received his copy in July.14 Using some series expansions, De Moivre 
found quadratures for curves of the form y = xn(ax ± x2)±1/2 and y = xn(a2 ± x2)±1/2. 
Prior to its publication, De Moivre showed the paper to Newton. What becomes 
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apparent from his action is that De Moivre is one of the chosen few in Newton’s 
eyes. Once Newton had seen De Moivre’s manuscript, he showed De Moivre his own 
manuscripts where he had obtained related results. This is one of the rare instances 
of Newton showing anyone the details of his unpublished mathematical work.  

By the end of March 1704, De Moivre published his reply to Cheyne under the 
title Animadversiones in G. Cheynaei Tractatum de Fluxionum Methodo Inversa.15 
The book is in Latin, as is Cheyne’s, rather than English or French. This was to the 
liking of Abraham Sharp, who had expressed in a letter to Flamsteed early in 1703 
that he would not be able to read what De Moivre was going to write if it were in 
French. 

Anita Guerrini neatly summarizes the contents of the Animadversiones by 
writing that De Moivre 

accused Cheyne of misunderstanding Newton’s method. He only showed the 
method, said De Moivre, but did not derive it. De Moivre then enumerated in 
devastating detail the “many errors” in Cheyne’s book.

This does not address the reasons why De Moivre was “mightly concerned” 
about Cheyne’s book late in 1702. In the same letter to Flamsteed, Sharp gives a 
foreshadowing of some of these reasons. Sharp had read De Moivre’s 1702 paper 
on quadrature in Philosophical Transactions. He found it “writ … ingeniously,” but 
also noted that De Moivre had “left some particulars short which I have long desired 
to see further cleared.” This echoes Wallis in comments on De Moivre’s 1700 paper 
on the Lune of Hippocrates. Sharp was looking forward to seeing both publications 
to learn more about the topic. After De Moivre published his book, he gave a copy 
of it to Flamsteed. Not particularly interested in the subject of quadrature, Flamsteed 
gave his copy to Sharp.16

It is De Moivre’s 1702 paper on quadrature that is a key to De Moivre’s 
agitation, not necessarily Newton’s concerns about plagiarism or other issues. In 
his Animadversiones, after an initial discussion, De Moivre goes directly to the 
point. On page 13 of his book, De Moivre picks a particular result from page 18 of 
Cheyne’s Fluxionum Methodus Inversa and shows how the result can be obtained 
correctly using his 1702 paper. The paper is so central to some of his arguments that 
it is reproduced in full, except for the last two paragraphs, beginning on page 106 of 
the Animadversiones. 

The road to publication for De Moivre was a little bumpy. His intention was to 
publish a letter in Philosophical Transactions pointing out the problems in Cheyne’s 
work, but the Scottish faction within the Royal Society became a roadblock. The 
Scots within the Royal Society had been promoting Cheyne’s work and they did not 
easily let go. Probably out of frustration, at one point De Moivre began examining 
some earlier Scottish work on quadrature and rectification of curves in order to 
criticize it, including David Gregory’s Exercitatio geometrica de dimensione 
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figurarum published in 1684. De Moivre thought he had found a problem with 
the book and told Flamsteed of it. For his own part, Flamsteed thought there were 
problems with Gregory’s more recent book on astronomy. A few months after this 
exchange, Flamsteed claimed in a letter to Abraham Sharp that Gregory had put 
pressure on Halley who then went to Hans Sloane, the secretary of the Royal Society 
in charge of printing Philosophical Transactions. As Flamsteed put it, Sloane would 
not “permit any thinge to be printed that may reflect on any of his confederates.” 

The Scottish faction’s interference may also explain another insert in De 
Moivre’s book. The mathematician John Colson read a paper to the Royal Society 
in August of 1703 entitled “Methodus Universalis and [sic] Exposito pro Solutione 
equationum Analyscarum.”17 It was ordered to be printed but was never published. 
A letter from Colson to De Moivre dated November 15, 1703, appears on pages 
53 through 67 of the Animadversiones. The letter is concerned with methods of 
solution (y  in terms of x) of equations such as y + axy + a2y = x3 + 2a3 where a 
is a known constant. Very likely the letter is related to what had been read before 
the Royal Society a few months earlier. Since the equation in x and y also defines a 
curve, Colson’s method can be used to find the quadrature of the curve: express y 
as a power series in x and obtain quadratures term by term as Newton had done in 
the 1660s.18 Near the end of the letter, Colson says that Cheyne was using a similar 
method of solution to these types of equations but had stopped when the problems 
became too difficult for him. At the end of the letter, Colson praises De Moivre 
for revealing and correcting the errors in Cheyne’s book. Perhaps Colson criticized 
Cheyne in the paper he submitted to the Royal Society, and for this reason it was not 
published in Philosophical Transactions. 

At the time, Colson and De Moivre were very good friends.19 This was about a 
decade before Colson became a fellow of the Royal Society, so they must have met 
somewhere other than Royal Society meetings. They remained friends well into the 
1730s. Colson was a subscriber to De Moivre’s 1730 Miscellanea Analytica. In his 
1736 translation and extensive gloss of a seventeenth-century Newton manuscript 
on fluxions, Colson referred to De Moivre as “my good friend” and “my ingenious 
friend.”20 This is the same Colson who became De Moivre’s successful rival for the 
Lucasian Professorship of Mathematics at Cambridge in 1739.

The effect of Cheyne’s book on De Moivre’s scientific career and De Moivre’s 
response was far-reaching, in the sense that it brought him into contact with 
continental mathematicians. Once his Animadversiones was published, De Moivre 
sent a copy of it on April 22, 1704, to Johann Bernoulli in Groningen and asked 
for comments. This is the first of an exchange of letters between De Moivre and 
Bernoulli that lasted a decade.21 It is De Moivre’s real debut into the wider Republic 
of Letters. Bernoulli made some notes on the Animadversiones and wrote back on 
November 15 with some comments. He felt that De Moivre had gone too far in 
some of his criticisms of Cheyne, that he passed over the errors in the Addenda & 
Adnotanda (De Moivre may not have seen this addition), and that De Moivre had 
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made some mistakes of his own. On the last point, Bernoulli said that he may have 
been mistaken and was willing to send De Moivre the notes he had made. One final 
point that Bernoulli made (actually it was the first on his list) was that De Moivre’s 
writing style was too prickly. It might lead the reader to think that De Moivre had other 
motives for writing the book other than his pursuit of the truth. Bernoulli’s comment 
here is a reference to the mode of discourse in the Republic of Letters. Pursuit of truth 
was an ideal of the Republic of Letters and one of the unwritten rules was civility in 
discourse.22 Bernoulli’s implied advice to De Moivre is that his barbed comments may 
have crossed the line. In later publications, De Moivre took this advice to heart and 
expressed his severe criticisms of others through alternative venues. 

Politically, the Pitcairne–Gregory group of Scotsmen were Tories, as opposed 
to De Moivre whose contacts were mostly Whigs. With Anne recently on the throne 
of England, the Tory faction in general was beginning to have some political clout. 
Arbuthnot, for example, was appointed physician to the queen. Prior to her accession 
to the throne, Gregory was appointed tutor to Anne’s short-lived son, William Henry, 
Duke of Gloucester. Although Halley had introduced De Moivre to the Royal Society, 
he was also a friend of David Gregory.23 That put him in a difficult position in the 
Cheyne affair. If Gregory did talk to Halley about keeping De Moivre’s response out 
of Philosophical Transactions, as Flamsteed claimed, then Halley was siding with 
Gregory because, at the time, Gregory was more powerful. The Cheyne affair did 
not damage the friendship between De Moivre and Halley, as may be seen from later 
social interactions. In 1708 the two met with another mathematician, John Machin, 
and celebrated the recent victory of the Duke of Marlborough over French forces at 
the Battle of Oudenarde.24   

Cheyne published a rebuttal to De Moivre’s Animadversiones in 1705 under 
the title Rudimentorum Methodi Fluxionum Inversæ Specimina: quæ Responsionem 
Continent ad Animadversiones Ab. de Moivre in Librum G. Chæynei, M.D. S.R.S.25 
It was not actually a rebuttal but a well-planned retreat with several barbs for his 
opponent. It was set out using several military metaphors throughout the text; for 
example, Guerrini translates the title given at the beginning of Cheyne’s reply on 
the first page of the book as “Response to de Moivre’s Skirmishes.” De Moivre’s 
friend and biographer, Matthew Maty, reported that although De Moivre’s criticism 
of Cheyne was scathing, the “latter’s reply carried even more venom in its tail.” 
After reading Cheyne’s rebuttal, De Moivre commented in a letter to Bernoulli:

Mr. Cheyne’s book in response to my comments has finally been published. 
Imagine this, Sir—a man in continual fits of insanity and rage, who spews 
out crude and ridiculous insults against me at every line: this is the picture of 
Cheyne in his response to me.  Imagine also all the weakness in reasoning, 
powerlessness and dishonesty that you may, and you will have a fair idea of his 
book.  It is said that Craig had quite a share in it; I am willing to believe that: it 
is worthy of Cheyne and Craig, the two leading lights of Scotland.26
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Judging by this outpouring, there may be some substance to the politicking of the 
Scots in the Royal Society. As late as October 1706, De Moivre was planning to 
respond to Cheyne’s latest publication,27 but nothing came of it. The dispute upset 
De Moivre enough that Halley advised him to work on problems in astronomy as a 
diversion.28

Varignon’s interest in the dispute between Cheyne and De Moivre predates 
his May 2, 1711, letter to Bernoulli in which he blamed the Cheyne and De Moivre 
dispute on Newton. As early as June of 1705, Varignon was writing to Bernoulli to 
ask him to find a copy of De Moivre’s Animadversiones for him. Bernoulli wrote back 
to say he would get a copy for him the next time he was in Amsterdam.29 Nothing 
came of it until July of 1706 when De Moivre sent Bernoulli a number of recently 
published books: Newton’s Opticks, Halley’s translation of works by Apollonius 
of Perga, Cheyne’s rebuttal, Rudimentorum Methodi Fluxionum Inversæ, and De 
Moivre’s Animadversiones. The last book was meant for Varignon.30 The path to 
Varignon was long and winding and used De Moivre’s Huguenot connections. De 
Moivre sent the books via Paul Vaillant in London to The Hague, where Vaillant, 
through his son, operated a publishing house. Vaillant’s office in The Hague sent De 
Moivre’s package to a bookseller in Amsterdam. Bernoulli received the package in 
Basel late in February of 1707 and sent on the long-awaited copy of De Moivre’s 
Animadversiones to Varignon in Paris. Upon receipt and his appetite whetted, 
Varignon now wanted a copy of Cheyne’s Rudimentorum Methodi Fluxionum 
Inversæ. 

A Huguenot refugee like De Moivre, Vaillant had fled to London from Saumur 
in 1686. He soon established himself as a bookseller importing foreign-language 
books from the Continent.31 His shop was in the Strand, near Southampton Street, 
another short walk for De Moivre from his lodgings. This is the first of a few known 
situations in which De Moivre relied on his Huguenot connections to help strengthen 
his connections in the Republic of Letters.

Letters between De Moivre and Bernoulli continued to discuss the Cheyne 
affair into 1707. De Moivre corrected some of the mistakes he had made in his 
Animadversiones. Bernoulli reported that he had received a long complaining letter 
from Cheyne and had written back reprimanding him. The tempest eventually blew 
itself out. Varignon reported to Bernoulli in his May 2, 1711, letter that Cheyne and 
De Moivre had reconciled and were now friends.32 Later, Cheyne apologized in print 
for his written attack on De Moivre.33

Not all of the early correspondence between De Moivre and Johann Bernoulli 
was devoted to Cheyne. There were exchanges of several other mathematical ideas 
and results. For example, in 1705 De Moivre worked, unsuccessfully, on a problem 
that Bernoulli had suggested in the Journal des sçavans in 1703. The problem is 
to transform a curve, described algebraically, into another of the same length. In 
addition to De Moivre, several mathematicians erred in their attempts to find a 
solution. De Moivre made the error “of constructing but a linear transformation 
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of the referent Cartesian axes which leaves the given curve itself untransmuted.”34 
De Moivre had shown his solution to Newton35 who failed to notice the error. It 
was Bernoulli who pointed out De Moivre’s error to him. Eventually, Bernoulli and 
Leibniz were successful in finding a solution.36 

This exchange was not entirely devoid of Cheyne. Among the other 
mathematicians who erred was John Craig, whom De Moivre connected in his own 
mind with Cheyne’s Rudimentorum Methodi Fluxionum Inversæ. De Moivre could 
not resist taking a shot at Craig, and consequently at Cheyne. After celebrating the 
victory of the Battle of Oudenarde with Halley and Machin, the three settled down 
to discuss new work that had recently appeared in Philosophical Transactions. 
Halley brought up Craig’s published solution to Bernoulli’s problem. When Halley 
described Craig’s method of solution from memory, De Moivre claimed it was 
incorrect since Craig’s method of solution was similar to his own unsuccessful 
attempt. After the three of them consulted a copy of Philosophical Transactions, 
the result was indeed incorrect as De Moivre had predicted. De Moivre quipped to 
Halley, “Craig has not failed; he will always remain himself, and worthy of having 
an admirer like Cheyne.”37

Another exchange between De Moivre and Bernoulli was about centripetal 
forces. De Moivre wrote to Bernoulli on July 27, 1705, about a discovery he had 
made that he thought was a new generalization of a result in Newton’s Principia.38 
The diagram shown to illustrate the result is similar to what De Moivre had drawn 
in his letter to Bernoulli. Suppose that a planet travelling in an elliptical orbit is at 
the point P in the orbit as shown. A tangent line to the ellipse is drawn at P. Then the 
lengths of two more lines and the radius of curvature of the ellipse determine the 
centripetal force of the planet. The first line, PF, is drawn from the planet’s position 
to the focal point (F) of the ellipse. The second line, AF, is perpendicular to the 
tangent line. It passes through the focal point and crosses the tangent line at point A. 

A rendition of De Moivre’s diagram for centripetal forces.
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De Moivre claimed that the centripetal force is proportional to a3r/p, where p is the 
length of the line PF, a is the length of the line AF, and r is the radius of curvature of 
the ellipse. De Moivre told Bernoulli that he had shown his result to Newton hoping 
to impress him. However, Newton pulled out an equivalent theorem from among his 
manuscripts that he was using to prepare the second edition of the Principia, which 
was not published until 1713. Bernoulli wrote back to De Moivre on February 16, 
1706, with his own proof while pointing out to De Moivre that the centripetal force 
was actually proportional to p/(a3r), the reciprocal of what De Moivre had written.39 

In a letter to Jacob Hermann dated October 7, 1710, Bernoulli wrote at length 
about various results in centripetal forces.40 As part of the letter, Bernoulli informed 
Hermann of De Moivre’s result and said that he had provided De Moivre with a proof 
of it, without acknowledging to Hermann De Moivre’s original discovery.41 The 
next month Bernoulli submitted the correspondence with Hermann to the Académie 
royale des sciences and it was read before the academy in December of that year. 

Despite the mathematical uproar with Cheyne and the accompanying upset that 
it caused him, De Moivre continued to enjoy the company of his Huguenot friends 
at the Rainbow Coffeehouse next to St. Martin-in-the-Fields Church. According to 
some 1706 correspondence, these included the three Pierres or Peters: Davall, Coste, 
and Des Maizeaux. As a sign of the times, Davall complained about their other 
Huguenot haunt, Pons Coffeehouse up the street. England was in the middle of the 
War of the Spanish Succession and Pons was now filled with Huguenot officers 
serving in the English army. The officers often spilled out of the coffeehouse and 
filled the street causing difficulty for pedestrian traffic.42  

With visitors and his pupils we have seen De Moivre at his best: witty and 
sociable. In addition, he could be very helpful to others. For example, in 1706 
John Perks, an obscure English mathematician, invented a machine that could be 
used to find areas under hyperbolas. The idea did not arise in a vacuum; Huygens 
and Leibniz had worked on other drawing machines that could be used to solve 
mathematical problems. Through De Moivre’s help, the paper describing Perk’s 
machine was published in Philosophical Transactions.43 

Some of De Moivre’s helpfulness may have arisen from self-interest or self-
promotion. For example, Johann Bernoulli’s November 15, 1704, letter to De 
Moivre contains a reference to Peter de Magneville. It turned out that Magneville 
was in Groningen at the time and had been there for about three weeks. Bernoulli 
and Magneville were old friends, and, as Bernoulli found out, so were De Moivre 
and Magneville. Bernoulli wanted some phosphorus, which had been isolated as an 
element only about thirty-five years before. Knowledge of the method for extracting 
it from urine was not widespread, but existed in England through the work of 
Robert Boyle. Magneville was to bring Bernoulli some phosphorus and Bernoulli 
asked De Moivre if he would help Magneville obtain it for him. Subsequently, De 
Moivre obtained the phosphorus and it was sent to Bernoulli by March of 1705. 
Magneville shows up again in later correspondence. By chance, Bernoulli and 
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Magneville met in Frankfurt in early 1706 as Bernoulli was making his way to Basel 
to take up the chair of mathematics; Magneville was on his way to Geneva. A few 
months later Magneville was visiting De Moivre in London while on his way to 
Ireland. Magneville reported to De Moivre that the phosphorus had been delivered 
successfully to Bernoulli.44  

In other situations, De Moivre could be helpful and sarcastic at the same 
time. In the 1740s De Moivre and his former student George Lewis Scott helped the 
composer Johann Christoph Pepusch with the mathematics of ancient Greek music. 
De Moivre presented Pepusch’s paper on the subject to the Royal Society and had 
the paper published in Philosophical Transactions.45 On the other hand, according 
to Scott, De Moivre “used to call him [Pepusch] a stupid German dog, who could 
neither count four, nor understand anyone that did.”46 

The correspondence with Bernoulli, as well as the Flamsteed-Sharp corres-
pondence, perhaps shows another side to De Moivre’s character—his combativeness 
and a touch of cantankerousness. To be sure, he publicly and forcefully pointed out 
the mathematical flaws in Cheyne’s book. His cantankerous side comes out in snip-
pets throughout his life. In an undated letter to Edward Montagu, De Moivre wrote 
regarding a difficult problem in probability: “I answered Mr. Stevens [another De 
Moivre student] that I was almost certain the Problem came originally from Robins 
[Benjamin Robins, a talented and largely self-taught mathematician] and for that 
reason I would solve it, not to instruct him, but to prove he is a Fool.”47 

Once he had established himself within the Royal Society, and with word 
spreading of his mathematical interactions with Halley (two early interactions are 
mentioned in Philosophical Transactions), De Moivre soon became the go-to man 
for mathematical advice and problems that needed solving by other members of 
the Society. Here are two early examples. While he was listening to De Moivre’s 
complaints about Cheyne’s as yet unpublished manuscript in 1702, Flamsteed 
suggested a geometrical problem for De Moivre to work on. Three months later, 
De Moivre was still working on it but had not found a solution.48 A year or two 
after the Cheyne affair, De Moivre was writing a note explaining some mathematics 
related to the velocity of comets.49 The note, dated August 25, 1705, was written 
on the back of a copy of Halley’s 1705 publication on comets. (De Moivre must 
have followed Edmond Halley’s advice to get more interested in astronomy.) The 
recipient of the note was probably Thomas Sprat, a fellow of the Royal Society and 
Bishop of Rochester.50 

Even the Royal Society came to De Moivre in an official capacity to tap into 
his mathematical expertise. In early 1706, the Reverend Mr. John Shuttleworth 
wrote to the Society about perspective and an arithmetical method called the Rule 
of Alligation.51 Shuttleworth’s letter was read before a meeting of the Society; De 
Moivre was asked to consider Shuttleworth’s work and to report back.52 Much 
later in the year, in November, Shuttleworth submitted a paper to the Society on 
perspective. Again De Moivre was asked to look at it.53  The paper was a critique of 
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a treatise on perspective by the French priest and mathematician Bernard Lamy.54 In 
his paper, Shuttleworth claimed that Lamy had not taken into account the position 
of the person’s eyes, especially when viewing an object from an angle. De Moivre 
read the paper and wrote to Shuttleworth refuting his claim. Not happy with what he 
received, Shuttleworth wrote to the Secretary of the Royal Society, 

I have sent you Mr. De Moivre’s letter. I think he hath not used me candidly in 
spending so many words upon my letter and saying so little to my treatise. It is, 
but little encouragement for me to endeavor to perfect the Art of Perspective 
which L’Amy (tho’ a very ingenious author) had not done.55

Shuttleworth’s paper never saw the light of day in any Royal Society publication. 
The author published it himself in 1709.56 

We have come to the year 1707. Abraham De Moivre has turned forty. His 
mother has died.57 The eldest child of his brother, a nephew, was born.58 In the twenty 
years he had been in England, he has become well respected and established as a 
teacher and researcher of mathematics with contacts among British mathematicians, 
the British Whig political elite, and the Republic of Letters. It is time for some kind 
of mid-life crisis.
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Shortly after the Cheyne affair, De Moivre became frustrated with England and 
wanted to leave. The major reasons are fairly obvious, although there is no historical 
record that ever spells them out. He was an excellent mathematician whom several 
members of the Royal Society relied upon for mathematical help. He had no 
permanent job and worked from patron to patron as a tutor to their children, walking 
across London to each of their houses to give his lessons. He wanted an academic 
position, or perhaps some regular patronage position, that would give him some 
stability. 

There were two direct roadblocks to achieving his goal. First, to obtain a 
professorship at Oxford or Cambridge he needed a Master of Arts degree from one 
of those institutions; he had no degree at all. That problem could be circumvented, 
but no action was taken at this time. The second roadblock is less obvious and more 
offensive to someone of De Moivre’s talents. As Matthew Maty says,

he was a foreigner, and frankly, he lacked the kind of savvy needed to win the 
favour of those who could have ensured that his origins be forgotten and his 
talent recompensed.1

Even though he became a naturalized citizen in 1706, he was still officially considered 
a foreigner by, for example, the Royal Society. Until 1712 or shortly thereafter, De 
Moivre appears in lists of fellows among the “Persons of other Nations.”2 

De Moivre had several highly placed Whig connections, but those 
connections never translated into a patronage position. He also had several 
scientifically powerful friends such as Newton and Halley, but they did not control 
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the levers of patronage and could only make recommendations to those that did. 
As a first generation Huguenot refugee, patronage positions were not on the 
horizon. Although discrimination against talented Huguenots was not confined to 
De Moivre,3 there were some advances. Some of De Moivre’s Huguenot friends 
or connections did obtain some second-rung patronage positions, but they were all 
second generation. 

There was also an indirect roadblock. In England there was a general lack of 
monetary support for science compared to other countries. After he met De Moivre 
in the late 1730s, the French art critic Abbé Jean-Bernard Le Blanc succinctly 
summed up the situation, England in general, and De Moivre in particular. First, Le 
Blanc compared the monetary support for science in England to that of France where 
the Académie royale des sciences had established a series of prizes. He quipped to 
his correspondent, the dramatist Pierre-Claude Nivelle de La Chaussée:

Will you not grant me, sir, that if the English love the sciences better than we, it 
is strange (I should not say it, if truth did not authorize me) that the only prizes 
founded here are for horse-racing.4

Then Le Blanc finished his criticism of the English support of science by again 
comparing the English situation, De Moivre in particular, to that of France where 
members of the Académie were given good pensions. He went on to say to La 
Chaussée:

Several Frenchmen will tell you, that at London Farinelli [a famous castrato 
singer] has gained immense sums in one winter; and they will tell you the truth. 
Yet all this liberality of the English is but the effect of their ostentation: it is not 
even a proof of their taste for Italian music. At least, while they pay such high 
prices to those who excel in an art, that ought to appear frivolous to them; it is 
surprising that a gentleman, who has rendered himself so valuable to science 
which they honour most, that Mr. De Moivre one of the greatest mathematicians 
in Europe, who has lived fifty years in England, has not the least reward made to 
him; he, I say, who, had he remained in France, would enjoy an annual pension 
of a thousand crowns at least in the academy of sciences.

The roadblocks combined, both direct and indirect, left De Moivre to fend for 
himself.

De Moivre’s opportunity to obtain an academic position outside England came 
when Johann Bernoulli decided to leave Groningen in 1705, thus opening the position 
of professor of mathematics there. De Moivre wrote to Bernoulli, now in Basel, in 
December of 1707 asking for his help in obtaining the position at Groningen or at 
another Dutch university situated in the town of Franeker. De Moivre wrote again to 
Bernoulli in 1708 asking if Bernoulli had contacted Johannes Braunius, Bernoulli’s 
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friend and professor of theology at Groningen, about De Moivre’s case.5 Bernoulli 
wrote to Leibniz about the issue in 1709 but nothing came of any efforts that they 
made. De Moivre was still looking for an academic position on the Continent as late 
as 1710. In April of that year, Bernoulli wrote again to Leibniz asking for his advice 
on positions that might be available to De Moivre.6 Nothing came of De Moivre’s 
effort, and he remained in England for the rest of his life.

While he was trying to find an academic position, De Moivre continued to 
work on mathematical problems and to get his work into print in Philosophical 
Transactions. In 1707 he was able to find an algebraic expression for one of the roots 
of a polynomial equation that has a very specific (only odd powers) and special form 
(the coefficients are a specified function of the degree of the polynomial).7 He gave 
no motivation for why this equation was of any interest to him, other than it had a 
nice solution. In typical De Moivre fashion, he stated only what the roots were and 
gave no information about how he obtained the roots. 

He revealed some of his methodology in a 1722 paper in Philosophical 
Transactions.8 As described in that paper, the method involves a trigonometric 
argument that results in two equations: 1 – 2zncos(nθ )  + z 2n = 0 and 1 – 2z ∙ cos(θ ) 
+ z 2 = 0 for some angle θ, where n is the degree of the polynomial in the original 
equation of interest. The solution to the second equation, a quadratic equation, yields 
two solutions: z = cos(θ )  ± i ∙ sin(θ ) , where i is the imaginary number       . This is 
De Moivre’s first step into the mathematical area of complex analysis. Substituting 
these results from the second equation into the first equation yields a single equation 
in the angles θ and nθ. The unstated methods used in the 1707 paper, but revealed in 
1722, form the foundation for major mathematical results he obtained in Doctrine of 
Chances in 1718 and later still in his Miscellanea Analytica in 1730. Ivo Schneider 
has provided a detailed mathematical analysis of all these results.9

Other work from this time did not find its way into print. In a 1708 letter to 
Johann Bernoulli, De Moivre obtained a version of a Taylor series expansion, but did 
not publish his results. Ten years later the expansion did find its way into Doctrine 
of Chances to sum a finite sequence.10 The 1708 work was originally motivated by 
Newton’s work in finite differences. Initially, De Moivre used the result to evaluate 
finite sequences in which some higher order differences on values of the sequence 
are zero. This could be applied, for example, to finding the sums of cubes of the 
natural numbers since the fourth difference of the sequence would be zero. His 
next application of his series expansion was to solve Newton’s problem of finding 
the curve that passes through a given set of points. Finally, he was able to use the 
method to find the quadrature of a curve that Bernoulli had considered.11 

De Moivre could have remained in this state indefinitely—producing good, 
but what might be called second-tier, research when compared to Newton and 
Bernoulli. But then along came Francis Robartes, who was to change De Moivre’s 
scientific career forever. Robartes was the younger son of an aristocrat, John Ro-
bartes, 1st Earl of Radnor. Eventually Francis’s son, but not Francis as has often 

1−
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been mistakenly written, inherited the family title and fortune. Francis Robartes 
was very much in evidence on the political scene. With only a few gaps, he was 
a Member of Parliament for several constituencies from 1673 (when he was 23 
years of age) until his death in 1718. He also held several political patronage pos-
itions at various times in his career, including the highly lucrative one of Teller 
of the Exchequer. At the same time he was active in the Royal Society, serving 
as vice president for several years during Newton’s presidency. As a gentleman 
virtuoso mathematician, he took on some mathematically related duties in the 
Royal Society. In 1704 he was chosen as one of the six referees supervising a 
royal grant for the publication of John Flamsteed’s widely subscribed star cata-
logue Historia Coelestis Britannica that was eventually published in 1712. Also 
in 1712, he sat on the Royal Society committee, as did De Moivre, to determine 
Newton’s priority in the discovery of the calculus.12 For Newton, the commit-
tee’s report, which sided with Newton, was the high point in the priority dispute 
over the calculus.13

One of Robartes’s mathematical interests was probability. Most of his ideas 
came from a combination of Newton’s binomial theorem and Christiaan Huygens’s 
1657 treatise, De ratiociniis in ludo aleae, which De Moivre had also read when he 
was a student at Saumur. Huygens had solved some classical problems in probabil-
ity: the problem of the division of stakes and various problems related to throws of 
dice. In the division of stakes problem, the initial situation is that two players agree 
to play a series of games for a pot of money until one of them wins a majority of the 
games and hence the pot. The wrinkle is what to do, or how to divide the pot, when 
the series is terminated before the winner is determined. The dicing problems solved 
by Huygens were of various types: 

1.	 Find the probabilities of the various sums of the faces that show in the 
throw of three dice. 

2.	 Find the number of throws required to see a six appear at least once with 
probability 1/2 in the throw of a single die, or two sixes at least once in the 
throw of two dice. 

3.	 Two players bet on seeing two different outcomes for throws of the dice. In 
a series of throws of the dice, find the probability that one player will see 
his outcome appear before the other player sees his. 

Huygens’s treatise also contains a challenge problem that came to be known as 
the gambler’s ruin problem. Related to the gambler’s ruin is another called the prob-
lem of the duration of play. The general description of the two problems is that a ser-
ies of games is played between players of different skills (or different probabilities 
of winning a game) who have different amounts of capital at the beginning of the 
series. The winner of any game in the series is given one unit from the loser’s capital. 
The series of games ends when the capital of one of the players has been exhausted, 
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or, in other words, the player has been ruined. The object of the gambler’s ruin 
problem is to find the probability that one player ruins the other, either eventually or 
within a specified finite number of trials. The object of the duration of play problem 
is to find the probability that play ends within a given number of games, which is the 
same as finding the probability that either of the two players has been ruined within 
that time. Anders Hald has a modern discussion of the various eighteenth-century 
solutions to these problems.14

In 1692, Robartes wrote a manuscript on two probability problems that he 
presented to the Royal Society but never published.15 One of the problems is a 
variation on problem numbered (3) in the list of Huygens’s dicing problems. It is 
also a simplification of a problem posed by Johann Bernoulli in 1685 in Journal 
des sçavans and later solved by both him and Leibniz in 1690 in separate articles 
in the journal Acta Eruditorum.16 The next year, in 1693, Robartes, thinking he had 
detected a probabilistic paradox, presented a paper on it to the Royal Society. This 
one was published,17 and has been either ridiculed or ignored since the nineteenth 
century when Isaac Todhunter severely criticized the paper in his History of the 
Theory of Probability.18 

Todhunter’s criticism, and subsequent ones based on it, has been unfair to 
Robartes. In his tract on probability, Huygens dealt with probability through 
expected values. An expected value is the weighted average of the possible 
values of the outcomes, with the weights given by the probabilities of each of the 
outcomes. Huygens started with the very simple proposition that if he is offered 
an amount a or an amount b, where either can be obtained with equal facility, then 
his expectation, or what the offer is worth to him, is (a + b)/2. From that initial 
proposition, Huygens built a mathematical structure that allowed him to solve all 
the outstanding probability problems of his day and more. For some of the situations 
that he considered, Huygens gave the odds of winning for each of two players in a 
game. He calculated the odds as the ratio of the expectations for each player rather 
than the ratio of the chances to win. For the situations that he considered, Huygens’s 
calculations were correct. Robartes showed that if it is assumed generally that the 
odds of winning are the ratio of the expected gains that could be obtained by each 
player then a paradox could be constructed. 

After this early and rather elementary work, there is an apparent hiatus in 
Robertes’s visible interest in probability for about fifteen years or so. Then, in 1710 
Robartes helped John Harris with his article entitled “Play” that appears in Harris’s 
scientific dictionary Lexicon Technicum. Robartes devised an algorithm that Harris 
used to extract the appropriate terms in a binomial expansion in order to solve the 
problem of the division of stakes.19

At some point over the years 1708 to 1710, Robartes received a copy of 
a French book on probability bearing the title Essay d’analyse sur les jeux de 
hazard.20 It was written by Pierre Rémond de Montmort, whose chateau is only 
about 70 kilometers from De Moivre’s birthplace, Vitry-le-François. Shortly after 
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its publication, Montmort sent several copies of the book to English mathemat-
icians, including one each to Isaac Newton and William Jones. Robartes may have 
received his copy directly from Montmort or he may have obtained it via another 
route.21 

At first glance, and as noted by an anonymous reviewer of the book in 1709 
in the Journal des sçavans,22 Essay d’analyse appears to be written with gamesters 
in mind. The book is written in three parts. Part I is devoted to a mathematical 
analysis of card games. A discussion of the combinatorial mathematics needed 
to carry out this analysis appears at the end of this section; these mathematical 
methods are also used throughout the rest of the book. Part II is a mathematical 
analysis of dice games, including board games using dice. In addition to actual 
dice games, Montmort follows up on Huygens’s result for the sum of the faces 
that show on three dice by giving a table showing the number of chances for each 
of the sums in the throws of two through nine dice. The third and final part deals 
with Huygens’s De ratiociniis. Huygens had set out five challenge problems in 
his book. Montmort solves them all and then sets four more of his own challenge 
problems, all of which deal with card games. The methods that Montmort uses 
in Essay d’analyse go well beyond what had been done during the seventeenth 
century. 

After he obtained it, either directly or indirectly from Montmort, Robartes 
showed his copy of Essay d’analyse to Abraham De Moivre. He also gave De 
Moivre three challenge problems of his own devising to work on. According to De 
Moivre,23 Robartes “was pleased to propose to me some Problems of much greater 
difficulty than any he had found in that Book,” the Essay d’analyse. 

The first two of Robartes’s problems were inspired by bowling—lawn 
bowling, not the more common five- and ten-pin games played in bowling alleys 
today. Lawn bowling in the eighteenth century had both a rough and a genteel side to 
it. The rougher side is described by Charles Cotton in The Compleat Gamester, first 
published in 1674 but reprinted in 1709,24 around the time that Robartes was posing 
his bowling problems to De Moivre.

Bowling is a game or recreation, which if moderately used is very healthy for 
the body, and would be much more commendable than it is were it not for those 
swarms of rooks which so pester bowling-greens, bares and bowling-alleys 
where any such places are to be found, some making so small a spot of ground 
yield them more annually than fifty acres of land shall do elsewhere about the 
City, and this done cunning, betting, crafty matching and basely playing booty.

The genteel side of lawn bowling, more likely what Robartes had in mind, is shown 
in a 1738 painting of the gardens of Hartwell House. This is a country estate near 
Aylesbury, Buckinghamshire, about 75 kilometers from London, owned at the time 
by Sir Thomas Lee, baronet and Whig politician. 
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Robartes’s two bowling problems (Problems 16 and 17 in De Mensura Sortis) 
are a variation on the division of stakes problem. Two players of equal ability are 
bowling. In the first problem, one player (call him A) needs one point and the other 
(call him B) needs two points to win. In the second problem, B needs three points 
to win. In both problems, the object is to find the relative chances that each player 
has of winning. The twist is in the way that bowling is played. The game consists 
of several ends in which the players, each with an equal number of balls, roll their 
balls in turn across the bowling green. At each end of play, a jack is thrown down 
the green and the players bowl toward the jack. The player whose ball is closest to 
the jack takes the end. That player counts one point for each ball that is closer to the 
jack than the opponent’s best ball. Then the jack is thrown in the opposite direction 
to begin another end. Ends continue and the game goes up and down the green until 
a specified number of points have been reached. 

How Robartes’s first problem differs from the usual division of stakes problem 
is that in the end being played, A can score one or more points and finish the game, 
or B can score two or more points and finish the game. If B scores one point only, the 
game continues another end. De Moivre’s method of solution is similar to that used 

The bowling green and octagon pond at Hartwell House by Balthasar Nebot (from the 
Buckinghamshire County Museum collections).
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by Huygens to solve the standard division of stakes problem. It also uses Huygens’s 
approach to probability through expectations. De Moivre focuses on player B, the one 
who needs two points to win. He defines probabilities for two events: B has at least 
two balls closest to the jack, and B has at least one ball closest to the jack. Having 
exactly one ball closest to the jack is merely the difference in the probabilities of 
these two events. For the current end being played, B can win the stake, set at a value 
one, by having at least two of his balls closest to the jack, or he can even the match 
by having exactly one ball closest to the jack. In the latter case, from Huygens, the 
value of the stake is 1/2 since the two sides are even with the game unfinished. De 
Moivre proceeds to find this player’s expected return based on the two defined, 
but not calculated, probabilities. Since it is based on a stake of value one, it is also 
the probability that B wins. To obtain the complete solution, De Moivre needed 
expressions for the probabilities of the two events that he has defined. This he does 
using permutation arguments. He looks at the restricted arrangements in each of the 
two cases when one or two of B’s balls are closest to the jack with the remaining 
balls unrestricted, and compares these results to the total number of arrangements 
of all the balls in play. Using the solution to the initial bowling problem, De Moivre 
uses a recursive argument in the spirit of Huygens, as well as permutation arguments 
to solve Robartes’s second bowling problem.

Robartes worked on the bowling problem himself and had come up with a 
laborious solution involving several cases. Once De Moivre had solved the first 
problem, within a day of Robartes posing it, Robartes gave De Moivre the other two 
problems to work on (the second bowling problem and a dicing problem), while at 
the same time encouraging him to write on probability. The encouragement proved 
fruitful. De Moivre finished his manuscript on probability during a holiday that 
he spent at a country house, possibly Robartes’s.25 On June 11, 1711, De Moivre 
submitted his manuscript to the Royal Society. The Society’s Journal Book quietly 
marked the beginning of a new era for probability in England with the note, “Mr. De 
Moivre presented a Treatise Intituled, de Probabilitate Eventum in Ludo Alea, This 
Treatise was Ordered to be printed in the Transactions.”26

The treatise, with the title De Mensura Sortis or “Of the measurement of 
lots,” comprises an entire issue (Number 329) of Philosophical Transactions. At 52 
journal pages, it is more than three times longer than anything else De Moivre had 
written to that date. 

Contrary to the reviewer in the Journal des sçavans, another reviewer of 
Montmort’s 1708 Essay d’analyse, this time in the Journal de Trévoux, stated that 
the book would give more pleasure to mathematicians than it would be of use to 
gamblers.27 It is an interesting contemporary insight in that Montmort carried out 
mathematical analyses of several games of chance that were popular in his day. After 
it was published, the Journal de Trévoux also reviewed De Mensura Sortis and came 
to the same conclusion, this time saying De Moivre’s book would be applauded 
in the halls of the academy but would be of little use in the halls of gaming.28 The 
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reviewer also made the point that typically gamblers would not be able to understand 
the underlying mathematical principles, to follow subtle proofs of results, or to carry 
out difficult calculations. These observations were mixed in with some moralistic 
comments on gambling (the Journal de Trévoux was a Jesuit periodical that was 
devoted to the defense of orthodox Roman Catholic doctrines and beliefs) and a 
précis of the mathematical contents of the paper. Whatever his moral stance, the 
reviewer was correct in his assessment—Essay d’analyse and, to a greater extent, 
De Mensura Sortis are works of mathematics that are only marginally related to the 
gambling culture of the day.

Although the publication date is given as 1711, De Mensura Sortis was not in 
print until 1712.29 Shortly after its publication, De Moivre sent copies of the issue 
to several people in England, including Edmond Halley,30 Isaac Newton,31 and De 
Moivre’s fellow chess player at Slaughter’s Coffeehouse, the Earl of Sunderland.32 
De Moivre’s friend, Pierre Des Maizeaux handled several copies that were bound 
for the Continent.33 Using his connections in the Republic of Letters, Des Maizeaux 
sent copies of De Mensura Sortis to Abbé Jean-Paul Bignon, at that time the French 
minister of state with responsibility for the Académie royale des sciences. Bignon 
wrote to Des Maizeaux on September 24, 1712, saying that the copies he received 
had been distributed. He also enclosed a letter from Montmort to De Moivre thanking 
him for his treatise; the letter has not survived.34 Whatever he thought personally 
about De Moivre’s treatise, Montmort was adhering to the code of civility in the 
Republic of Letters by sending the letter of thanks. Other people on the Continent 
receiving copies were Nicolaus Bernoulli,35 Johann Bernoulli, and Pierre Varignon.36 
Johann Bernoulli received his copy via William Burnet, a younger son of Gilbert 
Burnet, Bishop of Salisbury; Bernoulli had asked Burnet to obtain a copy for him.37

Montmort was probably offended by what De Moivre had written in De 
Mensura Sortis in his dedicatory preface to Robartes:

Huygens was the first that I know who presented rules for the solution of this 
sort of problems, which a French author has very recently well illustrated 
with various examples; but these distinguished gentlemen do not seem to 
have employed that simplicity and generality which the nature of the matter 
demands; moreover, while they take up many unknown quantities, to represent 
the various conditions of gamesters, they make their calculation too complex; 
and while they suppose that the skill of gamesters is always equal, they confine 
this doctrine of games within limits too narrow.38

Montmort replied at length to this preface in his own preface to his new edition of 
Essay d’analyse that came out in 1713. 

In the meantime, about a month after receiving his copy of De Mensura Sortis, 
Montmort wrote to Nicolaus Bernoulli on September 5, 1712. He commented on 
all the problems in De Moivre’s treatise.39 In nearly every case, Montmort pointed 
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out that either the result was in his 1708 edition of Essay d’analyse or that he and 
Bernoulli had recently obtained the result. The letter to Nicolaus was sent via his 
uncle Johann Bernoulli. Before sending it on, the elder Bernoulli commented in a 
letter to Pierre Varignon:

I have also received Mr Moyvre’s treatise de mensura sortis; I find his way of 
solving these kinds of problems a little obscure—I had already solved most of 
them beforehand in a far easier and more intelligible way. Mr de Montmort has 
written a letter to my Nephew, care of myself, in which he also mentions this 
treatise; I have already sent on this letter to my Nephew in England—if you have 
the opportunity, would you kindly inform Mr de Montmort that I have done so, 
with my compliments.40

Bernoulli made essentially the same comment to William Burnet when he wrote to 
Burnet to thank him for sending him a copy of De Mensura Sortis. There Bernoulli 
expressed the shortcomings in De Moivre’s approach to probability as less simple 
and less natural than what he had taken.41 

Montmort’s, and to a lesser extent Bernoulli’s, criticisms of De Moivre’s work 
are overly severe and unfair. De Mensura Sortis was a brilliant beginning for De 
Moivre. Some of his results were in the 1708 Essay d’analyse, but De Moivre either 
had a different approach or was using them to lay groundwork for later results in 
his treatise. For the results that Montmort and Nicolaus Bernoulli worked out after 
1708, Montmort was trying to claim priority of discovery rather than give credit to 
De Moivre for independent work. For his part, Johann Bernoulli did not publish any 
results that he had obtained in probability, so it is difficult to make any comparison 
of his methods of solution to De Moivre’s. Johann Bernoulli was correct about some 
of De Moivre’s solutions being obscure; as we have seen a few times before, De 
Moivre did not reveal some of his methods of solution. 

During September 1712, Montmort must have hidden his anger from the 
powerful Bignon and therefore maintained decorum within the Republic of Letters. 
That decorum was broken after he published his letter to Nicolaus Bernoulli in the 
1713 edition of Essay d’analyse.42 In addition to telling Bernoulli that there was 
nothing new in De Mensura Sortis, Montmort was critical of nearly every one of 
De Moivre’s results. Montmort used stronger language in a 1716 letter to Brook 
Taylor saying that De Moivre had plagiarized his work.43 Writing in his 1719 
éloge of Montmort, the perpetual secretary of the Académie royale des sciences, 
Bernard de Fontenelle, mentioned Montmort’s concerns that De Moivre had 
plagiarized his work. All these accusations were too public for Fontenelle’s taste. 
He strongly promoted the code of civility within the Académie44 and consequently 
chided Montmort for his behavior as he lay in his grave.45 In the éloge, Fontenelle 
did a double entendre on Montmort’s position in society as lord of the manor—
Seigneur or Sieur de Montmort—and on his academic position as author of Essay 
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d’analyse. After mentioning De Moivre’s work and how Montmort was angered by 
it, Fontenelle compared Montmort to a lord of the manor who demanded loyalty and 
respect in addition to praise from his tenant De Moivre and then questioned whether 
Montmort was indeed lord of the manor (“& ne decide nullement s’il étoit en effet 
le Seigneur”).46 Despite the severity of Montmort’s comments and his anger, his 
letter to Nicolaus Bernoulli can be used profitably as a guideline to put De Moivre’s 
results in De Mensura Sortis into some context.

De Moivre begins De Mensura Sortis with two basic definitions from which 
many of his results are derived. The first comes directly from Huygens’s De 
ratiociniis. For two players, A and B, contending for a stake of value a, A has 
p chances to win and B has q. The expected value for each player follows what 
Huygens obtained: ap/( p  + q) for A and aq/( p  + q) for B. The second definition 
may have come from Edmond Halley or Francis Robartes. If an event can happen 
in p ways and fail to happen in q, and a second event can happen in r ways and 
fail to happen in s, then all the chances for events happening or failing are in the 
product ( p  + q)(r + s) or pr + qr + ps + qs. For example, pr is the number of 
ways both events can happen and ps is the number of ways that the first event 
happens and the second fails. This is the approach that Halley used in evaluating 
joint life annuities in his 1693 paper on mortality data from the city of Breslau.47 
It is essentially the same approach used by Robartes in his 1692 manuscript that 
he read to the Royal Society.48 De Moivre finishes the introduction by saying that 
if the first event is repeated n times, then the total number of chances in the game 
is given in the binomial expression ( p  + q)n. When this expression is expanded, 
it may be written as a sum containing terms of the form p iq n–i multiplied by an 
appropriate coefficient, where i represents the number of times the event happens 
and n – i represents the number of times it fails. For example, in the expansion 
of ( p  + q)n, pn is the number of chances for the event happening all n times, and 
np n–1q is the number of chances for the event happening n – 1 times and failing 
once. The binomial expansion becomes the motif for the paper.

In his Essay d’analyse, Montmort had used Huygens’s approach of finding 
expectations to solve probability problems. As can be seen from his initial 
definitions, De Moivre uses a mixture of Huygens’s approach and what is now 
known as the classical definition of probability to solve his problems. To solve many 
of his problems, De Moivre enumerated the number of cases or chances favorable 
to an event and then the number of chances unfavorable to the same event in order 
to calculate the odds.

The problems in De Mensura Sortis follow the structure of a piece of music 
written in ternary form. Such music has an opening theme, a sharply contrasting 
middle section, and a return to the theme at the end. The major theme might be called 
“Meditations on the use of the binomial expansion in probability.” De Moivre begins 
and ends with the binomial motif. At the beginning (nine of the first ten problems) 
there are some simple variations on the use of the expansion of ( p  + q)n and then at the 
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end (the last seven problems) the expansion is used to solve a very complex problem, 
the problem of the duration of play. In the middle, there are several solutions to a 
number of challenge problems taken from various sources, including the three from 
Robartes. De Moivre uses a variety of techniques, other than the binomial expansion, 
for his solutions in this part. 

Taken as a whole, De Mensura Sortis shows De Moivre’s ability to exploit the 
use of the binomial expansion in novel ways and his deep insight and ingenuity in 
finding other methods of solution where the binomial expansion does not apply. The 
details of the mathematics in De Mensura Sortis, some quite intricate, have been 
described fully elsewhere.49 Consequently, the focus of the remainder of this chapter, 
as well as the rest of the book, is to give the flavor of the mathematics and how it fits 
with the general message that De Moivre tried to convey.

De Moivre considered the use of the binomial expansion for three situations 
depending on what has been given and what is required. The ingredients to these 
situations are

1.	 the probability of the event in question; 

2.	 the number of chances for success p; and 

3.	 the number of trials n. 

The three are connected in the following way. The probability of any event, ingredient 
(1), is given by the appropriate collection of some of the terms in the expansion

1 2 2 3 31 1 2( ) ,
1 1 2 1 2 3

n n n n nn n n n n np q p p q p q p q− − −− − −
+ = + + + +

which depends on p and n. Given numerical values for any two of these ingredients, 
De Moivre came up with a method to find a numerical value for the third. The 
first five problems in De Mensura Sortis introduce the variety of ways of using the 
binomial expansion in this way.

In the first two problems, p and n are given and the probability of an event is 
sought. Problem 1 is to find the relative odds of throwing at least two aces in the 
throw of eight dice. The general solution is to obtain all cases, or ( p  + q)n, and then 
subtract the two cases for which no ace (qn) or one ace (npq n–1) is thrown. The 
resulting odds are given as ( p  + q)n – npq n–1 – qn to npq n–1 + qn. Problem 2 is a 
division of stakes problem. The algorithm used is the same as the one suggested by 
Robartes for the article on play in Lexicon Technicum. 

In Problems 3 and 4, the number of trials n is known, the probability of the 
event is equal to 1/2 and the odds p/q, which can be expressed as z to 1 or 1 to z 
as convenient, are sought. These problems are a variation on the division of stakes 
problem. If player A has a games left to win and B has b games left to win, then 
the expansion using odds of z to 1 instead of p and q is (z + 1) a  + b – 1 since the total 
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number of games left to play will be at most a + b – 1. Using the z-notation, the 
algorithm to separate the winning cases for A from B, given by De Moivre and 
earlier by Robartes in Lexicon Technicum, is to assign all terms in z with a power of 
a or higher to A and all terms in z with a power of a – 1 or lower to B. The solution 
is obtained by setting the ratio of the winning cases for A to that of B equal to 1 and 
then solving for z. At that value of z, A and B each have probability 1/2 of winning 
the game. This is illustrated here with Problem 4. A and B are to play until one of 
them has won three games. The twist is that A gives B one game so that for A to win, 
A must win three games before B wins two. The solution is to expand (z + 1) 3  + 2 – 1 

= (z + 1) 4. The expansion can be broken into two parts: the chances for A, z 4 + 4z3; 
and the chances for B, 6z2 + 4z + 1. The solution to the equation z 4 + 4z3 = 6z 2 + 4z 
+ 1 yields the required odds. De Moivre says, “z will be found to be 1.6 very near.” 
Using modern computing, the positive root of the equation is 1.592503317 to nine 
decimal places.

In Problem 5, interest is shifted to finding n, given a value for the chance for 
success p and given that the probability of the event is equal to 1/2. The problem is 
to find the number of trials required so that the probability of obtaining at least one 
success is equal to 1/2. This is in the spirit of problem (2) in the list of Huygens’s 
dicing problems in De ratiociniis. De Moivre’s solution reduces to solving for n in 
the equation ( p  + q)n = 2qn. The problem and solution were not at all new; it was 
just an illustration of the use of the binomial theorem to solve probability problems.

Montmort was not at all impressed by De Moivre’s first five problems. He wrote 
to Nicolaus Bernoulli that he had already used the binomial expansion in 1710 and 
that he had solved the first five problems in one way or another in his 1708 book. Of 
course, he did not know that Robartes previously had made use of the same expansion 
a year or two earlier, or that John Arbuthnot had beaten them all to the solution to 
Problem 5 by fifteen years or more in an unpublished manuscript.50 It is likely that 
De Moivre got the idea for the use of the binomial expansion from Robartes and in 
the paper was demonstrating to him the power of the technique to solve a variety of 
problems beginning with solutions that were already familiar to Robartes.

Having established the use of the binomial expansion to solve some standard 
problems, De Moivre goes off in a new direction with it. For the next couple of 
problems (Problems 6 and 7), De Moivre extends Problem 5 from finding n, the 
number of trials that will produce at least one success with probability 1/2, to finding 
the n that will produce at least two or three or more successes with probability 1/2. 
Contrary to Problem 5, there is no longer a simple solution to Problems 6 and 7. As 
in Problems 3 and 4, De Moivre reduces the terms p and q to one value z, but in this 
case uses odds of 1 to z. Using this notation, the binomial expression to obtain any 
required probability is given by

11 .
n

z
 + 
 
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If the chances for A are associated with 1 and for B with 1/z, then the terms in the 
expansion that express no success for B (at least one for A) is 1, for none or one 
success for B (at least two for A) is 1 + n/z, for up to two for B (at least three for 
A) is 1 + n/z + n(n – 1)/(2z 2), and so on. The required number of trials to find, for 
example, the number required to get at least three successes for A is the solution for 
n in the equation

( )
2

1
1 12 .

211
n

n nn
z z

z

−
+ +

=
 + 
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Only in a few special cases is there an explicit solution for n. When z = 1, the 
expansion of (1 + 1) n is symmetric with an even number of terms when n is an odd 
number. Consequently, to obtain a probability of 1/2 for the event to occur, the 
event “at least once” requires only one trial, “at least twice” requires three trials, 
“at least three times” requires five trials, and so on. When z is greater than 1, the 
only situation in which there is an explicit solution is for the event occurring at 
least once, i.e., the solution to Problem 5. This did not deter De Moivre, a very able 
and creative mathematician. He looked at the extreme situation in which n and z are 
both infinite, but the ratio x = n/z is finite. In this case, terms such as n(n – 1)/z2 and 
n(n – 1)(n – 2)/z3 in the above equation become x2 and x3 respectively, and (1 + 1/z)n 
becomes an infinite series in x. This is the first expression of what is now known 
as the Poisson approximation to the binomial. After some further manipulation, the 
resulting equation can be solved numerically for x. Then a solution for n can be 
obtained in terms of a numerical value for x times z. For the event of at least three 
successes, the equation to solve is

( )
2

ln 2 ln 1 .
2
xx x

 
+ + + =  
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Using modern computing, the solution is x = 2.674060314 to nine decimal places, while 
De Moivre obtained 2.675. Following his typical pattern, De Moivre gives no hint 
about what numerical method he used to obtain his number.51 De Moivre does provide 
some numerical examples with dice. In the spirit of De Moivre, suppose that two dice 
are thrown and the desired outcome is two sixes. How many times should the dice be 
thrown so that the probability of throwing the outcome at least three times is 1/2? For 
this example, z = 36 and the solution for n is (36)(2.674060314), or 96.2. The exact 
probabilities when n is 95, 96, or 97 are 0.493527, 0.500495, and 0.507414, respectively.

This is one of the places where Montmort was grudgingly impressed by De 
Moivre’s work. He commented that the problems are very ingenious, but was not 
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sure if the numerical results are “perfectly just” and wondered if there might be 
another way of looking at the problem. By “ingenious,” Montmort probably meant 
that the problems were tricky and that he had no clue as to the method of solution. 
Unknown to Montmort, and to De Moivre at the time, De Moivre made a minor error 
that had no effect on his numerical solutions. He was able to express the equation 
in x, given above, as a fluxional equation, or in modern terminology, a differential 
equation. He thought the solution to the fluxional equation could be expressed in an 
infinite series expansion to obtain the solution. He was incorrect and later dropped 
the fluxional equations from all editions of Doctrine of Chances.52

Generalizing upon the opening theme of the binomial expansion, De Moivre 
next looked at the problem of the division of stakes for three players. Problem 8 first 
considers three players A, B, and C who have a, b, and c games, respectively, left to 
win to gain the stake, and whose chances are p, q, and r, respectively. The solution 
can be obtained by collecting appropriate terms in the expansion of the multinomial 
( p  + q + r) a  + b + c – 2. De Moivre states the problem in terms of a numerical example 
rather than the general expression given. There is a further generalization of the 
problem to any number of players that can be obtained by increasing the number of 
terms in the multinomial and changing the exponent. 

Montmort again claimed priority for the solution to this problem and pointed 
to the weakness in his and De Moivre’s solutions. Both mathematicians found it 
necessary to consider a number of cases, with the result that the solution can be 
cumbersome. The cases arise by having sometimes to assign part of the value of 
the coefficient of p iq jq k to each of A’s, B’s, and C’s chances. For example, in 
Problem 8, De Moivre considered the specific case when a = 1, b = 2, and c = 3. 
One term in the expansion of ( p  + q + r)4 is 6p 2q 2. Since A must win one game 
before B wins two, of the six cases the only one favorable to B is winning the first 
two games, i.e., the permutation qqpp that makes up one of the terms in 6p 2q 2. For 
all other permutations, A wins.

A series of problems then follow which are solutions to four of the five 
challenge problems in Huygens’s De ratiociniis. They are not covered in the order 
that they appear in Huygens. The gambler’s ruin problem (Problem 9) is solved first 
since it is related to the theme of the binomial expansion. For players A and B, with 
initial capital a and b and chances p and q of winning a game, De Moivre finds that 
the ratio of A’s ruin probability to B’s is

( ) .
( )

b a a

a b b
p p q
q p q

−
−

De Moivre had a very elegant solution to this problem that does not use the binomial 
expansion; Anders Hald calls the proof “an ingenious trick.”53 De Moivre then 
slightly tweaked the gambler’s ruin problem so that the solution to the tweaked 
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problem can be obtained through a binomial expansion (Problem 10). Assume a = b 
and that the total capital is 2a. At each turn, A has p chances to win a unit of capital 
and B has q chances. The stake is won by the first player to obtain a units. The 
solution is to expand the binomial ( p  + q)2a – 1 and to divide the expanded terms into 
two parts. The first a terms are A’s chances and the second a terms are B’s. 

Montmort liked De Moivre’s solution to the gambler’s ruin problem and made 
no comment on De Moivre’s tweaked problem. In order to diminish De Moivre’s 
work, Montmort pointed out that Johann Bernoulli had sent Montmort the same 
solution to the gambler’s ruin problem in a letter dated March 17, 1710. It is unclear 
if Montmort meant the same method of solution or the same final result. Of the three 
remaining challenge problems in De ratiociniis that De Moivre solved, Montmort 
commented that he did not understand why De Moivre was working on such easy 
problems that have already been solved previously (by Montmort himself in 1708).

Although set in the context of games of chance, the problems that De Moivre 
has solved to this point are unrelated to any actual games played. As noted by the 
Journal de Trévoux reviewer in 1712, De Mensura Sortis has the appearance of a 
work that solves interesting mathematical problems rather than gambling problems 
or problems of strategy of play. However, set in the middle of De Mensura Sortis 
are two problems that come directly from actual games. One is known as either the 
problem of the pool or Waldegrave’s problem (Problem 15), and the other is the 
problem inspired by lawn bowling (Problems 16 and 17), suggested by Robartes 
which we have already seen.

Montmort admitted that the lawn bowling problem is one that he had not 
seen before. However, he could not contain his criticism. De Moivre had said in his 
dedicatory remarks to Robartes at the opening of De Mensura Sortis that Montmort 
and Huygens did “not seem to have employed that simplicity and generality which 
the nature of the matter demands.” In response, Montmort mocked De Moivre by 
throwing this statement back in his face. The bowling problem, he said, could have 
been stated more generally; the players could have an unequal number of balls. This 
assumption makes no sense in a regular game of lawn bowling, which again points 
to the primary interests of Montmort and De Moivre—mathematics, not gambling. 
Montmort makes this assumption and goes on to give a solution. Then he surmised 
that the problem would be much more difficult if unequal skills between the players 
were assumed, but he himself provided no solution at that point. Montmort did 
obtain the general solution by the time the second edition of Essay d’analyse went 
to print.54

The problem of the pool in England comes from a card game for two players 
called Piquet. It was a method to bring a third player into the game. The normal 
game is played with a 36-card deck, the standard deck with the twos through fives 
removed. There is a scoring system based on the play of the cards; the first player 
to reach one hundred points wins the game. Although the card game dates from at 
least the mid-seventeenth century in England, the variation in play through the pool 
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probably dates from the early eighteenth century.55 Here is a 1719 description of the 
pool from a popular gambling manual: 

The Pool is another way of playing Picquet, only invented for Society; it is in 
every Way play’d the same with the other Game; but is a Contrivance to bring in 
a third. As for example, Three persons are to cut, he who cuts the highest Card, 
stands out the first Game, for it is held an Advantage to be out first. Then the 
others are cut for Deal, as is before directed; If they play for Guineas, they are 
to lay down a Guinea apiece, which makes three Guineas: then he who loses the 
first Game lays down a Guinea more, and goes out, and he who stood out before, 
sits down; if the first Gamester beats him also, he sweeps the Board, which is 
called winning the Pool; and the loser must lay another guinea to it. But if he 
who won the first Game, loses the second, he pays his Guinea, and makes room 
for the other; thus it goes round sometimes, till the Pool amounts to a great 
Sum. You must observe, the Pool is never won, till one Person gets two Games 
successively. Every Person that loses a Game, lays down a Guinea to the Pool. 
When any person is lurch’d at this Play, he lays down one Guinea to the Pool, 
and pays another to him who lurch’d him.56

Since the game was “only invented for Society,” or the upper classes, and there is 
no mention of anyone suggesting this problem to De Moivre, it is possible that De 
Moivre played the game with some of his upper-class associates.

The 1719 description of the pool illustrates the penchant among mathematicians 
to simplify, and then to generalize, a practical problem. On the simplification 
side, a player is lurched when he or she fails to obtain fifty points before the 
opponent obtains the hundred points required to win.57 Including that possibility 
in a mathematical analysis would complicate it substantially; De Moivre makes no 
mention of lurching. At each round of the pool, one guinea, or at least one monetary 
unit, is put into the pot or pool. De Moivre generalizes this to an amount s of money. 
His solution to find the chances of winning for each of the three players requires 
the use of an infinite series. The solution shows the gap at this time between the 
gambling public and the mathematicians. The author of the 1719 gambling manual 
says that “it is held an Advantage to be out first.” However, in 1711, and later in 
Doctrine of Chances in 1718, De Moivre shows that the player staying out the first 
round is at a disadvantage when the fine, or the amount put into the pool on losing a 
round, is less than 7/6 of a unit. De Moivre may have heard the general talk of the 
advantage of being out first. In 1718, he explicitly gives the expected loss for the 
player staying out the first round when the fine is one unit.58 

Once again, Montmort comments that he had already solved this problem, referring 
to a letter to Nicolaus Bernoulli dated April 10, 1711. For the case when s = 1 and using 
the essentially same method as De Moivre, Montmort did indeed solve the problem. De 
Moivre had commented in De Mensura Sortis that the solution could be extended to 

© 2011 by Taylor & Francis Group, LLC



80 

 Chapter 5    

more than three players in the pool. Along with his claim to priority, Montmort retorted 
that De Moivre’s method of solution was impracticable for more than three players. 

Montmort’s problem of the pool was suggested to him by another Englishman, 
Charles Waldegrave, son of a baronet and brother of a baron who married an 
illegitimate daughter of James II of England. Waldegrave was a Jacobite living in 
France at this time.59 Even though Montmort himself called it the problem of the 
pool, it has since come to be known as Waldegrave’s problem. Although of English 
aristocratic background and hence a prime candidate to study with De Moivre, it seems 
that Waldegrave was unknown to De Moivre. When writing to Brook Taylor in 1717 
on his forthcoming Doctrine of Chances, De Moivre’s only reference to Waldegrave is 
in the phrase “Monmort and his friend at Paris as well as young Bernoully.”60

Before returning to the theme of solving probability problems through the 
binomial expansion, De Moivre dealt with one more problem, now known as the 
occupancy problem. This is Robartes’s third challenge problem to De Moivre. In 
De Mensura Sortis, it is set as a dicing problem. A die with f + 1 faces is thrown n 
times. What is required is to find the probability that a specified subset of the faces, 
g in number, each shows at least once in the n throws. De Moivre used an inclusion-
exclusion algorithm to solve this problem. For simplicity of explanation, suppose 
the faces that we want in the subset are ace, two, three, and so on. The total number 
of throws when all faces are considered is ( f  + 1) n and the total number of throws 
with the ace removed is f n. Consequently, the total number of throws with at least 
one ace is ( f  + 1)n – f n. Now remove the two. The number of throws of at least 
one ace with the two removed is f n – ( f  – 1)n. Since ( f  + 1) n – f n is the number of 
throws of at least one ace with the two in, then the number of throws of at least one ace 
and at least one two is ( f  + 1) n – f n – ( f n – ( f  – 1) n)  or ( f  + 1) n – 2f n + ( f  – 1)n. 
This can be built up successively until we reach the desired number of faces, g. 
De Moivre expresses the general solution in terms of powers with alternating 
signs ( f + 1)n – f n + ( f  – 1)n – ( f  – 2)n, continued to the last term, ( f  – g + 1)n. 
With some foreshadowing of more binomial expansions yet to come, De Moivre 
states that the coefficients of each of the terms are obtained from the binomial 
expansion (1 + 1) g. As a variation to the problem, De Moivre looked to solve for 
n in the problem, given values for f and g, when the resulting probability is 1/2. 
Here De Moivre made a simple approximation in order to come up with a simple 
expression for n.

Once again, Montmort was not particularly impressed with the solution, 
claiming that the solution could be obtained from a formula he sent to Johann 
Bernoulli in 1710 along with a proposition in the 1708 edition of Essay d’analyse. 
Harking back to De Moivre’s comment on generality, Montmort chided De Moivre 
by saying that his own solution is more general in that he had obtained the probability 
of the chosen faces each showing a certain number of times rather than at least once. 
Montmort did like De Moivre’s twist to the problem to solve for n, the number of 
throws, but he was not sure whether the approximation was good enough.
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The last seven problems (Problems 20 through 26) of De Mensura Sortis give 
the rousing finale to the piece expressed by the binomial motif. The finale is the 
complete solution to the problem of the duration of play. To recap, in the gambler’s 
ruin problem, A and B with capital a and b play until one of the player’s capital is 
exhausted; the probability of ruin of each of A and B is sought. In the duration of 
play problem what is sought is the probability that play ends, or that someone is 
ruined, before a stated number of games. 

In the case when a = b, De Moivre recognized that the number of games must be 
at least a and so he calculated the probability that ruin will occur after a + d games. The 
algorithm to obtain the probability is very simple. First expand ( p  + q)a and remove 
the extreme terms pa and qa. Multiply the result by ( p  + q)2, collect terms, and again 
remove the two extreme terms. Repeat the process of multiplication by ( p  + q)2 and 
removal of the extreme terms 1/2d times. If d is an odd number, then replace d with 
d – 1. The required probability is the set of terms obtained from the algorithm divided 
by ( p  + q) a + d. 

De Moivre adjusted his algorithm to take into account the situation in which 
a ≠ b. Rather than starting at ( p  + q) a, he started at ( p  + q) × ( p  + q). At each step he 
removed the terms for which the exponent of p exceeds the exponent of q by b and 
for which the exponent of q exceeds the exponent of p by a, and multiplies the result 
by p + q. The number of multiplications is the number of games bet on minus one. 

Some of the last seven problems are variations on the use of these two algo-
rithms. For example, once he has given the algorithm to solve the duration of play 
problem when a = b, the next two problems (Problems 21 and 22) are to solve a twist 
on the problem. In this case, a and d are given, as well as the probability that play will 
last beyond a + d games. What remains to be found is the ratio of chances, or the odds, 
z = p /q  that will achieve the given probability for the duration of a + d games.

Montmort is complimentary yet condescending in his assessment of De 
Moivre’s solution to the duration of play problem and in his general assessment of 
De Moivre’s work. Adjusting Montmort’s mathematical notation to conform to what 
has been used here, here is what he says to Nicolaus Bernoulli:

I am happy to see that Mr Moivre has solved this problem in its entirety, and that 
his solution agrees perfectly with our own. However, I have great difficulty in 
understanding how the learned Geometer arrived at this method for calculating 
p + q to the power a, removing the extreme terms of this product, and multi-
plying the remainder by the square of p + q, and then repeating this process as 
many times as there are units in 1/2d. A solution of this form surprises me, all 
the more since the Author, who having assumed equal chances for Peter and 
for Paul, once he assumes the chances are not equal, is obliged to take another 
route, whereas according to me and you the method is the same for the general 
and particular cases. Nevertheless, I hold this discovery, and his entire Work, 
in high regard, and I congratulate myself on having opened the way to it by 
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pioneering this approach. I first found it unusual that he has filled this work with 
the same things we had discussed in our Letters, but it is only natural, since he 
based his Work on my own, and wanted to pursue these subjects, that the same 
ideas came both to him and to us. I would only have wished, and it seems that 
fairness demands it, that he had frankly acknowledged what I have the right to 
claim in his Work.61

Later when he was writing the second edition of the Essay d’analyse, Montmort 
criticized De Moivre’s results on the duration of play problem by saying that the 
result that he and Bernoulli had obtained was simpler and easier to calculate.62

Although we have run through the numbered problems in De Mensura Sortis 
more or less in order and have seen what Montmort thought of the results, there 
remains one important problem that is not one of De Moivre’s problems. Placed 
between Problems 5 and 6 is a lemma that does not seem to fit. The lemma reads in 
translation, “To find the number of chances by which a given number of points may 
be thrown with a given number of dice.”63 Put symbolically, the problem is to find 
the number of ways of obtaining the sum s of the faces that show in the throw of n 
dice with f faces. The answer that De Moivre gives, for r = s – 1 is

1 2 3                             
1 2 3

r r r− − −
× × 

1 2 3                            
1 2 3 1

r f r f r f n− − − − − −
− × × ×

2 1 2 2 2 3 1                            
1 2 3 1 2

r f r f r f n n− − − − − − −
+ × × × ×

3 1 3 2 3 3 1 2
1 2 3 1 2 3

r f r f r f n n n− − − − − − − −
− × × × × ×

                            .+

where the “…” means, in De Moivre’s words, that “the series ought to be continued 
until any of the factors are either equal to zero or negative.” This is another instance 
of what Johann Bernoulli complained about: “I find his way of solving these kinds of 
problems a little obscure.” De Moivre gives no method of solution, just the answer. 
And the method of solution is not obvious. It was probably for this reason that 
he called it a lemma, making a pun in Latin. A lemma in mathematics is usually 
interpreted as a proposition that is either subsidiary to a main result or preparatory for 
it. The classical meaning of lemma is “a subject for consideration or explanation.”64 
De Moivre had given the answer to a difficult problem for which he had found a 
simple solution. He was now challenging others to find the solution. 
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Without knowing how De Moivre solved the lemma, Montmort dismissed the 
result. He claimed, rightly, that the statement of the lemma was taken from page 
141 of the 1708 edition of Essay d’analyse. He did acknowledge in the letter to 
Nicolaus Bernoulli that the result was “curious,” perhaps meaning that the answer 
was interesting. But then he went on to tell his correspondent that he had already 
sent his own solution to this problem to Johann Bernoulli in a letter dated November 
15, 1710, thus claiming priority for the solution. 

De Moivre’s initial solution to the lemma is explained in a letter to Brook 
Taylor in 1718.65 After receiving his copy of Doctrine of Chances, where the lemma 
also appears without proof, Taylor wrote a letter to De Moivre, which has not 
survived. In De Moivre’s reply, dated September 29, 1718, it is clear that Taylor 
had asked De Moivre about the lemma. De Moivre briefly outlined how he had 
discovered the proof. It was a combinatorial solution whose method of proof was 
different from Montmort’s and Bernoulli’s. For three dice, De Moivre wrote down 
the number of ways each of the sums could occur. Beside those numbers he wrote 
the difference between the numbers and the number of combinations obtained by 
selecting two objects from r, where, again, r = s – 1 and s is the sum on the faces that 
show. Then he looked for patterns in these differences. Upon obtaining the solution 
for n = 3, which agrees with the expression given in the lemma, he went on to n = 4 
and related to Taylor that he had obtained the result by induction. The first step in 
the proof, with added detail but only up to 11 points showing on the dice, is shown 
in the table below. In the table, the combinatorial symbol

( )
!

! !
r r
t t r t
 

=  − 

where r! = r(r  – 1)(r – 2) … 3 ∙ 2 ∙ 1 is the product of the first r natural numbers, 
stands for the number of ways of choosing t objects from r. Later in the 1720s, 
De Moivre discovered the method of generating functions, which provides a very 
simple and elegant solution to the problem.

De Moivre was proud of what he had written in De Mensura Sortis.66 He must 
have been shocked by Montmort’s reaction; he was able to see the letter and make a 
copy of it after Nicolaus Bernoulli arrived for a visit to London in October 1712.67 
When De Moivre wrote to Johann Bernoulli in December 1712, he was circumspect 
and polite. He had to be—Montmort was also corresponding with the elder Bernoulli 
and working with Nicolaus. De Moivre listed Montmort’s general complaints about 
his work and commented that Montmort did not understand what he had written in the 
preface to De Mensura Sortis. He assured Johann Bernoulli that he did not want to 
offend Montmort and that any criticisms that he made were done in an indirect way. 

De Moivre had learned his lesson about politesse in the Republic of Letters. 
For his part, Montmort was unfair in most of his criticisms of De Moivre’s work. 

,
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Points Chances
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4

5

6

7

8

9

10

11

1

3

6

10

15

21               – error

25          28 – 3                  – 3

27          36 – 9                  – 3

27          45 – 18                – 3

De Moivre’s calculations for his lemma.
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Montmort was trying to protect his own personal turf. In Montmort’s mind, his latest 
work in probability could only be the product of his own talent and not something 
that could be independently discovered by others.68 

Although a good and respected mathematician, Montmort can be seen as a 
bit of a dilettante; mathematics was more a serious hobby to him than a full-time 
occupation. In that way he might be compared to De Moivre’s friend and probable 
aristocratic patron Francis Robartes, who seriously dabbled in science, but did not 
achieve success to the extent that Montmort had. Parts of Montmort’s life point to 
his dilettantism. He made three trips to England, the first to escape his father. On the 
last trip in 1715, he went to observe a solar eclipse. Halley’s account of the eclipse 
seems to imply that Montmort was there for the show, rather than as a participant 
taking scientific measurements.69 When Montmort was young, he joined the Church 
but left it when he fell in love with his neighbor’s niece and married her. 

Prior to his marriage in 1706, Montmort had inherited money, acquired 
noble status, and set himself up on an estate at Montmort. His marriage gave him 
some interesting connections. Montmort’s new aunt by marriage was the duchesse 
d’Angoulême, whose husband was the illegitimate son of Charles IX. The duc and 
duchesse married when he was 72 and she was 23. Montmort’s marriage into this 
family gave him some connections to the royal court. Unfortunately for Montmort, 
Louis XIV did not like the aunt; her husband was a Valois rather than Bourbon 
and, consequently, Louis ignored her.70 The duchesse lived with Montmort until 
her death. The Essay d’analyse is written around games of chance played at the 
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court of Louis XIV.71 The frontispiece of the book, shown in Chapter 7, depicts 
the court at play in the background. The book, undoubtedly printed at Montmort’s 
expense, may have been published, in part, to curry favor at court, which never 
materialized. 

I am left with a feeling that the French nobleman was a little miffed by the 
upstart bourgeois French refugee of the wrong religion who claimed that his results 
were more general and simpler to obtain. In time, De Moivre responded by obtaining 
more and better mathematical results and by throwing some subtle and hidden barbs 
at Montmort that would follow the letter of the law for the code of civility in the 
Republic of Letters.
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When Martin Folkes died in 1754, he left a large library of over five thousand 
books and a small number of manuscripts, which were put up for sale. Among the 
manuscripts was one that the sale agent described as, “The formation of a catalogue of 
curves, contain’d between page 62 and 63 of Sir Isaac Newton’s tract of quadratures, 
wrote by Mr. De Moivre, 4to.”1 It sold for six shillings and sixpence. The catalogue 
of curves, which is essentially a table of integrals, appears between pages 62 and 
63 of Newton’s Analysis per Quantitatum Series, Fluxiones, ac Differentias, which 
was published in 1711 and edited by Newton’s and De Moivre’s friend William 
Jones.2 Much of the book is based on transcriptions of some of Newton’s letters 
and scientific papers that had been in the possession of John Collins. Jones obtained 
Collins’s manuscripts in about 1708, fifteen years after the latter’s death.3 The book 
contains some of Newton’s earliest work on the calculus and was connected to the 
dispute between Newton and Leibniz over the discovery of the calculus. In the 
preface, Jones lays out a short history of the development of the calculus. Rupert 
Hall and Laura Tilling comment about the preface:

Without mentioning Leibniz or the calculus dispute, Jones in eleven short pages 
presented powerful evidence of Newton’s mathematical originality as far back 
as 1665. For the first time the testimony of Newton’s earliest communications 
to Barrow and Collins…was set before the public, thus anticipating the fuller 
documentation attempted in the Commercium Epistolicum.4

The Commercium Epistolicum is a collection of letters assembled by Newton to 
support his case against Leibniz. Compared to John Keill’s published attack on 

© 2011 by Taylor & Francis Group, LLC



88 

 Chapter 6    

Leibniz, appearing in 1710, that contained accusations of plagiarism,5 Jones’s 
contribution to the priority dispute was much more restrained and muted. 

As tempting as it is to conjecture that Jones asked De Moivre to compose a table 
of integrals for the book, thus making De Moivre a ghostwriter for some of Newton’s 
mathematical work, the cataloger for the sale of Folkes’s book made an error. The 
table appears in some of Newton’s early manuscripts written prior to De Moivre’s 
arrival in England.6 Instead of originating the table, De Moivre probably copied it from 
Newton’s manuscripts on quadrature that he had seen in 1702;7 it would have been a 
handy reference for him in view of his research interests at the time. There are other 
possibilities. De Moivre could have copied the table from the 1711 book. He could 
also have seen the table in Newton’s Opticks, published in 1704, or in the 1706 Latin 
translation of it, both of which contained Newton’s treatise on quadrature.8

The controversy over the discovery of the calculus that erupted in 1710 had 
been brewing for several years; the first brickbat against Leibniz from the Newtonian 
side was thrown by Fatio de Duillier in 1699 in a pamphlet on the brachistochrone 
problem.9 The controversy came to a head in a formal way in 1711 when Leibniz, in 
his capacity as a fellow of the Royal Society, wrote to Hans Sloane, secretary to the 
Society, demanding an apology from Keill for accusing him of plagiarizing Newton’s 
work. No apology from Keill was forthcoming. Rather, Keill counterattacked by 
laying out his case in a letter to the Royal Society, which the Society decided to 
send on to Leibniz. Leibniz wrote back to the Society late in 1711 with a dignified 
response, giving credit to Newton for his discoveries and at the same time claiming 
equal credit for his own work. Certainly Keill was excessive and unfair in his attacks 
on Leibniz who, in truth, had independently discovered the calculus. After 1711, 
Leibniz reached the limits of his tolerance and with his supporters began a game of 
tit for tat with Newton and his group. As the whole affair ground on, no one escaped 
without some mud splatter sticking to them.10

Up to the end of 1711, De Moivre remained in the background to the point 
of invisibility in the dispute. A few years prior to Keill’s outburst, De Moivre had 
praised both Leibniz and Johann Bernoulli for their mathematical abilities. In a letter 
to Johann Bernoulli, De Moivre began by commenting on John Craig’s work that 
appears in Philosophical Transactions for 1708. He mentioned Craig’s criticism of 
Bernoulli’s and Leibniz’s solutions to a problem that Craig thought he had solved, 
and then stated,

The whole world knows, apart from an ignoramus like him [Craig], that Mr. 
Leibnitz and yourself have pushed the field of mathematics infinitely higher than 
Mr. Huygens, and that if that excellent mathematician were still alive, he would 
not hesitate to do you that justice.11

Perhaps De Moivre was still feeling the sting of the Scottish faction in the Royal 
Society, or perhaps it was his cantankerousness coming to the fore again.
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De Moivre began to lose his invisibility in the dispute when Newton appointed 
him to the Royal Society committee to determine Newton’s claim to priority in the 
discovery of the calculus. In reality, De Moivre probably had very little to do with 
any deliberations of the committee or with writing the report. Newton wrote the 
draft of the report.12 Furthermore, the committee was originally established on 
March 6, 1712. De Moivre was not added to the committee until April 17 and 
the report, presented on April 24, 1712, to the Royal Society, one week after De 
Moivre’s appointment, was unsigned by any of the committee members.13 Subse-
quently, a comprehensive case for Newton from the British point of view was laid 
out in print in the Commercium Epistolicum. It was distributed free to selected indi-
viduals over January and February of 1713; De Moivre sent some copies to France.14 
Since the names of the committee members did not appear in the publication, De 
Moivre could still aspire to anonymity and relative neutrality in the dispute. What is 
also interesting, from the point of view of De Moivre’s scientific connections, is that 
of the other ten committee members, half of them were good friends of De Moivre 
or were soon to be: Edmond Halley, William Jones, John Machin, Francis Robartes, 
and Brook Taylor.

Between the submission of the report to the Royal Society (April 1712) and 
the publication of the Commercium Epistolicum (February 1713), Johann Bernoulli’s 
nephew Nicolaus visited London. He arrived in September 1712 on one of the legs 
of a tour that took him to England, Holland, and France. De Moivre met him early 
on in London, and introduced him to both Newton and Halley. De Moivre brought 
Bernoulli three times to meet with Newton, and twice they were invited to dine with 
him. Uncle Johann was very pleased with the hospitality his nephew had received 
from Newton, Halley and De Moivre.15 

There were no meetings of the Royal Society until mid-October, so Nicolaus 
Bernoulli was unable to attend a meeting until that time. Also, meetings were closed 
to non-fellows; Bernoulli could only attend as another fellow’s guest16 or with 
permission of the meeting’s chair, often the president. When meetings recommenced, 
De Moivre was tied up with some unstated business; it was Halley who introduced 
Nicolaus Bernoulli to the Royal Society.17 

From one viewpoint, Nicolaus Bernoulli’s trip was a great success. De Moivre 
wanted both uncle and nephew proposed for fellowship in the Royal Society. Newton 
felt that it would give greater honor to Johann Bernoulli to be proposed first. This was 
done on October 23, 1712; he was elected fellow on December 1. Nicolaus Bernoulli’s 
fellowship came about a year and a half later. On February 18, 1713, Johann Bernoulli 
wrote to De Moivre thanking him for his efforts in obtaining the fellowship.18

From another viewpoint, the trip was an indication of storm clouds on the 
horizon. Nicolaus Bernoulli informed De Moivre of a problem that he had found 
in one of the results in Newton’s Principia, in particular Book II, Proposition 10 
dealing with resisted motion. The theory was not quite correct, and, consequently, 
Newton’s final numerical result was off by a factor of 3 to 2. It was actually the 
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uncle who had discovered the problem. After De Moivre informed Newton of the 
problem, Newton worked for two days fixing it and then sent his correction to Roger 
Cotes, who was in the process of preparing the second edition of the Principia for 
publication.19 What seemed a relatively minor point at the time became a sore spot 
in the future, with connections to the priority dispute.

Although Johann Bernoulli supported Leibniz in the priority dispute, he 
tried to downplay his support in public and to maintain a good relationship with 
mathematicians in England. One of the things that worried him was that by March 
1714 he had not heard from De Moivre for over a year. De Moivre’s last letter 
to him was written in December 1712, when De Moivre gave news of Bernoulli’s 
election to the fellowship. Bernoulli had written to De Moivre in February 1713 
and had received no reply. In De Moivre’s December letter, he had promised to 
send Bernoulli a copy of the Commercium Epistolicum, and in an earlier letter of 
October 1712, he had also promised to send the latest edition of Newton’s Principia 
Mathematica when it came off the press.20 Nothing had been received. Bernoulli 
went to great lengths to find out what had happened. He checked with Varignon 
about whether De Moivre had received his letter of February 1713. Varignon replied 
that the letter had been sent through Paris to London to John Arnold’s brother, 
whose valet had delivered it to De Moivre. John Arnold was a former student of 
Bernoulli and, contrary to almost all British mathematicians, took Leibniz’s side 
in the calculus dispute. On March 8, 1714, Bernoulli wrote to John Arnold, telling 
him what he had learned from Varignon and asking Arnold to look further into the 
matter.21 By the time Arnold wrote back, Bernoulli had confirmed from his nephew 
that his letter had been delivered.22 Bernoulli then wrote to De Moivre on March 20, 
1714, expressing his concern that the dispute between Newton and Leibniz might be 
behind the cessation of their correspondence. Bernoulli wondered in his letter if De 
Moivre thought that Bernoulli and his nephew Nicolaus had taken Leibniz’s side in 
the dispute. He assured De Moivre that they had a high regard for both Newton and 
Leibniz, and that he and his nephew were taking a neutral position with the hope that 
both sides would compromise a little.23 Before receiving a reply from De Moivre, 
Bernoulli received a letter from John Arnold warning him to be careful about De 
Moivre—he was Newton’s creature.24 

As promised, De Moivre did send Johann Bernoulli a copy of the Commercium 
Epistolicum, as well as another one to Bernoulli’s nephew, Nicolaus. It took a typical 
De Moivre route. He initially sent the books through Paul Vaillant, the Huguenot 
bookseller in London. From Vaillant’s operation in The Hague, it went via the 
chaplain of the duc d’Aumont to Rémond de Montmort and then on to Bernoulli.25 
De Moivre informed only Nicolaus Bernoulli that the books were on their way. 
By the time the books arrived, they had received some damage from the rigors of 
eighteenth-century transport.26

De Moivre finally wrote to Johann Bernoulli in June 1714, explaining that 
he had been ill for some time; he had been “overwhelmed by headaches caused by 
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the strain of travelling and teaching.” In the same letter, he also described a mix-up 
with the distribution of the Principia, lamenting that as a result both he and Edmond 
Halley had to buy their own copies even though Newton had promised to present 
them each with one. He reassured Bernoulli that he did not think his correspondent 
had sided with Leibniz and then let slip with a comment, initially sugar-coated, that 
indicates that perhaps he did. De Moivre wrote:

yet Sir, even if that was the case [siding with Leibniz], that would not have been 
reason enough for me to indicate dissatisfaction through my silence; indeed 
it would be utterly unreasonable if the gratitude I owe you for the kindness 
with which you have honoured me should vary due to such a minor incident; 
it does not seem that Mr. Newton was in the least troubled as to the distinction 
owed to the initial inventor of fluxions and differential calculus; he was in truth 
somewhat piqued by the insinuation of certain flysheets that he had learned the 
calculation of differences from Mr. Leibnitz and that some wanted to make him 
out as a plagiarizer. 27

The flysheets De Moivre referred to was the Charta Volans that had been written 
(anonymously) by Leibniz in answer to the Commercium Epistolicum. Published 
in July 1713, it included an anonymized letter to Leibniz from Bernoulli that was 
critical of Newton’s mathematical work and that hinted at Newton’s reliance on 
Leibniz’s results. The cloaking of the authorship of the letter was not done well 
enough so that many, in time, were able to guess that it came from the hand of 
Johann Bernoulli. 

There is another hint of rebuke to Bernoulli in De Moivre’s 1714 letter. Later 
in the letter, De Moivre referred to his own result on centripetal forces that he had 
sent to Bernoulli in 1705. He noticed that Bernoulli had published a paper in Acta 
Eruditorum in 1713 that contained the result and that, at the same time, gave credit 
of its discovery to De Moivre.28 He thanked Bernoulli for this acknowledgment 
and told him that he had obtained some new results related to centripetal forces, 
which he had shown to Halley and Newton. He planned to publish the results in 
Philosophical Transactions. On the surface this appears all very nice and friendly. 
There is an unwritten subtext to all this. Bernoulli’s paper in Acta Eruditorum 
points out Newton’s error in Book II, Proposition 10 of the Principia, thus bringing 
into question Newton’s ability as a mathematician.29 By thanking Bernoulli for 
the acknowledgment explicitly, he also informed Bernoulli implicitly that he had 
carefully read the paper. Since De Moivre had informed Bernoulli in 1712 that 
Newton had corrected the error, this was, unstated by De Moivre, a serious faux 
pas on Bernoulli’s part.30 De Moivre had now learned the art of criticism through 
politesse within the Republic of Letters. Although Bernoulli responded to De 
Moivre’s 1714 letter expressing hope for peace between Newton and Leibniz, De 
Moivre never wrote to Bernoulli again. A year and a half after Bernoulli’s last letter 

© 2011 by Taylor & Francis Group, LLC



92 

 Chapter 6    

to De Moivre, he again wrote to John Arnold asking him to look into whether De 
Moivre had received his letter.31

During 1713, Keill continued his attack on Leibniz by publishing an article 
anonymously in French in the May/June issue of Journal literaire.32 Published out 
of The Hague by a Scotsman named Thomas Johnson, Journal literaire was the first 
literary journal in French to appear in the Low Countries. It was one of a number 
of books and journals intended for a French audience that circumvented France’s 
printing and censorship laws. Keill’s 1713 article went over Newton’s discoveries 
in detail and reproduced the report to the Royal Society on Newton’s priority to 
the discovery of the calculus. Leibniz responded to Keill in an article that appeared 
in the November/December issue of Journal literaire.33 Also attached to Leibniz’s 
response was a French translation of the Charta Volans. 

Newton had already seen a copy of the Charta Volans in the autumn of 1713 
and had planned to publish a response to it. He wrote several drafts of his response 
in English, addressing his response to Thomas Johnson, probably intending the 
response to appear in Journal literaire.34 The first indication that De Moivre was 
becoming more involved in the dispute behind the scenes is that he translated one of 
Newton’s drafts into French. Newton never submitted his letter to Johnson. Rather, 
it was Keill who took up the cudgel on his behalf, but with Newton standing directly 
behind him.35 Keill published a lengthy article in the July/August issue of Journal 
literaire for 1714,36 broadly hinting that Leibniz had got his ideas from Newton. 
Previous to the submission of his article, Keill expressed in a letter to Newton the 
hope that De Moivre would translate into French what he had written in English. The 
translation request went through Halley.37 At the time, Keill was Savilian Professor of 
Astronomy at Oxford while Halley, De Moivre’s close friend, was Savilian Professor 
of Geometry. Presumably De Moivre did the translation. It is possible but doubtful 
that De Moivre was involved earlier by providing Keill with a French translation of 
his 1713 article in Journal literaire. The doubt is based on Keill expressing in the 
same letter to Newton his lack of trust in those at Journal literaire to do a proper 
translation for his new article, indicating that perhaps the translation for the 1713 
article was done in The Hague and was not to his satisfaction.

Keill continued his attacks even after Leibniz’s death on November 14, 1716, 
and prior to that enlarged his range of attack to include Johann Bernoulli. The 
background to the attack on Bernoulli was research on central forces.38 Keill had 
written a paper on the subject in 1708 and published it in Philosophical Transactions; 
the 1708 volume was not printed and distributed until 1710. In his paper, Keill used 
the formula on centripetal forces that De Moivre had discovered and communicated 
to Bernoulli in 1705. When he first obtained it, De Moivre had also sent the formula 
to Keill and Halley at Oxford, as well as to David Gregory.39 In Journal literaire for 
1716,40 Keill claimed that there was nothing new in a 1710 letter that Bernoulli had 
published in the Histoire de l’académie royale des sciences. Everything Bernoulli 
had done, Newton had already done in the Principia, Keill claimed. Moreover, Keill 
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had already obtained Bernoulli’s result on central forces in 1708. Bernoulli’s letter 
is the one he had written to Jacob Hermann on centripetal forces and subsequently 
read before the Académie royale des sciences in 1710. Once he finished with the 
Principia, Keill went on to take up De Moivre’s cause. He pointed out that the 
theorem on centripetal forces that Bernoulli mentioned in the letter, which Bernoulli 
claimed he had obtained in 1706 and communicated to De Moivre,41 was actually first 
communicated in the opposite direction. Keill noticed that Bernoulli had mentioned 
the result in his Acta Eruditorum article in 1713 and had credited De Moivre there. 
Why, Keill wondered, had Bernoulli hidden this in 1710? Bernoulli replied, or had 
someone else reply, to Keill in an anonymous letter in the Acta Eruditorum for 1716. 
Keill hammered back in a letter to Bernoulli the next year and published it in Journal 
literaire in 1719.42 Keill’s letter went over the whole history of the calculus dispute 
and, after several pages, he began to taunt Bernoulli. He was surprised that Bernoulli 
could not recognize that his results on central forces were the same as Newton’s and 
went on to accuse Bernoulli of plagiarism with respect to Keill’s work on central 
forces. He compared the situation to De Moivre’s; Bernoulli could have claimed 
priority for De Moivre’s theorem on centripetal forces, Keill said, if De Moivre 
had not been alive to produce epistolary evidence to the contrary. Whether all this 
was done, both in 1716 and 1719, with De Moivre’s knowledge and approval, is 
difficult to say. If De Moivre continued to do French translations for Keill, then the 
answer can only be in the affirmative. All that comes to us in the surviving historical 
evidence is that in 1718 from his chateau in France, Montmort believed that De 
Moivre was behind Keill’s letters.43 That may not have been a well-founded belief in 
view of Montmort’s fixation on De Moivre’s alleged plagiarism.

There is one instance in which De Moivre definitely did provide a French 
translation during the calculus dispute. It was for Brook Taylor. In 1715 Taylor 
published his Methodus Incrementorum, which today is famous for its section on the 
development of the Taylor series expansion in mathematics.44 The book is tersely 
written and contains references only to Newton’s work. One of the propositions 
in the Methodus contains Taylor’s results on the center of oscillation in compound 
pendulums.45 At about the time that Taylor was working on this, Johann Bernoulli 
was also working and publishing on the same problem. The July 1716 issue of 
Acta Eruditorum contains an anonymous unfavorable review, written by Leibniz, 
of the Methodus followed by an anonymous letter written by Johann Bernoulli.46 
The letter outlines Bernoulli’s contributions to the development of the calculus, as 
well as a description of Newton’s shortcomings and criticisms of Keill. Inserted 
in the middle of the letter are some general accusations against Taylor, and some 
others, of plagiarizing Bernoulli’s work. Taylor wanted to respond, but since the 
Acta Eruditorum was taking Leibniz’s side in the calculus dispute, he needed 
another venue in which to respond. He chose Bibliothèque angloise. Published in 
Amsterdam, this was a literary journal written and edited by Michel de la Roche, De 
Moivre’s friend and former mathematics student. Part of the journal’s purpose was 
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to disseminate Newtonian science throughout the Continent by including regular 
reviews of English scientific books. Taylor anonymously wrote his own review of 
the Methodus Incrementorum for Bibliothèque angloise.47 The review included a 
response to Bernoulli. Originally written in English and strongly worded in places, 
De Moivre dutifully translated the review into French with one word change in 
one sentence to tone it down ever so slightly. In a letter dated November 2, 1717, 
De Moivre wrote to Taylor with the suggested word change and informed him that 
de la Roche was afraid to publish the review, “thinking that he would be called to 
account for some of the expressions that are in it.”48 The review did appear in 1718, 
probably with some serious editing by de la Roche. The offending sentence that De 
Moivre reworded for Taylor and quoted back to him in his letter, does not appear in 
the review.

There were two individuals, one French and the other Italian, who tried to be 
peacemakers in the calculus dispute. The Italian, Abbé Antonio Schinella Conti, was 
in London between 1715 and 1718. He had come to London specifically to meet 
Newton and soon became part of Newton’s intellectual and social circle. Previously, 
he had been in correspondence with Leibniz.49 Conti also had access to the court 
and often met with Caroline, Princess of Wales, who for several years had been in 
close contact with Leibniz in Hanover and earlier in Berlin.50 The Frenchman, Pierre 
Varignon, was director of the Académie royale des sciences between 1711 and 1719; 
he had been a member of the Académie royale since 1688. In the 1690s, Varignon 
was one of those who introduced France to Leibnizian calculus. At the same time, 
after reading the Principia, he was a confirmed Newtonian in his scientific outlook. 
Varignon became a fellow of the Royal Society in 1714 (nominated by De Moivre’s 
friend, William Jones) and Conti a year later (nominated by Newton). During his time 
in London, Conti was a go-between for Newton and Leibniz. From about 1719 until 
his death in 1722, Varignon acted in the same capacity for Newton and Bernoulli. 
Varignon was able to involve De Moivre in his efforts to achieve a reconciliation 
between the two mathematical giants.

De Moivre’s involvement in the Leibniz-Conti-Newton triangle stems from a 
challenge problem set late in 1715 by Leibniz with input from Johann Bernoulli.51 
Knowing that the general solution could not be obtained by the geometrical methods 
used in the British approach to the calculus, the problem was meant to test the 
abilities of British mathematicians. Leibniz sent the problem to England via Conti, 
who circulated it. The problem in general is to find the orthogonal trajectories of any 
family of curves that is represented in a single equation. A curve that is an orthogonal 
trajectory crosses all curves in the family at a right angle. Leibniz inadvertently 
made the problem much easier by giving a specific case as an example—the family 
of hyperbolas with the same vertex and the same center. Except for Newton, the 
English mathematicians focused on the hyperbola rather than a general family of 
curves. The solid curves in the diagram are from the family of hyperbolas of the 
form y 2/α – x 2/4 = 1, where α indexes the family. The lower curve has α = 1, the 
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middle α = 1.5, and the upper α = 2. For this family of hyperbolas, the associated 
curves of orthogonal trajectories are of the form y 2 + x 2 – 8ln(x) = β, where now 
β indexes this family. The dashed curve in the diagram is the trajectory with β = 0.25. 
When Bernoulli saw how Leibniz had expressed his challenge problem, he wrote to 
him in January 1716 explaining that the case of the hyperbola had an easy solution. 
Bernoulli concluded in his letter:

Therefore, we must fear that the English Analysts will solve this case with 
common methods; and then, when they notice that they have succeeded so easily 
they will emerge even more puffed-up with pride and even more confirmed in 
their belief that they are superior.52

Many British mathematicians, De Moivre among them, solved the problem for 
the hyperbola. Newton’s general solution, published anonymously, was not very 
successful. 
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De Moivre’s solution to Leibniz’s challenge problem has not survived. At the 
time when he saw it, John Machin thought De Moivre’s solution “exceedingly neat 
and simple,” so much so that he liked it better than his own solution. De Moivre 
also recognized the ambiguity in the statement of the problem and told Conti of his 
concerns. When Conti was about to report back to Leibniz, he showed his letter to 
both Newton and De Moivre before sending it on in March 1716. De Moivre made 
some corrections to the letter and inserted his concerns about the ambiguity of the 
problem as stated.53

With continued attacks on Johann Bernoulli after Leibniz’s death, the calculus 
dispute simmered on. Beginning in 1718, Pierre Varignon initiated his efforts to bring 
about a reconciliation between Newton and Bernoulli. He made his first move based 
on receipt from Newton of three copies of the new edition of Newton’s Opticks in 
English. The copies were sent to Varignon in early August of 1718. Varignon wrote 
to Newton saying that he could not read English well so he had lent a copy to an 
English friend; he planned to learn about any new results after his friend read the 
book. In the same letter, Varignon told Newton that he had sent a copy to Bernoulli 
on Newton’s behalf “in order that I might reveal your generous nature to him.” Two 
months later, in October, Newton sent Varignon five copies of the newly printed 
Latin edition of the Opticks.54 Newton intended one of the copies for Varignon 
and specified the distribution of three of the remaining four copies. The last copy, 
Newton told Varignon, was for any of Varignon’s friends who could understand the 
subject. Varignon took this opportunity to send the remaining copy to Bernoulli, 
telling Newton that it was done “for the sake of bringing peace and concord between 
you and him.”55

A thaw had begun but it was not an easy one—for example, the attack by Keill 
on Bernoulli that appears in 1719 did not help warm Bernoulli to Newton and his 
supporters. Varignon enlisted De Moivre’s help in the peacemaking process. He had 
been corresponding with De Moivre since at least 1707 and the two were on good 
terms.56 He was also probably well aware of De Moivre’s closeness to Newton. 
Unfortunately, none of the De Moivre–Varignon correspondence is extant. The only 
reference to it appears in surviving letters between Varignon and Johann Bernoulli.57

Johann Bernoulli did write to Newton on June 24, 1719, to thank him for 
the new English and Latin editions of the Opticks. He remained wary of Newton 
and did not trust several of the British mathematicians: Keill had attacked him in 
print several times; he thought Brook Taylor had plagiarized his work; and Bernoulli 
suspected De Moivre of helping Keill, in addition to ceasing their correspondence 
five years earlier. Despite this, he still wanted a renewed friendship with Newton. 
Lying outright, he assured Newton that he was not the author of the letter to Leibniz 
that had appeared in the Charta Volans. Newton, equally as wary, wrote back on 
September 29, 1719. After referring to the letter in the Charta Volans and saying that 
he now assumed that Bernoulli was not the author, Newton expressed his desire for 
friendship and concluded, “I shall make it my business to settle the arguments which 
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you have with my friends, as far as in me lies.” Bernoulli wrote again to Newton 
on December 10, 1719, and this time De Moivre reported to Varignon on Newton’s 
reaction to it. At first Newton was pleased with the letter but later he became angered 
by it. Newton drafted a reply to Bernoulli but never sent it. Varignon tried for a 
reconciliation one more time before his death in 1722 by sending Bernoulli three 
“elegantly bound” copies of the new French edition of Newton’s Opticks that he had 
received from Newton. Bernoulli wrote to Newton on January 26, 1723, thanking 
him for the copies. He also made reference to his letter to Leibniz that had been 
published in the Charta Volans. It had recently been reprinted in 1720 in a publication 
entitled Recueil des diverses pièces.58 Bernoulli admitted to authorship of the letter 
but denied that he had any hand in certain additions to it, namely praising himself as 
an excellent mathematician.59 De Moivre was involved in the French edition of the 
Opticks and, perhaps in some way, in the Recueil des diverses pièces.

The two-volume Recueil des diverses pièces was compiled and edited by 
De Moivre’s old friend Pierre Des Maizeaux. Des Maizeaux had collected several 
contemporary letters and papers concerning the calculus dispute, prefaced it with a 
history of the dispute that relied on the Commercium Epistolicum, and published it 
in 1720 in French out of Amsterdam. The Recueil was not kind to Johann Bernoulli; 
it referred unfavorably to Bernoulli’s anonymous letter to Leibniz published in 
the Charta Volans. A letter from Newton to Conti was included in the Recueil in 
which Newton used the phrase “alleged mathematician” ( prétendu mathematicien) 
when referring to the author of the anonymous letter. Later in the Recueil, Newton 
commented to Conti that, in view of Bernoulli’s actions, mathematics in the future 
would become acts of knight-errantry instead of reason and demonstration. The 
inclusion of these letters with their offending phrases, of course, infuriated Bernoulli. 

Newton knew of Des Maizeaux’s work well prior to its publication. Des 
Maizeaux had sent Newton proof-sheets of the Recueil in 1718 to which Newton 
made corrections.60 The publication of the Recueil was delayed initially because Des 
Maizeaux added new material. Newton may also have had a hand in the delay once 
he read of Bernoulli’s claim that he was not the author of the letter to Leibniz. Even 
before he saw it, Bernoulli was angered by the prospect of the new publication and 
felt that Newton was behind it all. Once published, Des Maizeaux sent Varignon 
a copy of the Recueil. Varignon wrote to Des Maizeaux and De Moivre about the 
difficulty that the publication was making in achieving a reconciliation.61

It is difficult to say exactly what role De Moivre played in the Recueil. De 
Moivre and Des Maizeaux had been friends for many years, meeting regularly at the 
Rainbow Coffeehouse probably well before Newton and De Moivre began meeting 
at Slaughter’s Coffeehouse. Newton’s knowledge of French has been described as 
“sketchy.”62 For example, when he began working on alchemy, Newton probably 
had help from Fatio de Duillier in order to read and digest the alchemical literature 
that was in French. When he wrote to Varignon, it was typically in Latin, not French. 
Consequently, Newton may have had help from De Moivre as he went through the 
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proof-sheets of the Recueil. Whatever role De Moivre did play, Varignon was still 
looking to De Moivre for help in the peacemaking process. The phrases “alleged 
mathematician” and “knight-errant” remained the sticking points. These phrases, 
appearing in letters from Newton to Conti, may have been late additions to the 
Recueil and not seen by Newton. 

A letter from Varignon to Bernoulli dated February 15, 1721,63 which quotes 
at length a letter from De Moivre to Varignon, shows the extent of the efforts De 
Moivre was making on the English side in the attempted reconciliation. De Moivre 
reported to Varignon that Newton had chastised Des Maizeaux for stirring the pot 
with material on Bernoulli in the Recueil and making Newton look bad. Afterward, 
Des Maizeaux came to his friend De Moivre for advice on what to do. De Moivre 
put him off for a few days so he could talk to Newton about it without telling Des 
Maizeaux of his intentions. Subsequently, De Moivre went to talk to Newton and 
worked out a scheme to smooth things over between Newton and Bernoulli through 
Varignon. De Moivre’s letter to Varignon was written before Des Maizeaux was 
brought back into the picture. All De Moivre said to Varignon was that he told Des 
Maizeaux, “we would be seeing each other at our pleasure and that we would speak 
on the matter again.”64 Presumably, that would have been some future evening at the 
Rainbow Coffeehouse. 

Varignon’s final attempt at a reconciliation in 1722 before his death that year 
was to draft a letter stating that Newton had no animosity toward Bernoulli. Through 
De Moivre, it received Newton’s approval for publication. However, Bernoulli would 
not approve it for publication and made further demands. At that point, Varignon 
gave up hope of any reconciliation and died soon thereafter. 

Although he was unsuccessful in bringing Newton and Bernoulli to a 
reconciliation, Varignon was successful in bringing to fruition a project of interest 
to Newton that also involved De Moivre. Pierre Coste, another of De Moivre’s 
old friends from the Rainbow Coffeehouse, had translated Newton’s Opticks into 
French. It was published in Amsterdam in 1720. As it stood with the French printing 
and censorship laws, it was illegal to import the Amsterdam edition into France. A 
French publisher wanted to bring out an edition of Coste’s translation in Paris. Since 
the book was a scientific one, the process of approval went through the Académie 
royale des sciences. This eventually involved Varignon, who wrote to Newton about 
the project in May 1720.65 Subsequently, Varignon took charge of getting the book 
to press. 

The new French edition of the Opticks led to a little tension between some 
old friends.66 When Newton wrote to Varignon in January 1721 thanking him for 
undertaking the new edition, he told Varignon that De Moivre would be sending 
him corrections to the French edition. There was no mention of Coste, the original 
translator. Newton also told Varignon to ignore any corrections that might come 
from others. If there were any other corrections, they would come through Newton. 
By August 1721 it is apparent in Newton’s letters to Varignon that De Moivre 
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was closely involved in the editorial process from the English side. That same 
month, Coste sent his own corrections to Newton, as well as comments on some 
of De Moivre’s corrections, complaining that he had not seen all of De Moivre’s 
corrections and had been treated badly. A few days later Coste informed Varignon in 
a letter that Newton had promised to send on his corrections. Varignon subsequently 
received the corrections and in September Newton wrote to Varignon that he should 
choose whatever corrections he thought best. Coste does not seem to have made 
any corrections to the mathematical material, while De Moivre did. Varignon wrote 
to Newton in July 1722 saying that De Moivre’s corrections to the mathematical 
material were very helpful. He also noted that when De Moivre’s and Coste’s 
corrections overlapped, they were often identical. The printing was finished by 
October 1722. The two old friends, Coste and De Moivre, seem to have reconciled 
fairly quickly. When tensions were building in August 1721 over the corrections to 
the Opticks, Coste visited De Moivre at his lodgings. Coste came out apparently 
satisfied with the way in which Varignon would handle the corrections and promised 
to acknowledge De Moivre’s work in the book’s preface. When the book appeared, 
the preface did indeed contain high praise for De Moivre’s contributions.67 

There is story about Newton late in life, which is probably apocryphal, but 
which shows De Moivre’s status as a mathematician and his close relationship to 
Newton. 

It is reported that, during the last ten or twelve years of Newton’s life, when any 
person came to ask him for an explanation of any part of his works, he used to 
say: “Go to Mr De Moivre; he knows all these things better than I do.”68

When Newton died in 1727, his nephew by marriage John Conduitt decided to 
write a biography of him. Conduitt solicited information from several of Newton’s 
friends and colleagues. De Moivre came forward with a number of details of Newton’s 
early life and work, events that occurred well before De Moivre and Newton met.69 
The information must have accumulated in De Moivre’s memory from the several 
evenings over the years they had spent together at Slaughter’s Coffeehouse.
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Throughout all the Newtonian distractions of the calculus dispute and the demands 
of his teaching, De Moivre continued to work on his own mathematical research that 
was carried out along four broad, and sometimes interrelated, lines. His results in 
celestial mechanics, which began with his work on centripetal forces in 1705, saw 
some further development. Although the publication, finally, of Newton’s early work 
on quadrature was far-reaching with seemingly little left to do in the area, De Moivre 
carried out some additional minor work on the quadrature of a particular curve. With 
hints of it in De Mensura Sortis and certainly with his early work anticipating Taylor 
series expansions that he had communicated to Johann Bernoulli in 1708, he began 
to expand his interests in the area of infinite series. And, of course, his interests in 
the theory of probability developed more deeply. 

The paper on centripetal forces mentioned to Bernoulli by De Moivre in 
mid-1714 was not presented to the Royal Society until December 20, 1716.1 It was 
printed in 1717 in Philosophical Transactions.2 Two general theorems on central 
forces were set out in the paper: his own from 1705 and one due to Newton from the 
Principia which states that the centripetal force exerted on a body travelling along 
a curve that is a conic section is inversely proportional to the square of the distance 
of the body to the focal point of the conic section. From these two general theorems 
De Moivre determined results on the velocities of bodies along their trajectories in 
conic sections. 

One result he obtained harks back to 1705 when it was probably Thomas 
Sprat, Bishop of Rochester, who asked De Moivre a question about comets. De 
Moivre obtained for the bishop the ratio of the velocity of a comet (in a parabolic 
orbit shown as a dashed line in the diagram) to the velocity of Earth (in a circular 
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orbit in the diagram) both travelling about the sun, which is the focal point of the 
two orbits.3 Corollary 4 in the 1717 paper finds the ratio of the velocities of any two 
bodies travelling along conic sections with the same focal points. 

The next year, on March 20, 1718, De Moivre presented another paper to the 
Royal Society on celestial mechanics. A description of the paper’s contents is:

A paper of Mr. Moivre’s concerning the maxima that occurs in planetary mo-
tions as in what points the planets recede swiftest from the sun and where their 
real and angular velocities alter swiftness &c was produced and ordered to be 
printed.4

The paper appears in Philosophical Transactions for 1719.5 
The two papers on celestial mechanics are the foundation of the last book, 

Book VIII, of De Moivre’s Miscellanea Analytica published in 1730. Book VIII 
is devoted to centripetal forces; it contains some repetition of material in the 1717 
paper, followed by a general treatment of maxima and minima in the motions of 
celestial bodies, more general than what appears in the 1719 paper. De Moivre’s 
work on centripetal forces had some impact. The results became part of John Keill’s 
lectures on astronomy at Oxford. The lectures were published in 1721.6

During this time period, De Moivre also completed some minor work on 
curves. The published work has the appearance of an extract of correspondence with 
someone else, unnamed.7 There is no record of its presentation before a meeting of 
the Royal Society. Published in 1715, what De Moivre did was to study the curve 
given by the equation y 3 + y2x + yx2 + x3 = axy, where a is a constant. This is 
related to the folium curve proposed by René Descartes more than seventy-five years 
earlier. The folium curve is defined by the equation y3 + x3 = 3axy, again where a is a 
constant. An example of De Moivre’s curve is shown in the diagram. The curve gets 
its name, folium or foliate, from the leaf shape evident from the enclosed area of the 
curve. As noted by De Moivre, his curve resembles curve number 40 in Newton’s 
catalog of third order curves. These types of curves, like those of De Moivre and 

A conflation of De Moivre’s diagrams from his note to Thomas Sprat in 1705.
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Descartes, have terms in x and y such that in any one term the sum of the powers, 
i.e., u + v in the product y u x v , is less than or equal to three. The catalog is part 
of Newton’s manuscript on third order curves, Enumeratio linearum tertii ordinis, 
which was published in both the Opticks in 1704 and Analysis per Quantitatum 
Series, Fluxiones, ac Differentias in 1711.8 Among other properties, De Moivre was 
able to obtain the area within the enclosed part of the curve shown in the diagram.

Pierre Rémond de Montmort visited England in 1715 to meet with other 
mathematicians and scientists, and to observe the solar eclipse that occurred 
on May 3, 1715. Montmort watched the solar eclipse with Edmond Halley and 
some others.9 At other times during his trip, he met with both Brook Taylor and 
Abraham De Moivre. De Moivre says that he acted as Montmort’s interpreter and 
guide at times.10 The same year that Montmort travelled to London, Brook Taylor’s 
Methodus Incrementorum appeared in print. In the book, Taylor applied his newly 
developed methods to a variety of problems including the valuations of sums of 
infinite arithmetical series. An example of such a problem would be finding the 
numerical value of

1 1 1 1 .
1 2 3 2 3 4 3 4 5 4 5 6

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



Montmort became interested in infinite series problems, probably as a result of 
his trip to England. After his return to France, he wrote Taylor about five or six 

De Moivre’s curve with a = 1.
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letters over the years 1715 to 1717 that contain his solutions to some infinite series 
problems.11 Many of the problems he considered and wrote about in French to Taylor 
appear in a paper in Philosophical Transactions in Latin.12 The paper is long and 
contains several lemmas and propositions that are required to obtain the appropriate 
series sums. 

In October 1718 De Moivre received a letter, which is no longer extant, from 
Brook Taylor about problems in infinite series and how they could or could not be 
solved using the techniques in Methodus Incrementorum. From De Moivre’s reply, 
it is obvious that he had read Montmort’s paper in Philosophical Transactions. In 
his reply, De Moivre outlined a method of summing infinite series that uses a clever 
mathematical trick rather than Taylor’s methods in the Methodus or Montmort’s more 
complicated approach.13 De Moivre did admit in the letter that, despite the power of his 
own approach, Taylor’s methods were more generally applicable than his.

To illustrate De Moivre’s trick, consider the infinite series

2 3 4
1

2 3 4 5
x x x xz = + + + + 

where x is some number. According to De Moivre, it does not matter whether the series 
under consideration converges or not. De Moivre uses the word summable instead of 
convergent. Take the series in x, and multiply the left side of the equation by (x – 1) 2; 
then the right side by its equivalent expression, x 2 – 2x + 1. After collecting terms in 
powers of x on the right side of the equation, the whole equation can be expressed as

2 2 3 43 2 2 2( 1) 1
2 1 2 3 2 3 4 3 4 5

x z x x x x− = − + + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅



On setting x = 1 the equation becomes

1 2 2 20
2 1 2 3 2 3 4 3 4 5

= − + + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅



so that the original infinite series

1 1 1 1
1 2 3 2 3 4 3 4 5 4 5 6

+ + + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅



sums to 1/4. De Moivre had said that the method would work even if the original 
series in x does not converge, which in this case it does not. The series in x is the 
expansion of 1 – ln(1 – x), which does not converge at x = 1. A little calculation 

,

.
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shows that the numerical series does converge to 1/4, albeit slowly. De Moivre’s 
general method, illustrated here only by this simple numerical example, appears 
thirteen years later in Book VI on series in De Moivre’s Miscellanea Analytica.

After his general exposition that included this simple numerical example, De 
Moivre concluded his letter to Taylor by writing, “Do me ye favour not to mention 
anything of this Method to Mr Monmort. You may, if you think, to let him know that 
I can do it easily.” These two sentences put in a nutshell how De Moivre approached 
Montmort between 1715 and Montmort’s death in 1719. It also shows that despite 
Taylor’s apparent closeness to Montmort, De Moivre trusted Taylor not to reveal any 
of De Moivre’s new mathematical discoveries to Montmort.

Up to and including the time of Montmort’s visit to London, De Moivre has 
described his relationship with Montmort. De Moivre claimed to have put aside 
what was to him the offending letter from Montmort to Nicolaus Bernoulli that 
appeared in the second edition of Essay d’analyse. After Montmort’s book appeared, 
De Moivre began corresponding with him about problems concerning summation 
of series.14 After Montmort’s visit, De Moivre claimed that they were both too busy 
to correspond with one another. De Moivre was preparing his Doctrine of Chances 
for publication; Montmort was too busy working on his research in infinite series 
that appears in the Philosophical Transactions. This does not ring true. From 1715 
until his death, Montmort carried on a substantial correspondence with Brook Taylor 
as well as with both Johann and Nicolaus Bernoulli. After meeting face-to-face in 
London, for some reason De Moivre must have developed a dislike for Montmort 
and stopped communicating with him after Montmort returned to France.

De Moivre’s researches into probability also continued. He received 
encouragement in his work after receiving a visitor from France in 1713. Soon after 
the signing of the Treaty of Utrecht that ended the War of the Spanish Succession, 
André-François Deslandes arrived in London in the entourage of the French 
ambassador Louis de Villequier, duc d’Aumont. The year before in France, Deslandes 
obtained an entry-level mathematics position (élève géomètre) at the Académie 
royale des sciences in Paris. While in London, Deslandes dined at Newton’s home 
with Halley, De Moivre, and Craig as additional guests.15 After meeting De Moivre, 
Deslandes wrote the following poem in his honor.16

To Abraham De Moivre
Eminent teacher of mathematics

O new Euclid, to which noble man has bounteous Nature revealed her mysteri-
ous secrets? 
Come on! Break off your delay and search your eloquent mind. 
Why do you wish to be concealed? Why do you cover up your learning? 
It is wrong and a crime to have knowledge for yourself alone; 
dare to have knowledge for others,17 
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and see to it that a work worthy of your name soon shines 
and that it is polished with the art of a learned mind. 
You, skilful and eager, a clear-sighted lover of truth, 
have illuminated the difficult paths of hidden places and the secret of Algebra.
In your wisdom you unite the austere Archimedes with the very tender Catullus. 
Therefore, whether you undertake friendly lessons with agreeable poems of nature, 
or majestic and sacred charms of wisdom: 
we will look upon you with wonder and, joyously, 
we shall celebrate your talents in golden songs.

The line that includes illuminating “the difficult paths of hidden places and the secret 
of Algebra” is probably a reference to the recently published De Mensura Sortis. De 
Moivre may have been working on new results in probability already and then talked 
about his work to Deslandes. Or, he may have been speculating about what he was 
going to do next in probability—hence the admonishment not to keep knowledge 
to himself. Coupling the “austere Archimedes” with the “very tender Catallus” 
is probably a reference to De Moivre’s mathematical abilities combined with his 
interests in classical French literature, especially the works of Rabelais and Molière.

After Nicolaus Bernoulli visited London in 1712, he kept up his contact with 
De Moivre through correspondence. When his uncle Jacob’s posthumous book18 
Ars Conjectandi finally saw print in 1713 (Jacob Bernoulli died in 1705), Nicolaus 
intended to send copies of it to De Moivre, as well as to Newton and Halley.19 Nicolaus 
had written a forward to the Ars Conjectandi in which he noted that his uncle’s work 
on the economic and political applications of probability was incomplete. Jacob had 
been in poor health and had died before completing his manuscript on that material. 
In the forward, Nicolaus encouraged De Moivre and Montmort to take up where his 
uncle had left off in these two areas of application. By the time Nicolaus’s letter with 
the offer of sending the book reached De Moivre (it was sent December 30, 1713), 
he had already bought a copy of the book among four that had recently reached the 
booksellers’ stalls in London. When De Moivre wrote back on March 3, 1714, he 
thanked Bernoulli for his mention in the forward. He said that he would like to work 
in the suggested areas of application but that his students took up all his time.20 

Bernoulli’s 1713 letter to De Moivre contains his general solution to 
Waldegrave’s problem, or the problem of the pool; he also sent a copy of his solution 
to William Burnet.21 De Moivre had solved the problem for three players in De 
Mensura Sortis, but his generalization to more than three players, as pointed out in 
Montmort’s September 5, 1712, letter to Nicolaus Bernoulli, was impracticable.22 
De Moivre liked Bernoulli’s new solution and presented his paper on it to a meeting 
of the Royal Society on February 11, 1714.23 Later that same meeting, and probably 
at De Moivre’s instigation, Newton proposed Nicolaus Bernoulli as a candidate for 
fellowship in the Royal Society; he was elected a month later on March 11. Bernoulli’s 

© 2011 by Taylor & Francis Group, LLC



107

 Miscellanea Mathematica    

general solution to Waldegrave’s problem appears in the issue of Philosophical 
Transactions for last quarter of 1714.24 The article is followed immediately by 
an article containing De Moivre’s solution to the problem for four players using 
his original approach (which Montmort had claimed to be impracticable) and an 
indication of how to proceed for six players.25 Anders Hald, confirming Montmort’s 
original assessment, has commented that De Moivre’s “method is theoretically 
simple but in practice very cumbersome for more than three players.”26

Bernoulli wrote again to De Moivre on August 4, 1714. De Moivre had told 
Bernoulli that all probability problems in games of chance could be solved using 
combinations or by series expansions. In the letter, Bernoulli challenged this claim 
by setting the following problem for De Moivre to solve. Two players, A and B, 
respectively, put a and b tokens or units of money into a pot. Then they play with 
a four-sided die with faces marked 0, 1, 2, and 3. With one twist to the game, the 
player throwing the die takes from the pot the number of tokens corresponding the 
value on the face that shows. The twist is that when player A throws a 0, he puts one 
token into the pot. If he throws more than 0 and the number of tokens in the pot is 
less than the number thrown on the die, then A puts the difference into the pot. The 
problem is to find the initial numbers of tokens a and b that must be put into the pot 
so that the two players, A and B, have equal chances to win the pot. De Moivre did 
not respond to the challenge and, furthermore, never wrote to Bernoulli again.27

Essentially, the same thing happened to Montmort. When Montmort was in 
London, he met De Moivre. Montmort’s impression from their meeting was that his 
relationship with De Moivre was very friendly. After returning to France, he tried 
to begin a correspondence with De Moivre. In 1716, Montmort heard from Newton 
that De Moivre was planning a new edition of his work on probability.28 The new 
book would contain “considerable improvements.” Upon hearing that De Moivre 
was planning this time to write in English, he wrote to him expressing the hope 
that the work would be in Latin, feeling that Latin would give the work a wider 
readership than English. At the same time, Montmort sent De Moivre ten theorems 
that he felt could be included in his new publication. Even after receiving two letters 
from Montmort, De Moivre did not reply. Concerned about the status of his ten 
theorems, Montmort wrote to Brook Taylor in April 1716, asking Taylor to look 
into the matter discreetly.29 Three months later in July, Montmort wrote again to 
Taylor saying he had received nothing from De Moivre for the past eight months 
and asking about the publication status of De Moivre’s book on probability.30 
Montmort tried sporadically to engage De Moivre. He wrote to Brook Taylor on 
October 17, 1717; still under the Julian calendar, Taylor wrote at the top of the 
letter that it was received on October 16. The postscript to the letter contains a 
challenge problem set by Montmort for De Moivre to consider; Montmort told 
Taylor he had already solved the problem.31 Taylor passed the problem on to De 
Moivre. Replying on November 7, 1717, to one of Taylor’s earlier letters to him, 
De Moivre said that, “I have not yet undertaken ye Problem of Mr Montmort.…”32 
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De Moivre told Taylor that the problem was similar to analyzing a game that is now 
known as peg solitaire, a board game that was fashionable in France in the court of 
Louis XIV. He gave some ideas of how to approach the problem but went no further. 
In the same letter, De Moivre told Taylor that he was very busy working on his book. 

When Johann Bernoulli first heard from Montmort in 1716 of De Moivre’s plans 
to write his book on probability, he told Montmort that he hoped De Moivre would 
send him a copy of it.33 Two years later, in 1718, when he heard that the book was in 
English, he wrote to Montmort asking why the book was written in that language. 
Had De Moivre forgotten his French or Latin, Bernoulli wondered? He now saw De 
Moivre as totally anglicized; and if De Moivre did not send him a copy of the book, he 
would take it as a sign that he had fallen totally from De Moivre’s favor.34

De Moivre stopped writing to both Bernoullis by mid-1714 and seems not to 
have written to Montmort after Montmort’s 1715 trip to London. There are several 
possible reasons for this. Although it did not stop him from helping Newton, Keill, 
Taylor, and perhaps other British mathematicians, he was busy making his living 
at tutoring. His self-imposed break with the Bernoullis might be connected to the 
calculus dispute. He may have been offended by Montmort’s apparent condescending 
attitude toward him and his work. In addition, Nicolaus Bernoulli and Montmort were 
both in competition with him in terms of developing probability theory. We have 
already seen De Moivre asking Taylor not to reveal his work on series to Montmort. 
There are other possible reasons beyond professional relationships. De Moivre had 
written to Johann Bernoulli in 1714 that he had been suffering from headaches for 
several months. Even Montmort had heard, perhaps from one of the Bernoullis, that 
De Moivre had been sick and expressed his concern to Taylor in a letter of January 
2, 1715.35 De Moivre had been ill before this time. In his 1705 note to Thomas Sprat, 
he apologized for not writing to Sprat sooner, but he had been “a little indisposed.” 
Three years before that, he had suffered from a bout of smallpox. In a letter to Taylor 
dated September 29, 1718, there are also broad hints of De Moivre’s health problems 
as well as allusions to another possible reason. De Moivre wrote:36

I am sorry to hear that you are obliged to take ye same caution as I do in respect 
to health, to forbear ye reading of anything that requires too much application of 
thought. However I dont know but the in ye main, t’is best to make Mathematics 
a subject of Diversion, and not to be obstinately bent in unfolding ye Train of 
Thoughts of another Man, to which he has been led by degrees, and very often 
by Chance.

Perhaps he was just tired of deciphering other people’s work. Whatever sickness he 
suffered from, De Moivre survived another thirty-six years.

There was another instance at this time in which De Moivre held back new 
mathematical developments from Montmort, and from several other mathematicians 
as well. In the third week of March 1718, De Moivre delivered a packet to his friend 
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Isaac Newton, possibly over coffee and conversation at Slaughter’s, possibly at 
Newton’s house nearby, or possibly just before a Royal Society meeting. As the 
first order of business at the meeting of the Royal Society on March 22, 1718, the 
president, Newton 

produced a paper sealed up with three seals intitled Mr De Moivres Demonstra-
tion of Some Theorems in his Book of Chances and the President informed the 
Society that Mr De Moivre desired the Society would make an entry in their 
minutes that such a paper was left in his custody.37

A week later, on March 29, an advertisement was placed in the newspapers informing 
subscribers to the book that they could pick up their copy of Doctrine of Chances 
beginning on Monday, April 7, at Slaughter’s Coffeehouse between 4:00 and 8:00 
p.m.38 Whatever was in the Newton’s possession, it must have been important to De 
Moivre—sealed with three seals, no less, when one was the norm on a letter.
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The packet in Newton’s possession contained the outline of a new proof to the 
solution to the duration of play problem. When all the details are considered, it is a 
long and difficult proof that requires the development of a new mathematical theory 
of recurring series to get things started. It ends with some trigonometric arguments 
such that the numerical solution to the duration of play problem can be found easily 
using tables of sines or cosines. The trigonometric part of the solution harks back to 
his 1707 paper, with the explanation of it delayed until 1722, in which trigonometric 
methods are used to find the roots of a certain polynomial equation.1

De Moivre’s solution is a direct response to comments from Montmort in 
the second edition of his Essay d’analyse, published in 1713.2 There, Montmort 
published his correspondence with Nicolaus Bernoulli on the duration of play 
problem among others. Initially, Montmort obtained the solution to the duration of 
play problem when the two players have the same skill or the same chance to win a 
unit of money from the other player in any game. Bernoulli was able to get a very 
general solution for players with unequal skills. Montmort’s comment was that his 
and Bernoulli’s solutions were simpler and easier to calculate than the algorithm 
De Moivre used in De Mensura Sortis. With general accusations by Montmort of 
plagiarism on De Moivre’s part in his De Mensura Sortis, De Moivre undoubtedly 
wanted this new proof to be considered entirely of his own invention. When he 
announced the new solution to the duration of play problem in Doctrine of Chances, 
he wrote in the preface:

I hope the Reader will excuse my not giving the Demonstrations of some few 
things relating to this Subject, especially … the Method of Approximation 
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contained in page 149 and 150; whereby the Duration of Play is easily 
determined with the help of a Table of Natural Sines: Those Demonstrations 
are omitted purposely to given an occasion to the Reader to exercise his own 
Ingenuity. In the mean Time, I have deposited them with the Royal Society, in 
order to be Published when it shall be thought Requisite.3

In terms of facility of calculation, De Moivre’s new method was much simpler than 
anything that appeared in Essay d’analyse on this subject. The requisite time, if 
De Moivre’s actions are followed closely, was an interestingly convenient one. De 
Moivre had the packet opened before the Royal Society on May 5, 1720.4 Montmort 
died about five months earlier on October 7, 1719, and thus was unable to lay claim 
to any part of De Moivre’s new proof. The gap between Montmort’s death and the 
opening of the packet gave De Moivre time to complete a manuscript that put flesh 
on the bones that were in the packet.

De Moivre brought to the meeting of May 5 a manuscript that enlarged on 
the material in the packet, which had been in Newton’s possession since March 22, 
1718.5 The difference between the two is described in the minutes of the meeting: 
“The Paper containing the bare rules which are explained and proved at large in 
the Manuscript.” De Moivre asked that the secretary of the Royal Society be given 
the two items in order to have him certify that the substance of the manuscript and 
the packet were the same. The secretary was Halley. He gave the material to two 
reviewers who reported back to him. The reports are still kept in the Royal Society’s 
archives. 

It is useful to quote in its entirety the first reviewer’s report and to quote a short 
paragraph from the second reviewer.6 Here is what the first reviewer writes:

Having by order of the Society perused & compared Mr De Moivres papers 
produced before the Society the 5th of May last, I find that the grounds & 
principles upon wch the Propositions contained in the manuscript wch he then 
produced, are built, are wholly contained in the papers wch he deliver’d in to the 
Presidents custody on the 22 of May 1718 & which had remaind seald up in his 
custody until the said 5th of May last.

The propositions in these papers seem to be the principles from whence 
he drew some other propositions printed in his Book of Chances without 
demonstration.

And they contain a Method of summing up a various number of Infinite 
progressions wch are not to be sum’d directly by any rules yet laid down by 
Writers on these subjects.

Most of the Propositions seem to derived from this Observation. That If 
any quantity be divided by a Trinomial quantity & be converted into a series of 
an Infinite number of terms, each term in this series will be related to the two 
terms which immediately precede it, that is will always be a certain multiple 
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of one added to a certain multiple of the other. So that every term will always 
be necessarily determin’d by having the two terms wch immediately precede it.

Again if a quantity be divided by a Quadrinomial the several terms in this 
series will in like manner necessarily depend upon the three preceding ones. A 
quinquinomial on the 4 preceding & so on ad infinitum.

This being laid down. He solves this Problem.
A series of an infinite number of terms being given if each term be related 

to any number of preceding ones in the manner before expresst & the relation be 
known .. that is what the several multiples of the each several preceding terms 
are to make up any given term he then finds the Quantity from whence this series 
is generated, or which is the same thing he finds a certain number of Geometrical 
progressions the sum of all which are equal to the series first propos’d & vice 
versa.

Prob. 1  Two 3, 4 or more Geometrical progressions being given to 
find the relation of the several terms in a series consisting of the sum of each 
corresponding term of the Geometrical progression.

Prob. 2  To divide a series the relation of whose terms is given into several 
Geometrical Progressions the sum of whose terms make the series proposed.

Prob. 3  Two series of Terms of a given relation to the two preceding 
being given to find the relation of terms in a series form from the multiplication 
of the respective terms of the given series. See pag. 134 & pag. 154.

Prob. 4  The Division of the Circle applied to the Prob. for determining 
the Number of Games in which one of two gamesters will lose a certain number 
of Stakes.

Prob. 5  A series whose terms are related in a certain manner being given 
to find the sum of the terms taken at any equal intervals

Note  A series arising from the Division of any Multinomial will have its 
terms with a given relation.

The second reviewer was quite terse. His short report does contain a paragraph 
that highlights how much savings in time could be gained from De Moivre’s solution 
over those of Montmort and Bernoulli.

By help of this Method, he is able to solve some very difficult Problems in a 
very short time ye solution of which he conceives to be impracticable by any 
other Method, as an Instance of which he Proposes this Problem, A & B playing 
together till 45 stakes are won or lost of either side to find ye Odds of ye Play end-
ing in 1597 Games, and which by any other Method would require ye addition 
of near 800 terms of a series.

In his Doctrine of Chances, De Moivre used as an example only four stakes, or units 
of capital, with play ending in forty games.7
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The manuscript was published in a 1722 issue of Philosophical Transactions.8 
The delay in publication may have been due to the change in the editorship of Philo-
sophical Transactions. Halley handled the editorial duties until 1719, at which time 
they passed to the physician James Jurin, who also succeeded Halley in the position 
of secretary in 1721.

What the first reviewer wrote prior to his list of five problems is a brief 
reference to De Moivre’s new theory of recurring series. The motivation for the 
development of recurring series is related to the recursive nature in which the 
duration of play problem can be treated. At the conclusion of any game between 
the two players A and B, one of three things happens: A is ruined or exhausts his 
capital, and the series ends; B is ruined and the series ends; or play continues to the 
next game. In the current game, A is ruined if he has only one unit of capital left 
from the previous game and loses the current game. Consequently, A’s probability 
of ruin at, say, the nth game is the probability that A loses the current game times 
the probability that the series has continued to the (n – 1)th game while leaving 
A with one unit of capital. A similar relationship holds for B. The sum of the two 
ruin probabilities for A and B at the nth game is the probability that the duration 
of play is exactly n games. The sum of the ruin probabilities for the first n games 
is the probability that the duration of play is at most n games.9 This sum has the 
form of a recurring series. 

Rather than launching into a discussion of recurring series at this point, let 
us focus instead on the fourth problem in the first reviewer’s list dealing with the 
division of the circle. For the purpose of illustration, De Moivre assumed in his 
1722 paper that players A and B each begin with capital of 10 units. He then takes a 
circle of radius 1 and divides the arc, defined by half the circumference of the circle, 
into 10 arcs of equal length. This is shown here with the diagram that accompan-
ies De Moivre’s 1722 paper. In the diagram, the lengths of the five (= 10/2) lines 
QF, OE, MD, KC, and HB are sin(π/10), sin(3π/10), sin(5π/10), sin(7π/10), and 
sin(9π/10), respectively. The numerical solution to the duration of play problem in this 
case is a function of the values of cos(π/10), cos(3π/10), cos(5π/10), cos(7π/10), 
and cos(9π/10).10 This is reminiscent of De Moivre’s work in 1707 in which he 
found the roots of a polynomial by dividing an arc of a circle into equal parts that 
correspond to the degree of the polynomial, an odd number. De Moivre’s semicircle 
shows up in an allegorical engraving in Doctrine of Chances.

In order to understand De Moivre’s allegorical engraving and what it says 
about Montmort,11 it is necessary to understand another allegorical engraving, this 
one appearing in both editions of Montmort’s Essay d’analyse. In the preface to 
the Essay d’analyse, Montmort states that one of his purposes in writing the book 
is to combat superstition. Games of chance are not subject to fickle fortune, but in-
stead the outcomes follow mathematical laws which he demonstrated throughout the 
book. This idea is illustrated in the engraving shown here that appears at the head of 
the main body of the book in the second edition. Montmort commissioned Sébas-
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tien Le Clerc, one of France’s leading engravers, to execute the work. Le Clerc was 
skilled in mathematics and had illustrated many scientific works. 

The general scene shows a number of people playing at various games in a 
large room, probably at one in the royal chateaux of Louis XIV. The message is 
hidden in what is happening in the foreground of the scene. On the left is Montmort 
with Minerva, the goddess of wisdom. Minerva is identified by her helmet and 
the classical robes she is wearing. Montmort is identified by the monkey at the 
chessboard. The monkey’s left hand is pointing to a bishop’s initial position on the 
board. The position of the right hand shows a knight’s move. Montmort, as Pierre 
Rémond, had been a canon in the Catholic Church, then left his position to get 
married and purchased an estate to become Sieur de Montmort—an initial canon’s 
position followed by a knight’s move into the laity. On the table where Minerva is 
seated are mathematical instruments, showing her wisdom in mathematics. Despite 

De Moivre’s semicircle.

The engravings at the beginning of Montmort’s Essay d’analyse.
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the goddess’s wisdom in the subject, Montmort stands in a dominant position over 
her and she is copying what Montmort has written on the paper he is holding for 
her to see. On the paper are some mathematical jottings that symbolize Montmort’s 
mathematical discoveries related to chance. On the right in the foreground the god 
Mercury is seated at a table with a man and a woman. The dice have just been thrown 
and the man has won. Mercury, the giver of good luck and presider over dice games, 
is taking credit for the man’s good fortune. His perceived hold over the outcomes of 
dice games is soon to end because of Montmort’s new work. Mercury is seated at the 
table rather than standing in a dominant position over the players. Similar to what is 
written in the preface that follows the engraving, the message is that chance outcomes 
are subject to mathematical laws, not to the whims of the gods. From Montmort’s 
position as he appears in the engraving, the additional message in the engraving is that 
Montmort is responsible for the discovery of these mathematical laws.

As Doctrine of Chances was going to press, De Moivre wanted an engraving of 
his own to grace his new book. With the help of Brook Taylor, De Moivre commissioned 
the painter and etcher Joseph Goupy to design the engraving. Taylor knew Goupy well; 
he had studied drawing with him.12 Once designed, the actual work of engraving was car-
ried out by Bernard Baron, a young, up and coming engraver recently arrived in London 
from Paris. Taylor was involved in the design process with Goupy. Probably near the 
middle of September 1717, De Moivre received a print from Taylor that might serve as 
a frontispiece for the book. De Moivre replied to Taylor on September 28, thanking him 
for the print and expressing his pleasure in it.13 Then he laid out what he thought should 
be in the engraving: Minerva and Mercury should be present with perhaps Minerva 
showing Mercury a piece of paper with something written on it related to probability 
theory, or the paper could be placed on a table with several people standing around it, and 
with one of the people pointing to it and instructing the others in probability theory. On 
the table should be a dice-box and dice “to signifie that ye truth of the Calculation may be 
confirmed by experiment.” De Moivre suggested that any or all of three things could be 
on the paper. The first two were simple mathematical formulae; one was an expression 
related to his Poisson approximation to the binomial and the other was an infinite series 
expressing the solution to the problem of the pool when there are four players in the pool. 
These were associated with probability problems to which De Moivre could definitely 
claim originality, both in the statement and in the solution. And they were problems in 
which he took some pride. The third thing came with a detailed explanation. It was a 

semicircle divided into seven or more equal parts with perpendiculars from every 
point of Division upon ye Diameter alternately markt with black and prick’t lines 
thus
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this figure alluding to that part of my Book wherein I shew how ye Problem of 
ye duration of Play may be solved by ye versed sines of those arcs, in some cases 
taking ye versed sines which correspond to ye Black lines, in others taking ye 
versed sines which correspond to ye prickt ones, which discovery I take to be 
superiour to any thing which is in my Book, I conceal my Demonstration, and 
tho there are a great many things in my Book which may lead to it, yet I fancy 
that Mr de Montmort and his friend at Paris [Waldegrave] as well as young 
Bernoully will not easily find it.

Minerva, but not Mercury, made it into the final version of the engraving. The 
semicircle, but not the formulae, did as well. The table surrounded by people, 
with the dice and dice-box on the table, were also featured. The eventual form 
of De Moivre’s allegorical engraving shows Minerva, on the left of the picture, 
pointing to a piece of paper with De Moivre’s semicircle on it.14 The paper 
actually shows the whole circle, which Matthew Maty, De Moivre’s friend and 
first biographer, interpreted as De Moivre’s diagram superimposed on a wheel 
of fortune.15 The piece of paper is held by Fortuna, the goddess of fortune. She 
is identified by the wheel of fortune behind her and the cornucopia at her feet. 
With Minerva standing in a dominant position over Fortuna, the interpretation is 
that De Moivre’s mathematical results dominate fickle fortune or fate. The paper 
under the cornucopia has some illegible writing on it. It may represent some 
previous work that has borne fruit, perhaps referring to Huygens’s original results 
in De ratiociniis. The dice and dice-box are on a table as De Moivre requested. 
Added to the scene are four men standing around the table. The clean-shaven one 
is De Moivre. Comparing this engraving to Montmort’s, De Moivre has replaced 
Mercury at the gaming table and is instructing the three other men on the theory 
of probability. 

The scene on the right of the engraving is a gathering of mortals. With a 
subtle swipe at Montmort, De Moivre expresses through the engraving that he 
does not have the effrontery to speak directly to the gods and instruct them. The 
other men at the table, all dressed in classical robes, are ancient philosophers and 
mathematicians receiving instruction from the modern mathematician. Eighteen 
years after the publication of Doctrine of Chances, in a book review for the Royal 
Society16 of Martin Kahle’s Elementa Logicae Probabilium,17 De Moivre made 
explicit the connection between the ancient and eighteenth century approaches to 
probability:

This doctrine was first introduced by Huygens in the year 1657, in a little Treatise 
intitled: Ratiocinia de Ludo Aleae: and has since been followed by James 
Bernoulli, Monmort, Nicholas Bernoulli, myself and perhaps others. For altho’ 
the ancients had the same Idea of Probability as we have; and they mentioned 
several degrees of it, as appears in the words Probabile and Probability often 
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used by Cicero & other writers, yet the Author [Kahle] observes, that the distinct 
measure of it was never assigned till the times above mentioned.

Clearly, in the engraving De Moivre is bringing the ancients up-to-date in modern 
probability.

The middle part of the engraving has additional swipes at Montmort. Two 
naked boys are sitting with a pair of dice lying at their feet. A short distance away are 
some discarded cards and further yet is a chessboard of size 4 × 6 squares rather than 
the standard 8 × 8 as shown in Montmort’s engraving. One of the boys is reading 
a book, perhaps Doctrine of Chances, to the other explaining De Moivre’s newly 
discovered results in probability. The discarded chessboard, being incomplete, is an 
indication that the work in the Essay d’analyse is also incomplete.

In the text of Doctrine of Chances, De Moivre strictly adheres to the rules of 
the Republic of Letters. He is polite to Montmort and praises his work in various 
places. The engraving provides no actual words that are critical of Montmort, but the 
interpretation of the figures in it provide a direct response to Montmort’s scathing 
attack on De Moivre’s work that appeared in Essay d’analyse. Montmort’s attack 
broke the rules of the Republic of Letters; De Moivre’s response did not. In words, 
all is politeness from De Moivre. In pictures, De Moivre essentially says that his 
work in probability is better than Montmort’s. He had also done a better job at 
banishing Fortuna from games of chance than Montmort had.

For some time, as early as 1716, Montmort wanted to see a copy of De Moivre’s 
book. As time went on, he became impatient with the delay. He wrote to Brook Taylor 

The engravings at the beginning of De Moivre’s Doctrine of Chances.
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on December 17, 1717, expressing his impatience and wrote again on January 25, 
1718, with a similar sentiment. In the latter letter, he asked Taylor to send him a copy 
as soon as it was in print. He reiterated this desire in a letter of February 29, 1718.18  
By June 1718, Montmort had a copy of the book. He wrote to Johann Bernoulli 
that De Moivre had lifted material from both editions of Essay d’analyse including 
everything Montmort had written on combinations. He told Bernoulli that it had 
angered him for about a day.19 Bernoulli was sympathetic. He was still smarting from 
the accusations made against him by John Keill and believed that other Englishmen 
had plagiarized his work. Now seeing De Moivre as completely anglicized, since De 
Moivre had written his book in English, he expressed to Montmort the opinion that 
it was now natural for De Moivre to plagiarize as all the English did it, while at the 
same time crying thief.20

Over the next few months Montmort read Doctrine of Chances very carefully. 
In February 1719, he sent an eight-page letter to Brook Taylor with a list of thirty-
three criticisms.21 He also sent a copy of the letter to Johann Bernoulli.22 Sprinkled 
throughout the list are comments that led Montmort to the same charges as before 
with De Mensura Sortis: there was nothing new in much of the book; Montmort had 
already obtained many of the results; and De Moivre had used Montmort’s results 
without crediting him. Again, Bernoulli was sympathetic but could not comment on 
how bad the plagiarism was since he had not read the book. 

After reading Montmort’s lengthy critique, Brook Taylor had a few comments 
of his own. He had read De Moivre’s book. It is uncertain if his comments were 
ever sent to Montmort; they may have been sent to De Moivre. In St. John’s College 
Library where Taylor’s correspondence is kept, Montmort’s criticisms of De 
Moivre are placed in Montmort’s correspondence with Brook Taylor, while Taylor’s 
comments are placed in De Moivre’s correspondence with Taylor. One of Taylor’s 
comments goes directly to the plagiarism issue and, at the same time, touches briefly 
on what might or might not be new in Doctrine of Chances. Taylor writes:

It is very true that most of the things in Mr Moivres Book are to be found (at least 
with some little difference, either in the manner of stating the Problems, or in the 
Method of Solution,) in Mr Montmorts. This would have been an unpardonable 
Theft, if Mr Moivre had industriously avoided mentioning of Mr Montmorts 
Book, or had endeavour’d to conceal his own having read it: but as he had done 
the contrary, has own’d himself to have read Mr Montmorts Book with care, has 
recommended it with encomiums, has particularly taken pains to set forth the 
excellency of some places he thought most remarkable in it; this ought rather to 
be esteem’d as a mark of the value that Mr Moivre had for that Book, and of the 
respect he had for its Author that he would so far copy it, than as any disrespect, 
or unfair dealing. Whoever reads Mr Moivres Book will naturally be directed 
and be made desirous to read Mr Montmorts, and there he will see how very 
much it is probable Mr Moivre may have learnt from him.23
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De Moivre’s trigonometric solution to the problem of the duration of play was 
certainly new. The question then is, What else was new in Doctrine of Chances? 
And a related question is, How much further did De Moivre take the mathematics of 
chance beyond what he had already done in De Mensura Sortis and what Montmort 
and Bernoulli had obtained in the second edition of Essay d’analyse?

In terms of the old material in De Mensura Sortis, with one exception De 
Moivre reproduced all the results in his Doctrine of Chances. Often the Latin 
statement of the problem from De Mensura Sortis as rendered in Doctrine of 
Chances is slightly different, and clearer, than a word-by-word translation from 
Latin to English. Sometimes De Moivre shortened or simplified the proof to a 
problem in De Mensura Sortis, especially the problems related to the duration of 
play. In other problems there is an expansion of material; more examples are given 
and more remarks are made about the problem in question. The big change to the 
De Mensura Sortis problems is in Robartes’s lawn bowling problems. Montmort 
had written to Nicolaus Bernoulli on September 5, 1712, saying that De Moivre 
had only given solutions to simple cases of a more general problem and not a 
general solution,24 even though De Moivre stated in corollaries to his problems 
that the general solution followed along the lines of argument that he used. 
Montmort provided such a general solution in the second edition of the Essay 
d’analyse—an arbitrary number of points left to win and differing skills between 
the players.25 De Moivre’s response in Doctrine of Chances was to provide his 
own general solution that he claimed was simpler to obtain than Montmort’s. After 
all his complaints about De Moivre not giving him any credit, it is interesting to 
note that when Montmort states the general problem and solution in the main body 
of Essay d’analyse, there is no mention of De Moivre.

Some parts of Doctrine of Chances that irritated Montmort should not 
have if De Moivre had provided a little more background to his mathematical 
approaches to problems. When Johann Bernoulli wrote Pierre Varignon in 1712 
that he found De Moivre’s way of solving probability problems a little obscure; 
the same observation might be applied to some of De Moivre’s more general 
comments on the problems he solved. Problem 11 in both De Mensura Sortis and 
Doctrine of Chances provides an illustration. It is a solution to one of Huygens’s 
challenge problems from De ratiociniis. The problem deals with three players in 
turn drawing black or white balls from an urn without replacement until a white 
ball is drawn. Originally, Montmort had dealt with the problem when the balls are 
drawn with replacement. In Doctrine of Chances De Moivre adds a new solution 
to the without-replacement problem.26 First he shows that the solution is the sum 
of a finite sequence of numbers, say a1 + a2 + … + an. If n is large, then it may 
be onerous to evaluate the sum directly. To illustrate the difficulty, De Moivre 
gives an example of one hundred balls of which four are white. The summed 
sequence of n = 33 terms needed to evaluate the chances for the first player is 
1 ∙ 2 ∙ 3 + 4 ∙ 5 ∙ 6 + 7 ∙ 8 ∙ 9 + … + 97 ∙ 98 ∙ 99. De Moivre finds the sum using 
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finite differences, obtaining

where m = n – 1, ∆a2 = a3 – a2, ∆
2a2 = ∆(a3 – a2) = a4 – 2a3 + a2, and so on. The 

terms in the sum on the right of the equation continue until they become 0. In the 
numerical sequence that has been given, it may be verified that ∆4a2 = 0, as well as 
all subsequent terms.27 De Moivre wrote that his formula was obtained from some of 
Newton’s results on finite differences. Initially, he mentions Principia Mathematica 
and then cites Methodus Differentialis, which Newton had written years before but 
had not published until William Jones put out his collection of Newton’s papers 
in 1711.28 This incensed Montmort. He had obtained a formula for the solution of 
the without-replacement problem in his second edition of Essay d’analyse and De 
Moivre had ignored it.29 Why cite a result that leads to the solution rather than the 
solution itself, Montmort wanted to know. That kind of behavior violated the code 
of the Republic of Letters, according to Montmort. What Montmort did not know, 
and what De Moivre never stated, was that he had previously obtained his formula in 
1708, well before Montmort found his, and had sent it in a letter to Johann Bernoulli. 
By stroking Newton’s ego, he had rubbed Montmort the wrong way.

One basic difference between Essay d’analyse and Doctrine of Chances, as 
well as earlier in De Mensura Sortis, is in the two mathematicians’ approaches to 
probability. Although he developed a number of results in combinations that could 
be used to enumerate favorable and unfavorable events, Montmort continued to 
adhere to Huygens’s approach to probability through expectations. De Moivre, on 
the other hand, set out his definition of probability very clearly at the beginning of 
Doctrine of Chances, followed by the description of an approach that has come to be 
known as the classical theory of probability. In De Moivre’s words,

The Probability of an Event is greater, or less, according to the number of 
Chances by which it may Happen, compar’d with the number of all the Chances, 
by which it may either Happen or Fail.30

Relying on an eighteenth-century use of the word doctrine, the doctrine of chances 
is then the system of principles that leads to the valuation, exact or approximate, 
of the number of chances that can be attributed to an event happening or failing. 
Following his initial definition of probability, De Moivre then went on to define odds 
and expectations, as well as dependent and independent events.

One difference between De Mensura Sortis and Doctrine of Chances is in 
the treatment of some actual games of chance that were played at the time the book 
was written. In De Mensura Sortis there are only hints at two of these games. The 
problem of the pool, or Waldegrave’s problem, derives from a way to increase the 
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number of players in the card game Piquet, a game never explicitly mentioned in De 
Mensura Sortis. Robartes’s lawn bowling problems were more a way to complicate 
the division of stakes problem than an actual analysis of the game. By comparison, 
in Doctrine of Chances De Moivre analyzes the card games Basset (or Bassette as 
De Moivre spelled it), Faro (or Pharaon), Piquet, and Whist (or Whisk), and the dice 
games Hazard and Raffle (or Raffling), as well as some British-style lotteries. There 
is an enormous overlap with the Essay d’analyse. Montmort dealt with all the same 
card and dice games with the exception of Whist. Whist, the exception, is related 
to the card game Ombre, which Montmort did analyze. Montmort also analyzed a 
French lottery run in a style similar to the British ones in which winning tickets are 
drawn from the complete set of tickets rather than winning numbers drawn as in a 
number lottery or lotto.

With all the games he analyzes, it is difficult to say if De Moivre ever played 
any of them. If one had to choose a most likely candidate, it would be Whist since 
it was played regularly at Slaughter’s Coffeehouse, which he frequented. Another 
likely candidate is Piquet since De Moivre picks the game to illustrate some points 
when discussing the philosophy of chance in the preface to the book. He could have 
picked several other games for his exemplar.

In some of the games, De Moivre provides essentially the same analysis as 
Montmort. In others, he goes beyond what Montmort had written. For example, 
while Montmort analyzed a few cases in the dice game Hazard, De Moivre deals 
with all the possible situations in the game.31 Montmort’s response to this difference 
is that he had the essentials and so De Moivre should have recognized Montmort’s 
priority by citing his results.32

What was De Moivre’s motivation in spending energy and space re-examining 
what Montmort had done? This baffled Montmort. All that he could see was De 
Moivre copying his results from Essay d’analyse without crediting him, and that 
angered him. There is a hint in the text for one of De Moivre’s motivations for 
working on some of these games. Whist, Piquet, Hazard, and Raffles appear at the 
end of Doctrine of Chances, almost as a postscript. De Moivre used these games as 
useful exercises to illustrate the use of combinatorial mathematics. Perhaps his work 
as a tutor was showing through—teach the theory and then practice the concepts 
with examples familiar to the reader. Other motivating factors may be found by 
examining some of the games in a little more detail. 

Consider the dice game Raffle.33 Five and ten years before, in both editions 
of Essay d’analyse, Montmort described the game and provided a table containing 
the chances of winning at each of the possible throws of the dice. In his treatment 
of the problem, De Moivre does not bother with the description. Instead, without 
giving any rules or analysis of the game, he launches directly into a description 
of a table from which the chances of winning can be obtained for the various 
situations in the game. Montmort’s and De Moivre’s tables are lain out differently, 
but correspond almost exactly when it comes to the enumeration of the chances to 
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win. The “almost” refers to one number. Montmort has 38,867 in one spot while De 
Moivre has 33,867, leaving one with the impression that De Moivre had recalculated 
or checked all of Montmort’s calculations very carefully. Such extreme overlap did 
not go unnoticed by Montmort. After noting the similarities in the tables, Montmort 
thought that perhaps the table had been published because De Moivre had found, 
but had not explicitly commented on, the typographical error in Montmort’s table. 
Montmort’s 38,867 should have been the number that De Moivre gave.34 Montmort 
had obviously read De Moivre’s book very closely. De Moivre’s real motivation only 
became apparent twelve years later when he published his Miscellanea Analytica. 
There he states that his table had been constructed by Francis Robartes during the 
1680s or 1690s.35 De Moivre had probably never played the game. His interest in 
the problem is more likely seen in the final few sentences of his treatment of Raffle 
where he used Robartes’s table and a binomial expansion to find the probability that 
a given player will win when there is a specified number of players in the game. 

While the other games may have been afterthoughts, De Moivre treats Basset 
and Faro, which are variations on the same type of card game, near the beginning 
of Doctrine of Chances.36 Where De Moivre has placed the analysis of these games 
in the text is important. The analyses of Basset and Faro appear immediately after 
Problem 11, De Moivre’s solution to one of Huygens’s challenge problems. On one 
level, De Moivre has given early on in his book an analysis of a game, Basset, which 
was very familiar to the subscribers of his book. On another level, De Moivre has 
provided an application for the result he obtained for Huygens’s challenge problem, 
the statement of which he had originally interpreted differently from Montmort. The 
solutions to probability problems in Basset and Faro rely on the solution to this 
challenge problem. Just as the challenge problem treats the selection of white and 
black balls without replacement, in both card games a succession of pairs of cards 
are drawn by the banker, or house, from a deck without replacement and compared 
to a card held by the person playing against the bank. 

Contrary to his treatment of the games at the end of Doctrine of Chances, De 
Moivre laid out the rules for both Basset and Faro, just as Montmort did in Essay 
d’analyse. The rules for Faro were the same in England and France, while the rules for 
Basset were slightly different. Just as Montmort did, De Moivre produced a table each 
for Basset and Faro that shows the advantage that the banker holds at each step of the 
game, a step being the draw of a pair of cards from the deck. De Moivre’s table for Faro 
is the same as Montmort’s since the rules of the game were the same in each country. 

Basset had been analyzed previously by Joseph Saveur in 1679 and by Jacob 
Bernoulli in his Ars Conjectandi published in 1713.37 Montmort’s analysis of Basset 
is relatively complete. Consequently, he felt that his work on these card games should 
have been cited by De Moivre, and he considered it dishonest of De Moivre not to do 
so as he was treating these games.38 In his preface to Doctrine of Chances, De Moivre 
had only mentioned in his typically vague way that “several great Mathematicians” 
had found the banker’s advantage at the various stages of the game. 
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De Moivre was not plagiarizing or blindly copying Montmort’s work. Beyond 
being a showpiece for his approach to the solution to Huygens’s challenge problem 
and providing some satisfaction to some of his aristocratic subscribers, another 
motivating factor was that De Moivre wanted to come up with a single measure for 
the advantage held by the banker in these games rather than measures at each stage 
of the games. This was new. He was able to find such a measure, but it depends on 
the restrictive assumption that the card held by the person playing against the bank is 
selected at random. In normal play of the game, the selection is non-random, so the 
player can adopt some strategies of play as the game progresses.39 Random selection 
runs counter to gambling intuition.

Did De Moivre ever play Basset or Faro? The quick answer is probably not, 
or at most rarely. On the other hand, it is very likely that he was very familiar with 
Basset but not Faro; Faro did not become popular in England until later in the 
eighteenth century. The “probably not” answer comes from the fact that Basset 
was notorious for its ability to ruin players, and De Moivre seems to have been a 
person who was very careful with his money. He arrived a refugee with probably 
a small amount of money, and his friend and first biographer stated: “Mathematics 
did not make him rich and he lived a mediocre [or modest] life bequeathing his few 
possessions to his next-of-kin.”40 De Moivre left this world holding £1600 capital in 
annuities, a very tidy sum for the time. 

Basset was all around De Moivre: with the families whose children he taught, 
with his Huguenot friends, and at the London stage that he sometimes frequented, a 
short walk away from his lodgings in St. Martin’s Lane.41 At a minimum, he would 
have been familiar with the game, even if he did not play it. Basset, because of the 
high stakes involved, was played by the nobility and other landed interests42 who 
supplied De Moivre with their sons to teach. A few lines from the 1701 play Sir 
Henry Wildair by George Farquhar connect the nobility, the game, and the stage. 
Addressing the heroine of the play, Lady Lurewell, Sir Henry says,43

What, forswear Cards! Why, you’ll ruin our Trade.—I’ll maintain, that the money 
at Court circulates more by the Basset-Bank than the Wealth of Merchants by 
the Bank of the City. Cards! the great Ministers of Fortune’s Power; that blindly 
shuffle out her thoughtless Favours, and make a Knave more pow’rful than a 
King.

Basset is mentioned in several plays on the London stage at the time, including one 
by Susanna Centlivre called The Basset Table, first performed in 1705.44 These plays 
were written, in part, as a response to the clergyman Jeremy Collier’s influential call 
in 1698 for more morality in the theater. Both The Basset Table and Sir Henry Wildair 
were performed at Theatre Royal in Drury Lane, just over a mile walk from the 
upper end of St. Martin’s Lane. Another play that hit the stage of the Theatre Royal, 
this one in 1699, was Abel Boyer’s English adaptation of Jean Racine’s tragedy 
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Iphigénie.45 The epilogue to the play was written by Pierre-Antoine Motteux. Like 
Motteux and De Moivre, Boyer was another Huguenot who was part of the circle of 
émigré intellectuals that met at the Rainbow Coffeehouse.46 In the published version 
of the play, both Boyer and Motteux make reference to Basset as a drain on the 
purse, Boyer in his epistle dedicatory and Motteux in his epilogue. 

Whether De Moivre and his friends ever discussed the evils or pitfalls of 
playing Basset over their drinks at the Rainbow Coffeehouse will never be known. 
What is known, from Abbé Jean-Bernard Le Blanc’s visit to De Moivre in the late 
1730s is that Le Blanc “did not perceive the he [De Moivre] had ever calculated the 
effects of gaming, with regard to morality, though that is a much more essential thing 
than the theory of chances.”

Although his Huguenot friends may have had some influence on his thoughts 
about particular games of chance, they are not mentioned in Doctrine of Chances. 
On the other hand, his closest English friends are mentioned in the text: Newton, 
Robartes, Jones, Taylor, and Halley. The book is dedicated to Newton. One Scotsman 
is alluded to, but never named outright in the book. At the beginning of the preface, 
when De Moivre is writing of the time when he read Huygens’s De ratiociniis, 
he mentions “a little English Piece” written by “a very ingenious Gentleman.” 
This is polite, but not overly friendly, as when he writes of William Jones as his 
“intimate friend” or Halley as his “respected friend.” The ingenious gentleman is 
John Arbuthnot who translated Huygens’s book and augmented it with results of his 
own in 1692.47 Perhaps De Moivre still bore some small general resentment of the 
Scots related to his little dustup with George Cheyne that was now several years old. 

There is one more Englishman mentioned in the text, an obscure gentleman 
named Thomas Woodcock who suggested a problem for De Moivre to work on.48 
The problem was new, so Montmort had no comment on De Moivre’s solution. 
Woodcock was not a fellow of the Royal Society. But he had money and position; 
he married a widowed aunt of Thomas Pelham-Holles, later 1st Duke of Newcastle-
upon-Tyne.49 De Moivre probably tutored Pelham-Holles in his youth. 

The problem that Woodcock suggested is a generalization of the gambler’s 
ruin problem, which was originally Huygens’s fifth challenge problem that De 
Moivre had solved with an ingenious mathematical trick in De Mensura Sortis. The 
gambler’s ruin has been described already in the following terms: Two players, call 
them A and B, engage in a series of games where A has probability p of winning any 
game and B has probability q. The winner of any game is given one unit from the 
loser’s capital and the series ends when one of the players is ruined or his capital 
is reduced to zero. The two players may start with different amounts of capital. 
Woodcock’s twist on the problem is to separate the amount “units of capital” into 
two parts: chips (or stakes, in De Moivre’s terminology) to be won and the amount 
bet by the two players. In Woodcock’s scenario, A has a chips to play with and B has 
b chips. Every time a game is played, A puts down an amount α and B puts down 
an amount β so that the pot to be won grows by α + β at each game. As the series 
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progresses chips are won and lost by each player, and the game ends when one of 
the players has accumulated a + b chips and hence has obtained the entire capital 
put in by the players. What De Moivre calculated is the advantage or disadvantage 
that A has over B. 

Like De Moivre’s attempt to find the banker’s overall advantage in Basset, 
this probability problem seems to have no basis in gambling reality. Suppose that 
A’s total monetary resources amount to αn. If the series of games goes beyond n in 
number, then A cannot add money to the pot. De Moivre’s solution to Woodcock’s 
problem might be described as mathematically elegant, but socially irrelevant. 
Once he solved Woodcock’s problem, De Moivre carried on further down the 
mathematician’s rather than gambler’s path and went on to make a generalization 
to Woodcock’s generalization. He assumed that the amount put in by each player 
increases in arithmetic progression as the games continue. At game n in the series, A 
puts down an amount αn and B puts down βn.

De Moivre sent Woodcock’s problem to Nicolaus Bernoulli with a hint of 
how he had solved it. The hint was that he had used an infinite series approach. 
Bernoulli ran with the hint and sent back two solutions to De Moivre. One is very 
short and uses infinite series methods that De Moivre used throughout the Doctrine 
of Chances, and so De Moivre included it as a postscript to his own solution. Since 
he had stopped writing to either Johann or Nicolaus Bernoulli by the middle of 1714, 
De Moivre must have obtained his own solution and sent Bernoulli the problem 
before that time. 

There is some internal evidence that the manuscript version of De Moivre’s 
solution to Woodcock’s problem that became the printed text did not change between 
1714 and 1718. In a numerical example, De Moivre takes α as one guinea and β as 
twenty shillings. The numerical solution only works when the guinea is worth 21.5 
shillings. This was the value of the guinea from 1699 to 1717; as Master of the Mint, 
it was Newton who recommended the change in value to the standard 21 shillings 
in 1717.50 It is likely then that what was given to the printer to typeset for Doctrine 
of Chances was not a single seamless manuscript from beginning to end, but a 
number of manuscripts pieced together from De Moivre’s new results along with the 
translation of, and amendments to, the problems in De Mensura Sortis.

Further evidence of the patchwork nature of parts of Doctrine of Chances 
is De Moivre’s treatment of what is known as the theory of coincidences and the 
problem immediately preceding this theory. The theory of coincidences is handled in 
Problems 25 and 26 in Doctrine of Chances. In two places in the preface, De Moivre 
states that the theory appears in Problems 24 and 25. Problem 24, as it appears in 
Doctrine of Chances, is an exercise in the application of the formula for the sum of 
an infinite geometric progression. Problem 24 may have been inserted at a late date 
as a replacement for the one problem in De Mensura Sortis (Problem 13 there) that 
did not make it into Doctrine of Chances. Both problems involve two players, A and 
B, engaging in a series of “throws” of a randomizing device such that A’s chance of 
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winning a throw is p and B’s is q. In the problem given in Doctrine of Chances,  p + 
q = 1 while in De Mensura Sortis p + q < 1. In Doctrine of Chances, A and B each bet 
one unit at each throw in the series and the throws continue until the first time that B 
wins. The object is to find the expected gain for player A. In De Mensura Sortis, one 
unit is staked by A and B at the beginning of the series. Player A throws once, then B 
and A successively throw twice until one of them wins a throw and hence the stake. 
The object is to find the probabilities of winning for each player.

A coincidence in mathematical terms is a type of match. For example, take two 
decks of cards, shuffle them, and start dealing face up from each deck. If the two 
most recently turned cards are the same, then there is a match or coincidence. More 
generally, one can think of a list of objects that has been randomized. A coincidence 
happens when a randomized object shows up in the same position that it was on the 
original list.  For Montmort, Nicolaus Bernoulli, and De Moivre, the problem of 
coincidences came in two forms: when the objects on the list are all distinct, such as 
cards in a deck, and when the objects are comprised of different groups of similar 
objects, such as the denomination of cards ace through king without regard to the 
suit. 

De Moivre’s solution to the theory of coincidences shows another side of De 
Moivre as a mathematician. Earlier in De Mensura Sortis, we saw him using the 
approach of simplification followed by generalization when solving the problem 
of the pool for three players. This is a typical approach when solving a practical 
problem that has some complexities to it, in this case the pool as actually played by 
gamblers. In the theory of coincidences, De Moivre searched for an elegant solution 
and found it. In mathematical terms, an elegant solution is one that is short and can 
be easily generalized to a whole family of similar problems. It can also be based on 
new and original insights.51 De Moivre’s solution is short. It is also very general in 
that it includes all the cases considered by Montmort and Nicolaus Bernoulli. To put 
icing on the cake of elegance, De Moivre developed what he called a “new sort of 
Algebra” to obtain his results. 

In modern terminology, what De Moivre essentially developed was a new 
method for finding probabilities of various compound events when the events are 
exchangeable. Suppose we have n events from which a number k of them is con-
sidered. By exchangeable, it is meant that the probability of the joint occurrence 
of these k events is the same as the probability of the joint occurrence of any other  
k events out of the n. The compound events that De Moivre considers are that out 
of n objects (or events) the first m are matches (or the event occurs) and the re-
maining n – m are not matches (or the event does not occur). Since the events are 
exchangeable, it does not matter the order in which the matches and mismatches 
occur. Consequently, the probability of any m matches and any n – m mismatches 
is the probability that the first m match and the rest do not, multiplied by the num-
ber of ways that the matches and mismatches can be permuted. De Moivre obtains 
a simple expression for the probability that the first m match and the rest do not. 
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In modern notation, he obtains
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where Oi is the event that ith object is a match and Ōi is a mismatch.52 It is a very 
easy algorithm to describe in words, as De Moivre did. For m matches and n – m 
mismatches, write down the probabilities of the first m matching without regard to 
the remaining objects, then the first m + 1 matching, again without regard to the 
remaining objects, and so on. Attach alternating signs to this list of probabilities 
and make the coefficients of the probabilities the set of binomial coefficients 
obtained from the expansion of (1 + 1) n  – m. Here, and elsewhere in his Doctrine of 
Chances, De Moivre was carrying over from De Mensura Sortis his theme of the 
use of binomial expansions to solve probability problems. Unable to see beyond 
De Moivre’s lack of citation of his own work on coincidences, Montmort could not 
appreciate the elegance of De Moivre’s solution.53 On the other hand, when Nicolaus 
Bernoulli presented De Moivre with an elegant solution to Woodcock’s problem, De 
Moivre acknowledged it and included it in his book, even though he had stopped 
communicating with Bernoulli.

Woodcock’s problem involves an infinite series solution, as does the solution to 
the problem of the pool or Waldegrave’s problem. In De Mensura Sortis, De Moivre 
had solved the problem for three players but said his method could be generalized to 
more than three. As mentioned in Chapter 7, De Moivre had obtained the generalization 
to four players in 1714 and published the solution in Philosophical Transactions. 
Since the article was in Latin, it was aimed at an international audience. What appears 
in Doctrine of Chances for the most part is a very faithful English translation of the 
Philosophical Transactions article.54 De Moivre calls the four players A, B, C, and 
D. He assumes that A and B play first, and that B wins the first game. For A to win 
the pool he must repeatedly come back into the game until he has won three in a 
row, one against each of B, C, and D, while the other three cannot have won three 
in a row. Since there are four players and a player must win three in a row to win the 
pool, the pool can only be won on the third game or afterward. De Moivre denotes the 
probability that A wins on game numbers 3, 4, 5, 6, 7, … by A', A'', A''', A'''', AV, …, 
respectively. Given that A has lost the first game and cannot come back until the fourth 
game, and so cannot possibly win the pool until game number 6, then A' = A'' = A''' 
= 0. De Moivre has a similar notation for B, C, and D winning the pool on games 3, 
4, 5, etc. There are recursive relationships between the probabilities. For example, the 
recursion relating A’s probabilities to C’s and D’s at game 6 is given by

1 1'''' ''' ''
2 4

A D C= +
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in De Moivre’s notation. With the appropriate changes to the superscripts, this 
recursive relation holds for any game number. The probability that A wins the pool 
is the infinite sum

' '' ''' ''' & .VA A A A A c+ + + + +

Despite many who would agree with Montmort in this case that De Moivre’s solution 
is “cumbersome,” including Anders Hald who has put De Moivre’s solution into a 
modern format, De Moivre was very proud of it. In his discussions with Brook 
Taylor about what should be included in the allegorical frontispiece to Doctrine of 
Chances, De Moivre suggested that the expression A' + A'' + A''' + &c., along with 
perhaps another one related to the Poisson approximation to the binomial, should 
appear on a piece of paper lying on a table. Although this did not happen, Taylor 
did have some further involvement in the problem of the pool. He gave De Moivre 
a simple way to obtain the recursion relationships. Taylor’s method is reproduced in 
Doctrine of Chances at the end of the treatment of the problem of the pool for four 
players.

Where De Moivre shines in the use of infinite series is in his development of 
the theory of recurring series55 in which he applies the sum of the series to various 
aspects of the duration of play problem. As in De Mensura Sortis, the duration of 
play problem is the grand finale to Doctrine of Chances; the treatment of various 
games of chance at the end is like an encore. A recurring series is defined through 
the power series whose sum is

2 3
0 1 2 3S c c x c x c x= + + + +

where the coefficients c0, c1, c2, c3, etc., have a specific relationship to one another; 
specifically, the current coefficient is defined in terms of several preceding ones. 
The number of preceding coefficients is called the order of the series. For example, 
in a recurring series of order two, a coefficient depends on the two immediately 
previous coefficients. For the ith coefficient, ci = a1ci – 1 – a2ci –2, where a1 and a2 are 
known constants and the initial coefficients c0 and c1 are given as well. Higher order 
recurring series are similarly defined.

De Moivre’s proof for the sum S of a general recurring series is a typical 
eighteenth-century style of proof. Prove the theorem for recurring series of order 
two, then order three, and then order four. Note the general pattern and write down 
the general result. As De Moivre expresses this last step, “The Law of continuation 
of the Theorems being manifest, they may all easily be comprehended under one 
general Rule.” Modern mathematicians might decry the lack of rigor to the proof, 
but it did work for De Moivre and many others.

De Moivre’s proof for an order two recurring series is very simple. He 
considers each term in the series. The ith term is given by ci x

i, which can be denoted 
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by ti so that

2 3
0 1 2 3 0 1 2 3S c c x c x c x t t t t= + + + + = + + + + 

From the recurrence relationship, ci = a1ci – 1 – a2ci –2, we have ci x
i  = a1ci – 1 x

i – 
a2ci –2 x

i
 or equivalently ti

  = a1t i – 1x – a2t i –2 x
2. De Moivre set this all out in columns 

and added on the initial terms. This gives

0 0 t t=

1 1 t t=

2
2 1 1 2 0t a t x a t x= −

2
3 1 2 2 1t a t x a t x= −

2
4 1 3 2 2t a t x a t x= −

2
5 1 4 2 3t a t x a t x= −



The sum of the column to the left of the equals sign is S. The sum of the first column to 
the right of the equals sign is t0 + t1 + a1Sx – a1t0x and the sum of the second column 
is a2Sx 2. Consequently, S = t0 + t1 + a1Sx – a1t0x – a2Sx 2. Solving for S yields

0 1 1 0
2

1 2
.

1
t t a t x

S
a x a x
+ −

=
− +

A similar method works for higher-order recurring series. The number of 
columns to the right of the equals sign will be the order of the recurring series.

Immediately after De Moivre’s treatment of recurring series, he gives another 
method of summing a power series, which he says was sent to him by Montmort. If 
the coefficients in the power series given by c0, c1, c2, c3, etc., are such that for some 
order of finite differencing d, ∆dc0 = 0, then the sum of the series is given by

2 1
2 1

0 0 0 0 .
1 1 1 1

d
dx x x xc c c c

x x x x

−
−

     + + + +    − − − −     
∆ ∆ ∆

The result is reminiscent of De Moivre’s summation of a sequence by finite differ-
ence methods that he had obtained in 1708.

.

.
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One would think that Montmort would finally be satisfied. He was cited and 
acknowledged. Instead, the tap of complaint was opened in full. In his letter to Brook 
Taylor, Montmort complains that De Moivre’s work on recurring series is derivative 
of Nicolaus Bernoulli’s work. Montmort quoted from a letter dated August 30, 1714, 
that he had received from Nicolaus Bernoulli in which Bernoulli said that he had 
solved a problem in infinite series which had a recurrence relation in it.56 Montmort 
had informed De Moivre of the result in 1715, just before Montmort made his trip to 
England. Taylor’s only response to this accusation was

I know nothing of the letter mention’d in this Article. If Mr Moivre had it, I cant 
say but it might give him a hint for the series he here treats of, Mr Bernoulli’s 
series being a particular case of Mr Moivres; and therefore Mr Moivres might be 
found possibly by extending Mr Bernoulli’s to a greater degree of generality.57

The reviewer of the manuscript opened at the Royal Society meeting in 1720 
considered De Moivre’s work in recurring series to be new and original. However De 
Moivre came by the idea for his work in recurring series, history seems to have sided 
with the anonymous reviewer about who was the original developer of the theory.

The theory behind the semicircle and its associated trigonometric formula to 
solve the duration of play problem was only hinted at in Doctrine of Chances. Even 
after a reading of the paper that De Moivre wrote in 1720 and published in 1722 
in Philosophical Transactions, the proof of the result is not at all clear, although 
De Moivre expanded on the derivation in Miscellanea Analytica in 1730. Echoing 
Johann Bernoulli’s comment over two hundred and seventy-five years earlier that he 
found De Moivre’s method of solving problems a little obscure, Anders Hald made a 
similar comment in that  he found that “De Moivre’s proof in Miscellanea Analytica 
is somewhat incomplete.”58 It was Ivo Schneider working in the 1960s who was able 
to provide a satisfactory reconstruction of De Moivre’s proof.59 Leaving the reader to 
examine the mathematical details in Hald’s or Schneider’s work, I will only point out the 
connection between recurring series and the trigonometric solution. De Moivre showed 
that the sum of a recurring series can be expressed as the ratio of two polynomials, where 
the order of the polynomial in the denominator is the same as the order of the recurring 
series. Suppose the polynomial in x in the denominator of the ratio is of degree d. This 
can be expressed algebraically as b0 + b1x + b2 x

2 + … + bd x
d. De Moivre showed in 

his 1722 paper that the reciprocal of this polynomial can be written in an interesting 
way that involves the roots of the polynomial. He obtained

31 2
2

1 2 30 1 2

1 ,
1 1 1 1

d
d

dd

f ff f
r x r x r x r xb b x b x b x

= + + + +
− − − −+ + + +





where r1, r2, r3, … , rd are the roots of the polynomial equation b0 + b1x + … + bd x
d 

= 0 and f1, f2, f3, … , fd are some specific functions of the roots. In his 1707 paper, 
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with further explanation of it in another 1722 paper,60 De Moivre used trigonometric 
methods to find the roots of a certain polynomial equations. And so we come full 
circle back to the semicircle.
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Publication of Doctrine of Chances confirmed De Moivre as one of the leading 
mathematicians of his time in Britain. Knowledge of his work went beyond his circle 
of friends, mathematicians, Royal Society members, and aristocratic employers. Still 
within the circle, but at the periphery, was the actor and playwright, Colley Cibber. 
De Moivre and Cibber had some common connections; Cibber’s original patron 
was the 1st Duke of Devonshire and he had other prominent Whig connections 
that included Robert Walpole.1 The one known interaction between De Moivre and 
Cibber is that they discussed the difference between French and English actors’ 
methods of declamation in tragedies.2 Whether or not he had ever read it, Cibber 
was aware in some way of the Doctrine of Chances and must have felt that many in 
his audience knew of the book as well as of the author’s reputation. Cibber was also 
an inveterate gambler. There is a gambling reference to De Moivre in Cibber’s play 
The Provok’d Husband, which was first staged in 1728. One of the characters in the 
play is a gambler named Count Basset (after the card game). During the second act, 
Basset mentions that the “Demoivre Baronet” had lost a lot of money the previous 
night at White’s Coffeehouse, a favorite haunt of gamblers.3 Perhaps De Moivre was 
in the audience on opening night to hear his name.

De Moivre’s reputation in the mathematics of gambling went beyond even his 
wider circle of acquaintances. A year before The Provok’d Husband was staged, a 
pseudonymous letter appeared in London Journal under the name “Gracian.” The 
letter was written in support of the signing of the Treaty of Hanover which had 
averted the threat of war with an Austro-Spanish alliance. The writer refers to those 
who supported a war against the alliance as having had a “miserable run of fortune” 
for there had been a number of events in the past decade or so that had promoted 
peace rather than war. For the warmongers Gracian advises,
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I beg and conjure them, that instead of amusing themselves by computing the 
Odds and Chances of the Game [war] according to the Mathematick Laws of Du 
Moivre, they would in good earnest embrace the Advice of a Spanish Writer, and 
apply themselves to study the Humour and Complexion of their Fortune; for as 
Fortune, like other Ladies, can refuse him nothing to whom she has often been 
kind, so she continues obstinate never to grant any considerable Favours to those 
whom she at first beholds with Aversion and Contempt. 4

Gracian knew vaguely of De Moivre’s work, although he could not quite spell his 
name correctly. In his own mind, Gracian had not banished the goddess Fortuna as 
both De Moivre and Montmort wanted to happen as a result of their work. In 1731, 
another anonymous writer put De Moivre in a gambling context. The writer refers 
to gamblers who use mathematics in their approach to playing games of chance as 
“de Moivre men.”5 De Moivre’s probably unintended impact on gambling continued 
throughout his lifetime. Another pseudonymous writer, Nestor, published an article 
in 1749 entitled “On contentment and avarice.” When referring to a gamester, Nestor 
writes, “Fortune is his goddess, De Moivre his guide.”6

How knowledge of De Moivre’s work spread well beyond his own fairly large 
circle is difficult to say precisely. De Moivre financed the printing of his book by 
subscription. Presumably, this was done by contacting people whom he knew. He 
then contracted with William Pearson to print Doctrine of Chances. Once printed, he 
distributed the copies himself at Slaughter’s Coffeehouse.7 As to promoting the book, 
there were no advertisements from any booksellers in London newspapers offering 
the book at their stalls. The few mentions of Doctrine of Chances in the newspapers 
during the 1720s and early 1730s are when it was an item in an estate sale.

In one sense, Pearson as printer was an odd choice. Pearson’s shop was close 
to a two-mile walk from where De Moivre lived. Furthermore, Pearson’s main 
activity was in printing music,8 although he did print a small number of mathematics 
books. It may have been William Jones who steered De Moivre towards Pearson. 
Jones chose Pearson to print Newton’s Analysis per Quantitatum Series, Fluxiones, 
ac Differentias in 1711.

The printing and sale of Doctrine of Chances was very different from De 
Moivre’s earlier tract against George Cheyne, the 1704 Animadversiones in G. 
Cheynaei Tractatum de Fluxionum Methodo Inversa. This book was printed by 
Edward Midwinter and then sold by Daniel Midwinter and his partner, Thomas 
Leigh, from their shop by St. Paul’s Cathedral. Midwinter and Leigh were among 
the top booksellers in London.9 Probably as a result of seeing someone else publish 
and sell Cheyne’s book, they saw a potentially strong demand for books about the 
emerging new mathematics. In addition to De Moivre’s book, in 1704 they sold 
copies of Charles Hayes’s A Treatise of Fluxions. This was the first comprehensive 
treatment in English of calculus in a single publication to hit the market following 
Cheyne’s Latin book the year before.10 Edward Midwinter was also the printer. 
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Midwinter and Leigh also promoted the books they sold. They put out newspaper 
advertisements for Animadversiones and A Treatise of Fluxions when the books 
were available at their bookshop.11 It was a good business decision. They carried 
one book by a fellow of the Royal Society that trashed the contents of the first 
calculus book to be published and at the same time offered a reliable alternative to 
the discredited book. Daniel Midwinter was still active as a bookseller, with several 
titles in mathematics in his shop, when Doctrine of Chances was first published. De 
Moivre could have left his new book in very capable hands, but instead decided to 
take complete control of the sale and distribution of it.

No known subscription list to Doctrine of Chances currently exists. Despite 
this, we can piece together a short list of some of the likely subscribers. De Moivre’s 
good friends Edmond Halley and Isaac Newton, as well as friend and former pupil 
Martin Folkes, all had copies of the book in their libraries when they died.12 Brook 
Taylor must also have had a copy since he was able to reply in detail to Pierre 
Rémond de Montmort’s scathing comments about the book. Montmort was not 
a subscriber since he kept asking Taylor when the book would be available for 
purchase.13 His copy may have come from Taylor or from some other subscriber. 
Like the subscription list to Miscellanea Analytica, some subscribers may have 
paid for more than one copy—not for themselves but to provide patronage to an 
important scientific publication. There are a couple of likely subscribers, one on 
the Whig political side and the other on the scientific but non-mathematical side. A 
copy of Doctrine of Chances was in Horace Walpole’s library.14 Since he claimed 
to have no interest or ability in mathematics and he was only a one-year-old when 
the book was published, the copy may have come from his father, Robert Walpole, 
who also subscribed to Miscellanea Analytica. Another copy shows up on a list for 
the sale of the library of John Chamberlayne in 1724.15 Chamberlayne was a literary 
editor and fellow of the Royal Society. A relatively late arrival to obtain a copy of 
Doctrine of Chances is the Scottish mathematician James Stirling. From about 1717 
until perhaps 1722, Stirling was in Venice, so it is unlikely that he was an original 
subscriber.16 De Moivre did give a copy of the book to Stirling with a handwritten 
list of errata that he had drawn up.17 Together, these provide a hint about how De 
Moivre circulated his book. A likely scenario is that the subscriptions covered the 
printing costs of the subscribers’ books plus some or several extras. De Moivre kept 
the extra copies, including those not claimed by the subscribers, and sold them or 
gave them away over several years until his supply ran out.

By the early 1720s, a copy of Doctrine of Chances had found its way to Trinity 
College Dublin. There it was read by a twenty-eight-year-old undergraduate named 
Richard Dobbs.18 Dobbs had a solution to the division of stakes problem when there 
are more than two players in the game. De Moivre had solved the problem in 1711 
under Problem 8 in De Mensura Sortis and repeated his solution in Doctrine of 
Chances, also under Problem 8. This was a solution for which Montmort claimed 
priority and also recognized as cumbersome. Dobbs was aware of De Moivre’s 
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solution in Doctrine of Chances but, as he explained in a letter to the Royal Society,19 
his own solution “is rendered somewhat more easy & fit for practice.” In his capacity 
as secretary to the Royal Society, James Jurin asked De Moivre to review Dobbs’s 
manuscript. Dobbs’s new solution is general and detailed, with tables to aid in the 
calculation of the required probabilities. It is also quite complex and at times difficult 
to follow. After receiving the manuscript, De Moivre sent it back to Jurin saying that 
Dobbs’s method appeared correct, but that he had obtained an easier solution.20 The 
reply letter from Jurin to Dobbs is only a draft and does not contain De Moivre’s new 
method of solution.21 In Dobbs’s reply to Jurin, he says that De Moivre’s solution 
“seems to be a considerable improvement of that he formerly published.” Although 
it cannot be verified, De Moivre’s new solution might be the one that shows up as 
Problem 69 in the second edition of Doctrine of Chances published in 1738.22 It is 
certainly easier to implement than his original solution.

Throughout the 1720s, De Moivre continued to work on problems related 
to probability, as well as some other topics in mathematics. Some of the work he 
undertook was suggested by others in the same way that Francis Robartes had given 
De Moivre his lawn bowling problems and Thomas Woodcock his generalization 
to the gambler’s ruin problem. Other work resulted from building on mathematical 
results that he had previously obtained and then applying these results to current 
problems that other mathematicians were working on. De Moivre collected much 
of this work together and published it in Miscellanea Analytica in 1730. With 
one exception, here I will concentrate on some of the work that can be identified 
to have originated in the mid-1720s or before. The one exception is the normal 
approximation to binomial probabilities. This work originates in a question posed 
to De Moivre in 1721. There are major developments into the 1730s and so it seems 
better for this topic to keep all the material together.

De Moivre’s discovery of the use of generating functions dates from the mid-
1720s. In this case it is difficult to say, although I will conjecture, what motivated 
him to revisit a problem that he had already solved in a reasonable way as early as 
1711 using mathematical induction. The problem is to find the number of chances to 
obtain a particular sum of the numbers that show on the faces of several dice when 
they are thrown. 

The problem appears in both De Mensura Sortis and Doctrine of Chances as 
a lemma inserted between problems on the number of trials required to obtain, with 
probability1/2, at least one success, at least two successes, and so on, in a series of 
independent trials whose possible outcomes are either success or failure. De Moivre 
provides no proof of his result in his early publications, but outlines his method using 
combinatorial arguments and induction in a 1718 letter to Brook Taylor.23 The proof by 
the use of generating functions first appears in the 1730 Miscellanea Analytica. Based 
on manuscripts held in the Macclesfield Collection at Cambridge University Library, 
there is evidence that the result by generating functions was likely obtained between 
1722 and 1727.
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Keeping the notation used for the lemma as it was described in Chapter 5, 
what is required is to find the number of chances to obtain the sum s on the faces that 
show in the throw of n dice each with f faces. Here is one way to look at the problem: 
Denote the die by D and make the exponent of D the value that shows on the face of 
the die; D3, for example, is a die showing the number 3 on its face. The variable D is 
now an object rather than something that takes on numerical values. The sum D1 + 
D2 + D3 + … + D f  expresses all the outcomes of a single die and the coefficient of 
each term in the sum is the number of ways that the face on the die can show—one 
way, in this case. For n dice, (D1 + D2 + D3 + … + D f  ) n expresses all the outcomes 
of the dice. Expand this expression and collect the terms which have Ds with the 
same exponent. Since exponents are added when terms are multiplied together in the 
expansion, the term D s is associated with s as the sum of the faces that show on the 
dice. The coefficient of D s in the expansion is the number of outcomes for which the 
sum s shows on the dice. Since what is contained in the brackets of the expression is 
a geometric progression, it can be re-expressed as 

(1 ) .
(1 )

n f n

n
D D

D
−
−

This provides a generating function that, when expanded, can be used to obtain the 
number of chances associated with any sum s on the faces that show on the dice. It 
is easier to expand than the original form of the geometric progression. De Moivre’s 
generating function does not include the term D n and so his published generating 
function is

(1 ) .
(1 )

f n

n
D
D

−
−

When this simpler expression is expanded, the coefficient of D s–n provides the 
number of chances associated with the sum s. 

De Moivre essentially used the dice model I have given to explain his 
generating function. Instead of D 3, for example, to denote a die with the number 3 on 
its face, De Moivre used D111. In order to get to the simpler generating function, he 
muddied the explanation and possibly confused his readers. He started with 1 + D 1 + 
D 2 + … + D f  – 1, expressing all the outcomes of the throw of one die, which does not 
conform exactly to his model die that precedes this sum in Miscellanea Analytica. 

This confusion also appears in two copies of a manuscript whose content can 
be attributed to De Moivre.24 The copies are in the Macclesfield Collection held at 
Cambridge University Library. In the manuscript, De Moivre starts with a number of 
results related to basic counting rules. In terms of the notation that is given here, one 
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of De Moivre’s results on counting is that the sum of all dispositions of D quantities, 
“taking them by one’s, two’s, three’s &c. to n” (or now f in the current notation), is 
given by the sum D1 + D2 + D3 + … + D f . At this point he has used D as a quantity 
rather than as an object. Immediately following this in the manuscript, without any 
indication as to why, De Moivre changes to the sum 1 + D1 + D2 + … + D f  – 1 and 
proceeds to give his version of the generating function. The manuscript finishes with 
an algebraic derivation of the formula for the number of chances to throw the sum 
s with the dice, followed by a numerical example to find the number of chances of 
throwing s = 17 points with four throws of a six-faced die.

The 1718 letter from De Moivre to Brook Taylor explaining how he solved 
the lemma in Doctrine of Chances puts a definite lower bound on the date when 
De Moivre discovered his generating function approach. The publication of 
Miscellanea Analytica in 1730 puts a definite upper bound on the date. The interval 
can be reduced somewhat by examining the manuscript result containing work on 
the generating function that is held in Cambridge University Library and then by 
looking at the historical context. 

The two copies of the manuscript in Cambridge University Library have the 
title “Combinations,” and are copies of the same material, one a rough copy in the 
hand of De Moivre’s friend William Jones and the other done in a very fine hand.25 
The manuscript copy that is written in a fine hand looks as if it could be a presentation 
copy. It can be dated approximately. Not only is a fine hand used, but the paper is 
also of high quality. The watermark on the paper is that of Lubertus Van Gerrevink, 
a Dutch papermaker. It is the same as the watermarks numbered 317 and 318, both 
from Gerrevink, in a catalog of watermarks.26 Van Gerrevink obtained patents for his 
watermarks in late 1726 and early 1727.27 After he obtained his patent, Gerrevink 
used his distinct watermark to differentiate his paper from his competitors’. Several 
papermakers used Van Gerrevink’s initials, LVG, as watermarks to associate their 
products with high quality paper. Van Gerrevink’s patented watermark was unique 
to his paper. In the Macclesfield Collection, another manuscript set contains pieces 
of paper with the Van Gerrevink watermark.28 The manuscript set bears the title 
“1733/1734/Annuities Upon Lives” written by William Jones, the owner of the 
manuscripts. It may be reasonably concluded that the manuscript written in a fine 
hand may be dated to between 1727 and 1734 approximately.

The copy in the fine hand was probably taken from the rough copy. It should 
not be concluded that the rough copy, or that the original (possibly a notebook kept 
by De Moivre) from which the rough copy was taken, dates from the late 1720s 
or later—my dating for the manuscript in the fine hand. Also in the Macclesfield 
Collection are two copies of a Newton manuscript related to probability entitled 
“Reasonings Concerning Chance.”29 There is both a rough copy in Jones’s hand on 
the same type of paper as the rough copy entitled “Combinations” and a copy in a 
fine hand on Van Gerrevink paper. Again, no authorship or date is given on either 
manuscript. The original material from which these copies are taken is in Newton’s 
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notebook that he kept to record his expenses and to make notes on books that he had 
read while a student at Cambridge.30 The relevant part of the notes also has the title 
“Reasonings Concerning Chance” and was likely written in 1665.31 It contains notes 
based on Newton’s reading of Christiaan Huygens’s De ratiociniis in ludo aleae. 
Based on other information about Newton and De Moivre, a tentative dating of the 
rough copies of “Combinations” and “Reasonings Concerning Chance” could be 
narrowed to between 1722 and 1727. 

The upper bound of 1727 is the year of Newton’s death. There was dispute 
over his manuscripts.32 Many of his surviving relatives wanted to benefit financially 
from his papers by publishing them. A review of the manuscripts by the Royal 
Society fellow Dr. Thomas Pellett determined that only two or three of them were 
publishable. Subsequently, John Conduitt, Newton’s successor as Master of the 
Mint and husband to Newton’s niece Catherine, posted a £2000 bond and obtained 
control of all the remaining manuscripts. Conduitt’s unfulfilled ambition was to 
write a biography of Newton and so very few had access to the manuscripts during 
Conduitt’s lifetime. After his death and that of Catherine, the manuscripts passed 
through the family and remained in private hands until well into the nineteenth 
century.

The lower bound of 1722 comes from De Moivre’s correspondence with James 
Jurin over the manuscript sent to Jurin by Richard Dobbs concerning the division 
of stakes problem for more than two players. After the publication of Doctrine 
of Chances in 1718, De Moivre continued to work on probability problems. His 
initial work on approximating binomial probabilities for a large number of trials 
began in 1721.33 The generating function approach to find the probability of the 
sum of the faces that show on dice involves multinomial expansions, rather than 
binomial ones. Dobbs refers to getting the solution of the division of stakes problem 
by expanding the multinomial of the form (a + b + c + …) n. After De Moivre read 
Dobbs’s manuscript, he wrote to Jurin saying he had an easier solution. Having to 
think about multinomial expansions may have led De Moivre to consider his lemma 
in terms of what appears in the manuscript “Combinations.” The multinomial was 
not a new topic for De Moivre. In his second published paper that appeared in 1697, 
De Moivre extended the binomial expansion to a multinomial one.34 Specifically 
in the current notation, De Moivre provides an expression for the expansion of a 
multinomial of the form (aD1 + bD2 + cD3 + …) n, an expression that yields both 
Dobbs’s multinomial and De Moivre’s generating function as special cases. To make 
the final connection, De Moivre only needed to think of some of the terms in the 
multinomial as objects. Dobbs’s paper may have stimulated De Moivre to think 
about the multinomial as a generating function.

The historical evidence provides no indication of how Jones came by the 
material that he copied into the manuscripts “Combinations” and “Reasonings 
Concerning Chance” and why he, or someone else, made fair copies of each. That is 
a subject of reasonable conjecture. Since De Moivre and Jones were close friends, 
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I would suggest that De Moivre showed Jones some papers or a notebook in his 
possession from which Jones made his rough copy of “Combinations.” This would 
be in line, for example, with De Moivre informing Brook Taylor about some 
of his latest work. De Moivre and Newton were also close friends, meeting in 
Slaughter’s Coffeehouse in St. Martin’s Lane, a very short walk from the house 
that Newton occupied after 1710. Matthew Maty reports that after finishing at 
Slaughter’s, Newton and De Moivre often went to Newton’s house, “where they 
spent their evenings debating philosophical matters.”35 A likely scenario is that 
around the time De Moivre dedicated the first edition of Doctrine of Chances to 
Newton, Newton showed De Moivre his college notebook containing his notes 
on Huygens. Through De Moivre, Jones gained access to the notebook and again 
copied out the relevant parts. In the late 1720s or early 1730s Jones commissioned 
fair copies of the two manuscripts “Combinations” and “Reasonings Concerning 
Chance.” These were done on the high quality Van Gerrevink paper. They were 
commissioned as some kind of presentation copy after the death of Newton in 
1727 and after the methodology of generating functions had been revealed in 
Miscellanea Analytica in 1730. Since Jones had tutored George Parker, 2nd Earl of 
Macclesfield, during the earl’s youth, as did De Moivre, and since Jones regularly 
stayed at Shirburn, the Macclesfield country seat, the presentation copies were 
probably made for the earl, who was a subscriber to Miscellanea Analytica. Of 
course, other possibilities could be constructed. The one I have given seems to me 
to be the simplest.

De Moivre kept mum on the new approach via generating functions until he 
published it in Miscellanea Analytica. A few of his close friends may have known 
about the new way to solve the lemma for the sum on the dice. William Jones and 
James Stirling are two possibilities. Jones’s copy of “Combinations” was almost 
certainly in his hands before Newton’s death in 1727. The argument for Stirling 
requires a little more detail. Near the end of the 1720s there was some renewed 
interest in De Moivre’s lemma that so far had only appeared without proof. Gabriel 
Cramer, a Swiss mathematician at the University of Geneva, began wondering 
about proofs for the lemma in 1727.36 The next year, Cramer was in London visiting 
various mathematicians and other scientists. At about this point he heard about De 
Moivre’s forthcoming publication of Miscellanea Analytica and arranged to have a 
subscription to it. After he left London, Cramer found his own solution to the lemma 
using mathematical induction and sent it to James Stirling in a letter dated October 
11, 1728.37 Stirling replied that he had seen De Moivre’s solution and Cramer wrote 
back on March 12, 1729, asking if his own solution agreed with De Moivre’s.38 The 
letters from Stirling to Cramer are not extant.

With respect to De Moivre’s generating function, there are some precedents 
to thinking of terms in an algebraic expression as objects that leads to this kind of 
function. And they go back to some of the earliest work in probability theory. The 
use of the binomial expansion as a generating function is implicit in Pascal’s 1665 
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work on the arithmetical triangle.39 A simple explicit example, closer to the time 
when De Moivre was writing, is in John Arbuthnot’s work on divine providence in 
1710. When trying to calculate the chances of obtaining an equal number of male 
and female births Arbuthnot begins with the following discussion:

Let there be a Die of Two sides, M and F, (which denote Cross and Pile), now 
to find all the Chances of any determinate Number of such Dice, let the Binome 
M + F be raised to the Power, whose Exponent is the Number of Dice given; 
the Coefficients of the Terms will shew all the Chances sought. For Example, 
in Two Dice of Two sides M + F the Chances are M2 + 2MF + F2, that is, One 
Chance for M double, One for F double and Two for M single and F single.40

In his argument, the terms M and F are objects. Assuming that male and female 
births occur with equal probability, the coefficients in the binomial expansion give 
the number of chances for the various numbers of male and female births that 
could occur. With a total of four births, the coefficient of the object M1F3, for 
example, in the expansion is the number of chances of seeing one male and three 
females born.

One result that De Moivre obtained in the early 1720s is not about probability, 
but rather his work surrounding the semicircle used to find a trigonometric solution 
to the duration of play problem. It also brings De Moivre back to an old favorite 
topic: quadratures. De Moivre’s work was motivated by a problem that had been 
partially solved by Roger Cotes, a mathematician who held the Plumian Chair of 
Astronomy at Cambridge. Cotes was interested in finding the fluents of certain 
fluxional quantities. He died in 1716, leaving a number of unpublished manuscripts. 
They were eventually collected and edited by his cousin and successor in the Plumian 
Chair, Robert Smith, who published the work in 1722 under the title Harmonium 
Mensurarum.41 

Through a challenge put out by Brook Taylor late in 1718, initially to 
Montmort,42 the fluxional quantity that became of interest, both in England and on 
the Continent, is one of the form
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this is accomplished through finding the quadratic factors of the denominator. De 
Moivre was able to find these factors for the case when a = c = 1 and b = –2cos(θ) , 
where θ is any angle so that b is any number between –2 and 2. He also generalized the 
result to any positive integer n rather than a power of 2. Although the result appears 
in the 1730 Miscellanea Analytica, James Stirling informed Nicolaus Bernoulli in 
a letter written in 1730 that De Moivre had obtained his factorization shortly after 
Cotes’s book was published in 1722.43 De Moivre’s interest was probably piqued by 
Cotes’s description, via Smith as editor, that part of the solution to a similar problem 
has a circle divided into 2n equal parts.44

In order to obtain his factorization, De Moivre began with a result in Miscel-
lanea Analytica, which in modern notation is given by

( ) ( ) ( )( )1/1/1 1cos cos( ) sin( ) cos sin( ) ,
2 2

nnn i n n i nθ θ θ θ θ= + ⋅ + − ⋅

where i is the imaginary number 1− . It is stated without proof. An equivalent 
result, though not given in any of De Moivre’s work, is

( )( ) ( ) ( )cos sin( ) cos sin .
n

i n i nθ θ θ θ+ ⋅ = + ⋅

The latter result is now known in mathematics as De Moivre’s theorem or De 
Moivre’s formula. Although it appears to come out of thin air, De Moivre probably 
obtained his initial equation in Miscellanea Analytica as early as 1707. As mentioned 
in Chapter 5, De Moivre had a method to find an algebraic expression for one of the 
roots of a certain polynomial equation in 1707 and provided details of his method in 
1722.45 In the 1722 paper, he gives two equations related to his Miscellanea Analytica 
result:  1 – 2zn ∙ cos(nθ )  + z 2n = 0 and 1 – 2z ∙ cos(θ )  + z 2  = 0. The solutions to the 
first equation are zn = cos(nθ )  ± i ∙ sin(nθ )  or z = (cos(nθ)  + i ∙ sin(nθ ) )1/n and z = 
(cos(nθ )  – i ∙ sin(nθ ) )1/n. From the second equation there are two other solutions 
for z: cos(θ )  ± i ∙ sin(θ ) . Adding together these last two solutions for z yields z = 
cos(θ ) . De Moivre’s formula follows from adding the two solutions for z from the 
first equation and equating the result to the solution for 2z from the second equation.

De Moivre continued to work on, or at least promote, areas of mathematics that 
were only very loosely related to his work in probability. He was interested in the 
practical aspects of logarithms, especially natural or hyperbolic logarithms. Tables 
of hyperbolic logarithms would have been useful to him for his two approximations 
to the binomial—normal and Poisson. In the late 1720s there was a movement afoot 
to construct tables of natural logarithms, though it apparently never came to fruition. 
The project got at least as far as De Moivre writing the preface to the proposed set 
of tables. The manuscript version of the preface is in the Macclesfield Collection.46 
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In the preface, De Moivre gives the motivation for constructing tables of natural 
logarithms as filling a practical need in natural philosophy. Many problems in 
natural philosophy depend on the quadrature of curves, the most useful being the 
circle and the hyperbola. Within these two types of curves, the most convenient to 
use are the unit circle defined by x 2 + y 2 = 1 and the equilateral hyperbola that can 
be put in the form y = 1/x. The first quadrature can be found from tables of sines and 
tangents, while the second requires tables of logarithms. Although extensive tables 
of common (base 10) logarithms were available, tables of hyperbolic or natural 
logarithms would be much more convenient. To illustrate his point, De Moivre 
took a numerical example from page 344 of the 1726 edition of Newton’s Principia 
and showed how much easier the answer was to obtain with natural logarithms. 
Since De Moivre refers to this edition of the Principia as the “new” edition and 
makes no mention of Andrew Motte’s 1729 translation of the Principia, the new 
table of hyperbolic logarithms was probably intended for publication between 1726 
and 1729. And the author of the intended table was probably De Moivre’s friend 
William Jones since the manuscript version of the preface was in his possession. In 
his introduction to The Anti-Logarithmic Canon published in 1742,47 James Dodson 
outlines the history of the development of logarithms and the calculation of tables 
of common logarithms with no mention of extensive tables of natural logarithms. 
This was a development that would have to wait for several years to come to pass.
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The social background from which De Moivre’s students came dictated the topics 
that they covered in their lessons. His students were mainly young “gentlemen,” 
which means, in the eighteenth-century use of the word, that they were from 
landed families or from families of some rank or distinction. We can get a general 
picture of the type and level of mathematics that De Moivre taught from a 1745 
newspaper advertisement for the mathematics curriculum at an academy at Heath 
near Wakefield in Yorkshire.1 The academy was privately run and had no formal 
ties to any Christian denomination, unlike the Huguenot academies in France 
that De Moivre attended or some other schools and academies in England. The 
curriculum for a gentleman at the Heath Academy was, “A course in mathematics 
and philosophy, viz. geometry, geography, astronomy, and natural philosophy; 
the valuation of estates, annuities and reversions.” A gentleman, to live as a 
gentleman, must therefore be versed in the ideas of the new sciences as well as 
the practical aspects of his day-to-day life related to a landed estate. The study of 
natural philosophy included topics in mechanics, hydrostatics, pneumatics, and 
optics. As a foundation for this study, the student would have to know arithmetic, 
algebra, Euclidean geometry, and conic sections.

As noted in Chapter 3, according to one eighteenth-century classification of 
mathematics, topics in the field divided themselves into two general areas: pure 
and mixed mathematics.2 Arithmetic, algebra, geometry, trigonometry, and conic 
sections belong to pure mathematics; topics such as geography, astronomy, optics, 
and mechanics belong to mixed mathematics. De Moivre taught his students topics 
in pure mathematics.

Some younger sons of the landed classes took the route of entering the army 
or navy as a profession. They needed mathematics for gunnery and navigation.3 

© 2011 by Taylor & Francis Group, LLC



146 

 Chapter 10    

The pure mathematics part of the curriculum at the Heath Academy for “gentlemen 
of the Army” and “gentlemen of the Navy,” i.e., for those destined to be officers, 
included geometry and trigonometry. At least one De Moivre student, Edward 
Montagu’s younger brother John, followed a career into the army, rising to the rank 
of lieutenant-colonel in the Foot Guards.4

The major centers of study for gentlemen in the eighteenth century were the 
universities at Oxford and Cambridge. There was a religious stumbling block to 
study at these universities; students had to be willing to subscribe to the Thirty-Nine 
Articles of Faith as laid down by the Church of England. Those who did not conform 
to the Thirty-Nine Articles—so-called nonconformists or dissenters—were barred 
from being admitted to Oxford and were not allowed to graduate from Cambridge. 
Consequently, some dissenters set up their own academies in parallel to Oxbridge 
that provided some gentlemen scholars with another route to education. Study at 
Oxford and Cambridge could be used as preparation for the Anglican ministry; 
the primary focus of the dissenting academies was for preparation of students for 
ministry in the dissenting or nonconforming churches, such as those attended by 
Presbyterians, Congregationalists and Baptists. Lay students also attended these 
dissenting academies.

The mathematics curriculum offered at Oxbridge and at the dissenting 
academies was similar. In the early eighteenth century, two different tutors at 
Cambridge, one from Clare College and the other from Magdalene College, described 
the course of study students should follow at university. Robert Greene’s students at 
Clare College began the study of mathematics in their second year at university.5 His 
curriculum from 1707 shows students studying arithmetic, geometry, and algebra 
in their second year, conic sections in the third year, and fluxions, logarithms, 
trigonometry, and infinite series in the fourth year. The treatment of fluxions and 
infinite series at this time was unusual, so it is difficult to say if any of Greene’s 
students ever advanced to this material. The pure mathematics topics were studied 
alongside topics in astronomy, optics, and mechanics. Daniel Waterland began his 
career as a tutor at Magdalene College and rose to the position of master of the 
college. His syllabus circa 1730 shows students beginning their mathematical work in 
their first year of study with arithmetic, geometry, and trigonometry.6 Conic sections 
followed in the second year. After second year, some suggested topics of study 
included astronomy, physics, and optics. The dissenting minister Philip Doddridge 
has described his course of studies between 1719 and 1723 under John Jennings 
at the Kibworth Academy.7 The mathematical subjects taught at this dissenting 
academy were arithmetic, algebra, and geometry in the first year and then selected 
topics from mechanics, hydrostatics, physics, and astronomy in the second year. 
Doddridge continued and built on this curriculum in the academy that he opened 
at Northampton in 1729. At another dissenting academy, the first-year mathematics 
topics included arithmetic, geometry, and trigonometry. The topic of conic sections 
was covered in the second year. Other topics through the second to fourth years 
include optics, physics, and astronomy.8 The surviving evidence from De Moivre, as 
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well as from his friend and fellow tutor William Jones, is that they taught material at 
a level comparable to what was taught at the universities and dissenting academies. 
In view of the family backgrounds of his students, De Moivre would have kept his 
eye almost exclusively on the universities rather than on the dissenting academies 
when preparing his students.

Here is a list of De Moivre’s students separated into “definite” (ones that can 
be confirmed as his students based on source material) and “probable” (based on 
arguments made though an analysis of the subscription list to Miscellanea Ana-
lytica).9 

•	 Definite 
�� Charles Cavendish
�� Peter Davall
�� James Dodson
�� Martin Folkes
�� Edward Montagu
�� John Montagu (2nd Duke of Montagu)
�� George Parker (2nd Earl of Macclesfield)
�� Michel de la Roche
�� Philip Stanhope (2nd Earl of Stanhope)
�� George Lewis Scott
�� Henry Stewart Stevens

•	 Probable
�� James Cavendish
�� William Cavendish (2nd Duke of Devonshire)
�� Richard Edgecomb
�� Francis Fauquière
�� Coulson Fellowes
�� Martin Fellowes
�� William Fellowes
�� William Folkes
�� George Furnese
�� Henry Furnese
�� Isaac Guion
�� Colonel John Montagu
�� William Montague (2nd Duke of Manchester)
�� Henry Pelham
�� Thomas Pelham-Holles (1st Duke of Newcastle-upon-Tyne)
�� Thomas Townshend
�� William Townshend
�� Edward Walpole
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Of the eleven individuals who definitely studied with De Moivre, only three 
attended university, all at Cambridge. Of the eighteen probable students, half of 
them went to university, mostly to Cambridge with a few to Oxford.10 The remainder 
received a gentlemanly education strictly through private tutoring or some other 
route. As to the age of De Moivre’s students, the historical evidence points to De 
Moivre taking on students when they were about sixteen years of age or slightly 
older.11 There are exceptions to this rule such as the case of Michel de la Roche. 
Also Philip Stanhope was prevented from studying mathematics by his uncle and 
guardian, Philip Dormer Stanhope, 4th Earl of Chesterfield; the young Stanhope’s 
studies in mathematics began only when he became independent from his uncle.12

De Moivre had lodgings, not a house. He needed a place to carry out his work as 
a tutor. He also taught gentlemen whose fathers probably expected certain privileges 
based on their rank. The situation is illustrated by another mathematics teacher, 
John Ward who may have been one of De Moivre’s competitors for students. In 
1695, Ward advertised that he taught at home and at the premises of a mathematical 
instrument maker.13 In addition, Ward’s advertisement says that “the nobility and 
gentry are taught at their own houses.” The latter situation describes De Moivre’s 
teaching career exactly. In a 1707 letter to Johann Bernoulli,14 De Moivre described 
his teaching day. He taught from morning until night and had to walk to where his 
students lived in order to give them instruction. He must have taught several students 
in a single day in various parts of the city since he told Bernoulli that much of his 
time was spent walking around London.

Currently, only one set of notes from one of De Moivre’s students is known 
to survive.15 Written in French, they are on arithmetic and algebra, and come from a 
time that is late in De Moivre’s career. The notes were the property of Friedrich Georg 
Brandes. He tutored Georg Friedrich von Steinberg, who came from a distinguished 
family in Hanover. Brandes took his pupil on the Grand Tour; they were in London 
during 1742 and 1743. The lessons on which the notes were based occurred between 
May 7, 1742, and the end of April 1743. The manuscript is written in two different 
hands. In one hand there are notes on algebra, and in the other hand there are notes 
on arithmetic. I have compared the handwriting in the arithmetic part of the notes 
to De Moivre’s letters to Philip Stanhope in the 1740s.16 The handwriting on both 
appears very similar. 

In the arithmetic section, the operations of addition, subtraction, multiplication, 
and division are covered for fractions and decimals. This is followed by material on 
the extraction of squares roots, calculations for compound interest and annuities, 
and arithmetic using British currency with pounds, shillings, and pence. The part 
on algebra has material on the solution to equations in two and three unknowns, 
arithmetic and geometric progressions, and the solution to quadratic equations. 
There is a large overlap of this material with Philip Doddridge’s lecture notes 
on algebra for the course he taught at the Northampton Academy.17 De Moivre’s 
notes contain some additional material, including a few problems in recreational 
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mathematics, some elementary number theory problems, such as finding the integral 
solutions to the equation x + y + x · y = 11 and to x2 + y 2 = 13, and problems related 
to the application of algebra to geometry, such as calculations related to right-angled 
triangles.

Here is one example of De Moivre’s problems in algebra that he set for his 
student: Two people, A and B, are 59 miles apart. Person A travels 7 miles in 2 hours, 
while B goes 8 miles in 3 hours. B sets out one hour after A. How far, in miles, does 
A go before he meets B? To answer the question, the student must equate the lengths 
of time until A and B meet. Let x be the required distance in miles travelled by A. 
Then the distance travelled by B is 59 – x miles. The length of time travelled by A 
is then 2x/7 and the length of time travelled by B is 3(59 – x)/8. Then equating the 
times until they meet yields 2x/7 = 1 + 3(59 – x)/8, since B starts one hour later than 
A. The solution is x = 35 miles. 

What is interesting about this problem, other than the level of mathematics 
taught, is that William Jones, who also worked as a tutor, set the same question 
for his students.18 The problem originates in print in Isaac Newton’s Arithmetica 
Universalis19 which is based on his lectures from Cambridge between 1673 and 
1683.20 The question is from a section on how worded questions can be expressed 
as equations.21 William Whiston, Newton’s successor in the Lucasian Chair at 
Cambridge persuaded Newton to have his lectures printed. Both Whiston and his 
successor, Nicholas Saunderson, taught from Arithmetica Universalis while at 
Cambridge. From this, and the overlap with Philip Doddridge’s lecture notes, it may 
be inferred that De Moivre was tutoring mathematics at least at a level corresponding 
to a student in his early years at Cambridge or at the dissenting academies.

In his youth, De Moivre learned his arithmetic from François le Gendre’s 
L’Arithmétique en sa perfection. Common to books on commercial arithmetic of this 
time, many arithmetical rules are followed by practical examples, often taken from 
commercial settings. In his notes on arithmetic, De Moivre’s approach is similar 
to le Gendre’s. For example, both le Gendre and De Moivre discuss the rule of 
three. Three numbers a, b, and c are given and it is required to find a fourth number 
x through the relationship a/b = c/x. Le Gendre begins his discussion with this 
question: If 24 men have supplies that will last 12 days, how long will supplies last 
for 15 men? This question is followed by several variations on the same question 
using different numbers.22 De Moivre’s numerical example in this case is, if 18 yards 
(verges) of something cost £32, what do 25 yards cost? When it comes to the topics 
of multiplication and division of fractions, both le Gendre and De Moivre show how 
to carry out the operations from a given set of fractions. Numbers only are given 
without any commercial context.

With respect to teaching material on interest and annuities, the amount of 
material in the arithmetic notes is small. And it is very elementary. De Moivre 
gives a numerical example of finding the interest payable for a fraction of a 
year assuming simple interest. This is followed by another numerical example. 
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Using longhand multiplication, the accumulated values after two, three, and four 
years of an amount are found under the assumption of compound interest. De 
Moivre’s last set of problems in interest and annuities is to find the present 
value of an annuity of £1 per year for “1, 2, 3 &c.” years at 4% interest. He carries 
out the evaluation of 1/1.04 + 1/1.042 + 1/1.043 by first giving the values for the 
quantities 1/1.04, 1/1.042, and 1/1.043 without calculation. This is followed by 
a longhand addition of those values. The material on annuities is concluded with 
a problem to find the present value of an annuity of £325 for twenty years at 4% 
interest. What simplifies the question enormously is that De Moivre gives, without 
calculation, the present value of an annuity of £1 for the twenty years.

No other teaching material on annuities that can be attributed to De Moivre 
has survived. We can get an idea of what else he might have taught by looking at 
his friend and fellow tutor, William Jones. Jones’s teaching materials are held in the 
Macclesfield Collection at Cambridge University Library. The collection contains 
notebooks on simple and compound interest, as well as notebooks on annuities.23 
The material covered is similar to what appears in commercial arithmetic books. The 
typical flow of the material is that some general theory is given, followed by worked 
examples. From some of Jones’s correspondence, at least some of the worked 
examples are taken from real situations.24 Jones’s general approach to annuities is 
in line with De Moivre’s notes on algebra that were owned by Brandes. Jones’s 
notebooks have a more thorough coverage of the topics.

De Moivre subscribed to a 1731 textbook on conic sections written for students 
at Cambridge.25 The vast majority of subscribers to the book were Oxbridge students 
or teachers. In view of his purchase of the book, De Moivre undoubtedly taught his 
more advanced students conic sections. His purchase of the book indicates that he 
wanted to know what his students needed to know in order either to prepare them 
for university or to cover the material that they would have taken had they attended 
university. In either case, his students would receive the necessary mathematical part 
of a gentlemanly education. 

There are some indications that De Moivre taught material beyond the 
standard mathematics syllabus at Oxbridge and the dissenting academies. An 1874 
catalog of French manuscripts in the St. Petersburg Library lists a manuscript that 
contains extracts of some lessons by De Moivre on probability.26 It came from a 
large collection of manuscripts owned by Andrzej and Józef Załuski. The collection 
had been transferred from Poland to St. Petersburg in 1794 by Czarina Catherine 
II. After contacting the library, now called the National Library of Russia, I was 
informed that the De Moivre manuscript was no longer held by the library but was 
given its next destination. Since the original owners had founded the first public 
library in Poland in the eighteenth century, the Soviets returned the entire Załuski 
collection of manuscripts to the National Library of Poland in the late 1920s under 
the Treaty of Riga. Upon contacting the library in Poland, I was informed that the De 
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Moivre manuscript, along with most of the Załuski collection, was destroyed during 
the Second World War.27

Both sets of notes, the one on probability and the other on algebra, are, or were 
as the case may be, in French. It is safe to conclude that at least some of De Moivre’s 
lessons were given in French. A sample of size two is insufficient to generalize this 
observation to describe his day-to-day teaching.
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We have already seen that when writing the preface to his uncle’s Ars Conjectandi in 
1713, Nicolaus Bernoulli encouraged Abraham De Moivre to work on some economic 
and political applications of probability. De Moivre was interested, but declined due 
to his teaching workload.1 Five years later, in his preface to his Doctrine of Chances, 
De Moivre suggested that Nicolaus himself was better suited to work on these kinds 
of problems in view of his own work in the area. He also suggested that Johann 
Bernoulli was well qualified to do the work. With respect to Nicolaus, De Moivre 
was undoubtedly referring to a summary of his PhD dissertation, which appeared as 
a supplement to the Acta Eruditorum for 1711.2 Part of Nicolaus Bernoulli’s thesis 
is concerned with probabilities of survival in human populations, as well as the 
valuation of life annuities and life insurance.

With words such as this flowing from De Moivre’s pen, it seems rather odd 
that seven years after the publication of Doctrine of Chances De Moivre published 
a short book on an economic application of probability.3 It turned out to be highly 
influential. This was the 1725 Annuities upon Lives and no reference to any Bernoulli 
can be found in it. The two names that are mentioned in the book are Edmond Halley 
and Thomas Parker, 1st Earl of Macclesfield. Halley’s name appears throughout 
the book; De Moivre used a model for the probability of survival that was inspired 
by a life table that Halley had constructed in 1693 and published in Philosophical 
Transactions.4 It is to Macclesfield that the epistle dedicatory is addressed and only 
there does Macclesfield’s name appear. The letter to Macclesfield opens, “I should 
not presume to inscribe the following piece to your Lordship, were it not that the 
subject it treats of has been made the entertainment of some of your leisure hours.”  
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In knowing how the earl spent some of his leisure hours, De Moivre probably 
knew Macclesfield fairly well. Macclesfield had been a fellow of the Royal Society 
since 1712. De Moivre also tutored Macclesfield’s son and heir, George.

The choice of Macclesfield as dedicatee is an interesting one for two reasons. 
The first is political. De Moivre’s letter, addressed to “The Most Honourable Thomas 
Earl of Macclesfield, Lord High Chancellour of Great Britain,” is dated January 1, 
1725; the book appeared in the booksellers’ stalls near the end of February.5 Parker 
was one of the emerging “new men” of the late Stuart and early Georgian era. He 
rose from the ranks of the minor gentry to become Lord Chancellor in 1718. This 
was one of the top political appointments in Britain; the Lord Chancellor was the 
chief judge in the High Court of Chancery, which handled cases of equity. Parker 
was created Earl of Macclesfield in 1721. Then in an abrupt reversal of fortune, 
Macclesfield was removed from his office as Lord Chancellor on January 4, 1725. 
Problems for Macclesfield had been brewing since late 1724. There had been rumors 
that the masters in Chancery, clerks under the Lord Chancellor, had been misusing 
funds entrusted to them by suitors, and that Macclesfield had been encouraging 
this practice. The total amount of missing funds was estimated at £60,000, a 
staggering sum for the time. A commission had been appointed in November 1724 
to investigate. After leaving office, Macclesfield was subsequently impeached 
and then fined £30,000 in May 1725.6 Knowing within three days of writing it, or 
perhaps even prior to writing it, that Macclesfield was in serious trouble politically 
and perhaps financially, leaving the letter in was either an expression of De Moivre’s 
political naïveté or his loyalty to someone who was close to him in some way. The 
second reason why De Moivre’s choice of Macclesfield as dedicatee is interesting 
is best expressed in the form of a question: Why was Macclesfield interested in 
life annuities in the first place? When the answer to the question is fully unpacked, 
it reveals not only Macclesfield’s motivation, but also the scenario for the future 
impact that the book would have on De Moivre’s career and on the careers of several 
others.

To explore the Macclesfield question, it seems best to follow the King of 
Hearts’ advice to the White Rabbit: begin at the beginning and go on till you come 
to the end. In this case, it means peeling away a number of historical layers dating 
back to 1692 and before, and then examining those layers up to about 1725. All the 
layers involve life annuities in one form or another. This excursion will take a little 
time. In exercising your patience with this excursion, what I hope to achieve is the 
reward of knowledge of the historical context in which De Moivre was writing his 
Annuities upon Lives. This will go some way in getting a handle on comments from 
historians such as Loraine Daston, who has written that in the first two thirds of the 
eighteenth century, mathematicians had little impact on the price of life annuities in 
the marketplace.7

There were two contracts involving annual payments that were contingent 
upon the survival of one or more individuals. The first and oldest was tied to the 
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land, and is known generally as “leases for lives.” A tenant could take out a lease on 
a piece of land where the term of the lease extended until the death of the lessee or 
the death of the last survivor of the lessee and up to two others named in the lease. 
The second contract is what we would normally consider today as a life annuity. A 
purchaser paid a lump sum of money—to the government or to a private company or 
to an individual—in order to receive an annual payment until the death of a named 
individual. The named individual did not have to be the purchaser of the annuity. 
Like leases for lives, there was also the possibility of joint-life annuities that made 
annual payments until the first death or until the death of the last survivor. Although 
these two financial ideas are quite different, they are mathematically equivalent. 
The value of the lease is the present value of all the rental payments, essentially 
annuity payments to the landlord. For a standard annuity, a fair purchase price is the 
present value of expected future payments to the annuitant. There is one difference 
in substance between leases for lives and joint-life annuities. In the leasing system, if 
one person dies, then, following the payment of a fine, that person could be replaced 
by someone else in the lease. The mathematics behind the evaluation of the fine has 
the same underlying principles as the evaluation of standard life annuities.

There were three general types of land tenure that carried into the eighteenth 
century: freehold, copyhold, and leasehold.8 In a freehold estate, the purchaser held 
the property in perpetuity or until he sold it. Freehold estates were often entailed, 
meaning that that there was a specification for how the land passed from one owner 
to the next, often one generation to the next. For copyhold land, the lessee typically 
paid a fine for entry into the lease and then paid annual rents for the term of the 
lease. The payments could run for a fixed number of years or for the lengths of the 
lives of up to three people named in the lease. Traditionally, one life was valued at 
seven times the rental payment, referred to in the contemporary literature as “seven 
years purchase.” Two lives were valued at fourteen years purchase and three lives 
at twenty-one years purchase.9 In a leasehold estate, the lease might specify a fixed 
period or it might be based on the life of the lessee with the possibility that the 
lease would pass to the widow or other named individual on the death of the lessee. 
Evidence for the use of leases for lives dates from at least the time of Henry VIII; a 
1541 statute stipulated that the maximum length of a lease was twenty-one years or 
three lives.10 Based on this long-established system of payments, standard methods 
of compound interest could be used to calculate rents and fines as well as the values 
of estates or leases. By the early eighteenth century, the system of rents and fines 
for leases for lives was so entrenched that it was very slow to change even as the 
mathematics developed to allow a better valuing of the lease. 

Given this system of land tenure, it was in the landlord’s interest to be 
knowledgeable in the calculation of interest and fixed-term annuities. This would 
allow him to set rents and fines, to sell or purchase estates, and to interact fully 
with his steward who collected these moneys. Consequently, interest and annuities 
were common subjects studied by the sons of the landed classes. Practice questions 
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on the valuing of estates and the setting of rents appear in many seventeenth-
century commercial arithmetic books.11 It would have been one of the topics that 
De Moivre taught to his students. Appearing on the subscription list to De Moivre’s 
1730 Miscellanea Analytica were a number of students from landed families, some 
of whose associations with De Moivre go back to the late seventeenth and early 
eighteenth centuries.12 De Moivre’s facility with fixed-term annuities is shown 
through his interaction with Edmond Halley on the subject in about 1706 when De 
Moivre verified a formula for Halley to determine the interest rate in any annuity.13 

Like leases for lives, some forms of life annuities had been around for some 
time. Typically, it was land based. For example, on his death, a landlord might 
bequeath a life annuity to his widow. In order to do this, some land was set aside or 
alienated from the estate, and the rents from the alienated lands provide the annual 
payments. On the death of the widow, the lands reverted to the landlord’s heir. This 
did not require any new or complicated mathematics. The sale of life annuities on 
the open market was a different matter. And the open market only developed in 1692 
as a result of financial need on the part of the government.

The idea of selling life annuities to the public as a means of government finance 
was imported from elsewhere. When William of Orange along with his wife, Mary, 
were imported from the Low Countries in 1688 to become William III and Mary II, 
with them came some Dutch ideas of finance that had been practiced there since the 
sixteenth century.14 The English government needed money, a lot of it, to finance the 
military campaigns of King William III and his allies against France. Campaigning 
began in 1689 and continued yearly during the summer fighting season. The conflict, 
known as the Nine Years’ War, ended with the signing of the Treaty of Ryswick in 
1697. The war consumed about 80% of British public revenues.15 The use of the life 
annuity for British public finance was instituted in an act of 1692 that empowered the 
government to raise £1 million through the sale of these annuities.16 Subsequently, 
the act was called the “Million Act” and the annuities were often called Exchequer 
annuities since they were sold through the Office of the Exchequer. In a sharp break 
from the past, Exchequer annuities were not secured by land. Rather, they were 
secured through an excise tax on beer and liquor. Further, it was an opportunity, 
completely new, for people to obtain a life annuity without having to own land. 

It was at this point that Edmond Halley, by chance, walked onto the life annuity 
stage.17 Caspar Neumann, the Lutheran pastor in the city of Breslau in Silesia, had 
collected data on the total number of births and the number of deaths at each age from 
the church registers of that city. The data covering the years 1687 to 1691 eventually 
found their way to the Royal Society for Halley to analyze. Regarding life annuities, 
Halley did three things with Neumann’s data. First, he calculated a life table, or more 
correctly a population table, which gives estimates of the number of people alive 
in Breslau at each age up to 84. For some reason Halley provided no information 
for ages 85 and up other than the total number of people in that age group. Halley’s 
table is probably the first life table ever to be calculated based on population data. 
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The second thing Halley did was to use the life table to calculate the present value 
of a life annuity at various issue ages. From reading the minutes of Royal Society 
meetings, one gets the impression that this was possibly an afterthought. Halley 
presented his life table to the Royal Society on March 8, 1693.18 It was not until a 
week later that he presented his annuity calculations. The third thing Halley did was 
that he indicated how joint-life annuities, for two and three lives, could be calculated 
from his table. 

In modern actuarial notation, ax is the present value of a life annuity at rate of 
interest i of an amount 1, payable annually at the end of the year to a person aged x 
until death occurs. The value of this annuity is calculated from the formula
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In this expression, the term v t = (1 + i)– t is the present value of an amount 1 to be paid 
t years in the future assuming a rate of interest i. The term lx is the number of people 
alive at age x, so the quotient l x+t / l x is the probability that a person aged x survives 
to age x + t. The values of lx are obtained from a life table, such as the one produced 
by Halley. The product v tl x+t / l x is the expected value of the payment at time t in 
the future, so ax is the expected value of all future annuity payments. The survivor 
probability l x+t / l x is also denoted in the actuarial literature by the expression t  p x. 
Finally, the Greek letter ω stands for the end of life, so lω = 0. The life annuity might 
be compared to a standard annuity for a fixed term, say m years. The usual actuarial 
notation for the value of this annuity is ma . It is calculated from the formula
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In this case, the annuity payments are made with certainty, rather than being contin-
gent on the survival of the annuitant. 

Using his life table and tables of logarithms, and with paper and quill pen 
only, Halley calculated some values for ax. He did this at a 6% rate of interest, the 
legal rate at the time, and at age x = 1 and the ages x = 5 quinquennially through 
70. The burden of hand calculation for these valuations is enormous, so it is not 
surprising that Halley made a couple of numerical errors along the way.19 In view of 
the burdensome nature of the calculations, it is also not surprising that Halley made 
no numerical valuations of annuities for joint lives.

Halley gave five uses for his life table. His fifth use, which appears almost 
as an afterthought, like his annuity calculations themselves, is to use his annuity 
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valuations to comment on the Exchequer annuities offered under the Million 
Act of 1692. The annuities were priced at seven times the amount of the annual 
payment (the traditional seven years purchase for one life) regardless of the age of 
the purchaser. Halley commented that for many it was advantageous to buy these 
annuities. For those aged 65 or younger, a proper price should have been more than 
seven times the annual payment according to his annuity valuations based on the 
Breslau data. At least one person tried to capitalize on the bargain. In 1703, John 
Blunt, a London money-lender advertised that he would buy Exchequer annuities 
from those who possessed them, provided that the person named in the annuity was 
in good health.20 Even a decade after they were initially marketed, Blunt offered 
10% above the original purchase price. 

After Halley’s brief fling with life annuities, he exited this stage. As we shall 
see, he was not exactly “heard no more,” but only heard of very little until 1725. 
His ideas remained before the public. Halley’s paper was reprinted in 1705 and 
1708 in collections of papers entitled Miscellanea Curiosa that were taken from 
Philosophical Transactions. Some of the papers were abridged from the originals 
in Philosophical Transactions and others were translations of the Latin originals. 

After the government entered the life-annuity business, the floodgates soon 
opened. Some enterprising individuals decided to finance their business schemes 
by the sale of life annuities, where the only security was in the success of the 
enterprise.21 For example, in 1714 the Oil Annuity Office commenced operation. 
It was set up to raise £20,000 through the sale of life annuities in order to finance 
a scheme to extract oil from the nuts of beech trees. Others decided to market 
annuities by alienating land to provide the security. Based on a proposal from the 
Church of England clergyman William Assheton, the Mercers’ Company began a 
scheme in 1699 that would provide annuities to widows of clergymen and others in 
a similar class. It was intended that the scheme would be funded by subscriptions 
to it and only secured by alienating a small parcel of land. None of these private 
schemes were properly funded and many went broke. Within only four or five years 
of the 1692 Million Act, individuals were looking to buy or sell life annuities on the 
open market, often, but not always, secured by land. Between 1715 and 1720, the 
open market for life annuities was firmly established with at least one major broker 
in London in business in the mid-1720s. This was an obscure gentleman named 
Thomas Rogers.22 

The growth of the life-annuity business is illustrated in the diagram that shows 
various kinds of annuity sales per quarter between 1690 and 1727. The bottom row 
shows the approximate times of floatation of various government annuity schemes 
to finance the growing national debt, whose beginning is traditionally traced to the 
Million Act of 1692. The row that is second from the bottom shows the approximate 
times that life annuity schemes available to the public were launched to finance 
some kind of undertaking, such as the Oil Annuity Office and the scheme from 
the Mercers’ company.23 The data for the top two rows were gleaned from late 
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seventeenth- and early eighteenth-century English newspapers from the Burney 
Newspaper Collection in the British Library. Each symbol shows the quarter in 
which at least one newspaper advertisement is placed offering a life annuity for 
sale or showing someone’s desire to purchase one. The top row of crosses is from 
advertisements placed by those who can be recognized as brokers; the second row 
of diamonds is based on what appear to be advertisements from individuals. What 
is not shown in these top two rows is the number of advertisements placed in each 
quarter. For individuals, the number is usually one, with a spike very soon after a 
stock market collapse called the South Sea Bubble in mid-1720 and another about 
three years later. 

For brokers, there is a spike in 1723, again about three years after the South 
Sea Bubble. This spike is from a single broker named James Colebrooke, a London 
banker who advertised the sale of annuities on the lives of more than a dozen different 
people who are named in the advertisement.24 The families had probably lost money 
in the market crash and needed to sell their government annuities. Beginning in 
1724, the broker Thomas Rogers usually advertised three life annuities per quarter, 
either for sale or desired to be purchased, in among an often long list of properties 
for sale or lease.

Mathematicians writing commercial arithmetic books soon recognized the 
emerging market in life annuities. At least two responded by writing, or rewriting, 
their books to include material on life annuities. These were John Ward and Edward 
Hatton, both of London. Ward was initially a teacher of mathematics and Hatton was 
a surveyor, probably attached to one of the fire insurance companies in London.25 
Later, after a brief stint working in the Excise Office, Ward taught mathematics in 
Chester. 

Ward was the first to mention Halley’s work on life annuities. In the mid-1690s 
Ward wrote A Compendium of Algebra, which contains an appendix on interest and 
fixed-term annuities.26 He took this appendix and expanded it into a chapter on the 

Life annuity sales by quarter and type from 1690 through 1727.
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subject for The Young Mathematician’s Guide published in 1707. Near the end of 
the chapter, Ward mentions Halley’s 1693 paper, briefly summarizes the contents, 
and reproduces Halley’s table of annuity values at the various ages of issue.27 The 
same material appears in four later editions of The Young Mathematician’s Guide 
that published before 1725. Halley’s table of life annuities at 6% interest remained 
unchanged in the 1719 and 1724 editions, although the legal rate of interest had 
changed to 5% in 1714.28 The amount of work required to redo the table of annuity 
values at a different rate of interest was probably prohibitive. Ward’s synopsis of 
Halley’s work is enlarged in his Clavis Usurae; or a Key to Interest both Simple and 
Compound, which was published in 1710.29 

Edward Hatton published An Index to Interest in 1711 with a second edition 
in 1714. Hatton makes only a brief mention of the contents of Halley’s paper and 
then delves right into life annuities.30 Like Ward, he reproduces Halley’s table of 
annuity values. But then he tries to do something new and different—he tries to 
approximate the values of annuities on two and three lives. Although incorrect, 
his approximation is an interesting one. For two lives, he takes the younger life, 
equates the value associated with a single-life annuity, taken from Halley’s table, 
to a fixed-term annuity, and then solves for the term in that annuity. In the actuarial 
notation given earlier, for a chosen age x, Hatton sets             and solves for m, 
where ax is taken from Halley’s values. The approximation at this step is one that 
De Moivre and others later used. The problematical part in Hatton’s valuation is in 
the next step. He takes the difference in the ages between the two lives and tacks 
the difference onto the term that he obtains in the first step. The resulting annuity 
with the newly derived term becomes the approximation to the joint-life annuity. 
Hatton republished his method in 1721 in a new publication, An Intire System of 
Arithmetic.31

There are some advertisements in the London newspapers for properties 
that had leases for lives. They are less prevalent than advertisements for life 
annuities. The earliest that I could find is from 1710.32 The advertisement was 
made because an act of Parliament required that an estate in Devon be sold in 
order to pay a mortgage on it. Part of the estate comprised land leased on lives. 
Another advertisement six years later is more common among these uncommon 
advertisements.33 A widow, Catherine Thompson, held the lease on lands in 
Hertford owned by St. Paul’s, London. Typical of church lands, it was a lease for 
lives. In her will she stated that her legatee could sell the lease.34 The sale was 
carried out under a decree of the High Court of Chancery and one of the masters 
in Chancery was in charge of the sale. In addition to selling lands held on leases 
for lives, the masters in Chancery also sold life annuities that were held by people 
who had been bankrupted.

This brings us back, finally, to Thomas Parker, 1st Earl of Macclesfield. As 
the person in charge of the Chancery Office, who was possibly getting a cut on the 
sales and other dealings by the masters in Chancery, he would have been interested 
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in what would be a good price for these life-contingent properties. In his capacity as 
chief judge in the High Court of Chancery, he also presided over cases that involved 
some complex property issues. For example, in 1724 a case came to Chancery in 
which a landowner died leaving debts.35 His property, some of which was leased 
for lives and some for rack rents or yearly rental agreements, had been conveyed to 
his heirs, who were now responsible for the debts. The lenders wanted their money 
and Macclesfield, in his judgment, ruled that the properties with rack rents should 
be sold first to cover the debts. The properties leased on lives should be sold only if 
the former sale did not raise sufficient funds. This would simplify what to do with 
the fines that the heirs had already collected on the leases for lives. Macclesfield has 
also been described as “an acquisitive purchaser of land,” so his interest in valuing 
leases for lives may have gone well beyond the courtroom.36

Given his connection to Macclesfield and other landed families, De Moivre’s 
interest in life annuities was almost certainly motivated by financial issues related to 
land. As we shall see, the motivation comes out very subtly in his book. The ability 
to evaluate life annuities sold on the open market was an added bonus from which 
De Moivre benefited in later years.

De Moivre made a very simple insight into Halley’s published mortality data. 
The insight can be obtained immediately by looking at a plot of the number alive at 
each age in the city of Breslau. After age 30, the curve is approximately linear, so 
De Moivre made the natural assumption that the survival probabilities after age 30 
are linear in age. In order to formalize this model, denote the number of years left 
to the end of the table by n, i.e., let n = ω – x. Then De Moivre’s assumption on the 
survivor function can be expressed as

 1 .t x
tp
n

= −

This formula is also obtained from an equivalent assumption that a constant number 
of deaths occur at each age.  

Using this linear survivor function, the value of the life annuity can be 
expressed as 

1 1

.
n n t

t
x

t t

tva v
n

= =

= −∑ ∑

The first term on the right is the sum of a geometric progression that is the present 
value of an annuity for a fixed term of n, or na . Since this value can also be expressed 
as (1 ) /n

na v i= − , it can be easily calculated by hand with tables of logarithms. The 
second term on the right is an arithmetic-geometric progression. After a little algebra 
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the term simplifies to
1 1 11 .na
n in i

 + + + 
 

Combining the two terms yields

(1 )1 1 ,n
x

i a
a

i n
+ 

= − 
 

again an expression easily calculable by hand with tables of logarithms. Using some 
numerical examples, De Moivre showed that he could provide a good approximation 
to Halley’s annuity values when he assumes ω = 86 and x ≥ 30. With this simple 
assumption, the calculation of the value of a life annuity, which for Halley was an 
onerous undertaking, now requires only a few calculations using logarithms. The 
saving in time is enormous. Using the same linear assumption, De Moivre also 
obtained an easily computable expression for the present value of an annuity paid 
for the life of the annuitant or a fixed term, whichever comes first. 

Further, De Moivre showed how to carry out the evaluation of ax when t  p x is 
piecewise linear. It took a little more effort in calculation but, in terms of Halley’s life 
table, it was a realistic assumption when ages under 30 are included. From the plot, a 
reasonable assumption might be that the survivor function for Halley’s data follows 
one type of linear trend for ages 15 to 30 and a different linear trend beyond age 30.

Halley’s estimate of the number of lives at each age.
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When it came to joint lives, De Moivre had to change gears. Using the linear 
assumption and the assumption that the lives are all independent, the present value 
of an annuity of 1 paid to three lives currently aged x, y, and z while they are all 
living is given by the formula

min( , , )

1

1 1 1 ,
n k h

t
xyz

t

t t ta v
n k h

=

   = − − −   
   ∑

where n = ω – x, k = ω – y, and h = ω – z. Any simplification of this expression is 
very unwieldy, so De Moivre changed his assumption on survivorship to get an 
easily calculable result. He assumed that the survivor function has an exponential 
shape rather than a linear one and that, for convenience of finding sums, the potential 
length of life was limitless. For the survivor function, this yields t  p x =  p t

x. Then, for 
a single life under these assumptions,

( )
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This can be solved for px in terms of ax to obtain
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On applying the same principle, the joint-survivor annuity becomes
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On substituting each of px,  py,  and pz in terms of ax, ay, and az respectively, the formula
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is obtained. The value of each single-life annuity can then be determined using the 
linear assumption on the survivor distribution. Again, this is easily calculable by 
hand using logarithms. 
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De Moivre also considered the evaluation of last-survivor annuities. This is an 
annuity of 1 paid to a group of people until the last person expires. For three lives 
aged x, y, and z at issue, the present value of this annuity is denoted by       in the 
actuarial literature. Through simple probability arguments, it can be shown that 

.x y x xy xz yz xyzxyza a a a a a a a= + + − − − +

The joint-survivor annuities can all be calculated using De Moivre’s methods in-
volving the mixture of linear and exponential survivor assumptions. 

Using only one example, De Moivre checked the accuracy of making the 
incompatible linear and exponential assumptions together. For two lives, under the 
linear assumption only the present value of the last-survivor annuity is given by

 
min( , )
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De Moivre was able to evaluate this directly and compare it to the value 
of                        , where axy is evaluated using the mixture of the linear and 
exponential survivor assumptions. For x = 36 and y = 46, he found, incorrectly,37 
very close agreement between the two methods of calculation. After that, he never 
questioned the incompatibility of the two assumptions.

From these basic results, using the linear assumption, possibly in combina-
tion with the exponential assumption, much of the remainder of De Moivre’s re-
sults follow; only the situation changes. De Moivre considered three additional 
situations with respect to survivorship: (1) reversions, (2) successive lives, and 
(3) renewal of lives. The first two of these situations pertain both to life annu-
ities bought and sold on the open market and to annuities related to land tenure. 
The third one pertains only to land—in particular, to leases for lives. In the first 
type of survivorship, a reversionary annuity for a given person is one that makes 
lifetime payments to that person beginning on the death of another person. There 
are variations on this annuity. It could be paid to one person after the death of the 
last survivor of two other people. It could be paid on the joint lives of two people 
beginning on the death of a third. In a succession of lives, the annuity is initially 
paid to a given annuitant. On that person’s death, the payment is made to a suc-
cessor named by the original annuitant. When there is an option for the renewal of 
lives, payments could continue indefinitely. Without renewal, payments would be 
made until the last survivor dies. If the annuitants exercise their option of renewal, 
then on the death of one of the annuitants, an amount is paid (a fine) to replace 
that person with someone else. The renewal of lives only occurrs in the case when 
there was a lease for lives.

xyza

x y xyxya a a a= + −
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Reversionary annuities were available on the open market; their origins, how-
ever, were in land tenure and the protection of widows and children of the landlord. 
The tradition of the marriage settlement is one typical example. Here, a husband 
contracts, prior to marriage, that on his death his wife will receive annual payments 
for her life. Payments to the widow are guaranteed by the husband alienating part 
of his land for this purpose. The Mercers’ Company annuity scheme is a type of 
reversionary annuity that was available on the open market. By paying into a fund, 
payments could be made to the widow after the death of her husband. This would be 
attractive to someone like a clergyman whose income derived from land. This was 
not land that he could alienate, but rather land owned by the Church of England. On 
the clergyman’s death, his income from the Church ceased and so payments to the 
family would also cease. 

At this point, it is useful to provide an annuity problem that William Jones set 
for his students around 1740.38 The problem is to find the fine for a renewal of a lease 
for lives. As stated by Jones, the problem runs,

An estate of 700£ p ann consisting of 14 Farms of 50£ p. ann each. is let on 
leases of three lives: and upon the failure of any one of the three lives in each 
lease, the Landlord is to receive a fine of £5; and to add any new life to the lease 
that the Tenant pleases to name. Quere how much yearly rent ought to be added 
to the Rent Roll of the said Estate, on account of the chances of Fines?

The question is actually based on a request that Jones received from the Scottish 
aristocrat John Hope, 2nd Earl of Hopetoun, in 1740. Hopetoun’s letter opens with

In this country leases for lives being a new thing[;] we are not much acquainted 
with the method of valuing them, and it happens at present to be of some 
consequence to me to have a true solution of the following question which I 
know no body can give me with more accuracy than you.

What follows immediately in Hopetoun’s letter is exactly the same question that 
Jones gave to his students. The connection of annuity valuations to land tenure is 
explicit. And the involvement of a mathematician as consultant is interesting.

Unlike Jones’s correspondence with Hopetoun, the connection of De Moivre’s 
Annuities upon Lives to land tenure is not explicit in the book. This is a source of 
confusion to many when trying to connect the book to applications. Without any 
explicit connection, the seemingly most obvious possibility for the modern reader 
is the open market in life annuities, as the book begins with the evaluation of life 
annuities. However, the section in the book on successive lives and reversions,39 like 
Jones’s correspondence, points directly to the practice of copyhold leases and not to 
the usual annuity market. For example, De Moivre’s Problem 16 in Annuities upon 
Lives is a direct answer to the problem of valuing a lease on three lives when there 
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is a fine to be paid on the replacement of any expired life. The problem reads, “If 
there be three equal Lives, and A or his Heirs are to have a Sum f paid them upon 
the Vacancy of any of those Lives, what is the Expectation of A worth in present 
Money.” De Moivre’s method of solution is based on the exponential survivorship 
model. In an undated letter to Jones, De Moivre solved a simpler version of this 
problem the same way and referred to the sum paid specifically as a fine, 40 the usual 
term in the renewal of a lease for lives.

De Moivre’s Annuities upon Lives had impact very soon after its publication. 
It occurred in three ways: (1) his results resonated among his friends and 
connections, one of whom was highly placed politically; (2) more publications, 
directly inspired by De Moivre’s book, appeared on the valuation of life annuities; 
and (3) some mathematicians, as well as others, began to offer their services 
to the public as consultants in the valuation of life annuities. The writers of 
annuity books were typically not necessarily professional, or even accomplished, 
mathematicians. On the other hand, they did have an intimate knowledge of either 
the London financial industry or of landed estates. We have already seen Jones 
working as a consultant. De Moivre also worked as a consultant, holding office at 
Slaughter’s Coffeehouse.

Newton owned a copy of Annuities upon Lives.41 So did Halley.42 William Jones 
may have owned a copy. He certainly had access to one; he made an extensive set of 
notes on the book, notes which have survived.43 Perhaps not satisfied with De Moivre’s 
linear assumption on the survivor curve, Jones tried to fill in the missing ages at the 
end of Halley’s Breslau table. In that way, annuity values could be computed based 
on a complete table, unlike De Moivre’s model. Brook Taylor also filled in missing 
ages in Halley’s table and then went on to calculate, by hand, the present value of a 
life annuity at each issue age from 1 through 90 using interest rates of 4% and 5%, 
a very time-consuming task. Based on these single-life annuities, he also calculated 
the present value of some life annuities for two, three, and four lives.44 In each case, 
he used De Moivre’s method to evaluate joint-life annuities. It comes as no surprise 
that Macclesfield also possessed a copy of Annuities upon Lives.45 Although a highly 
placed politician, he was not the one that made calculations, or had the calculations 
made for him, based on De Moivre’s methods. Among the papers of Robert Walpole is 
a set of annuity valuations.46 There is a table whose entries contain the present values 
of life annuities at issue ages 1 through 68 using an interest rate of 4%. The claim at the 
head of these valuations is that they were based on Halley’s Breslau table. Where De 
Moivre enters is that there are valuations for a few joint-life annuities for two and three 
lives. Like Brook Taylor’s, these valuations use De Moivre’s methodology for joint-
life annuities. Other than William Jones’s manuscripts, there is no surviving evidence 
to indicate whether any of them applied any of the results that De Moivre obtained in 
the book to the actual purchase of any form of life annuities.

In 1727, a book entitled A New Method for Valuing of Annuities upon Lives47 
appeared by the London accountant and writing master Richard Hayes. He wanted 
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to fill a niche left empty by De Moivre. Annuities upon Lives requires some 
mathematical facility in order to come up with an actual numerical valuation of a 
life annuity. Consequently, Hayes’s book contains an extensive set of tables setting 
out the present value of a life annuity for a single life at several possible values of 
annual payments (£1 to £10 in steps of 1, £10 to £100 in steps of 10, and £100 to 
£1000 in steps of 100) each at rates of interest 4%, 5%, 6%, 7%, and 8%. The age 
at issue for the annuitant ranges from 30 to 73. Prior to this book, Hayes had written 
several other books related to various financial transactions in the city.48 Together, 
Hayes’s books indicate an intimate knowledge of a wide range of the mercantile and 
financial sector in London. Hayes must have thought the new tables for life annuities 
would be useful for traders in the market.

After Hayes, several books on life annuities came out in the 1730s. They were 
all aimed at landlords. In his 1730 book, The Gentleman’s Steward and Tenants 
of Manors Instructed,49 John Richards of Exeter describes in detail the different 
methods of land tenure. He gives many numerical examples of how to calculate 
the value of these tenures, taking into account various types of rent and other 
fees attached to the estate. In all of these calculations, he takes into account the 
probabilities of life. Richards uses De Moivre’s linear assumption for the survivor 
distribution and provides tables at 4%, 5%, 6%, 7%, and 8% for the values of single- 
and joint-life annuities at various ages.50 Richards’s book was soon followed by 
three others: an Irish edition of De Moivre’s Annuities upon Lives published in 1731 
and two books on evaluating annuities and leases, one by Gael Morris published in 
1735 and the other by Weyman Lee published in 1737.51 What these books have in 
common is that they all mention De Moivre’s work on annuities, though some do 
not use his results but try to come up with their own methodology, including use of 
the approximation               . Macclesfield owned a copy of Richards’s book. After 
his death in 1732, his son obtained copies of Morris’s and Lee’s books.52 

The Irish reprint of Annuities upon Lives was probably not sanctioned by De 
Moivre. One reason that the book appeared in print in Ireland was that the Irish 
printer involved saw a market for the book and at the same time did not have to pay 
any copyright fees in England.53 As to the market, leases for lives were common 
in Ireland. As a result of Irish Catholic support for James II during the Revolution 
of 1688 and later, laws were enacted that restricted land ownership by Catholics in 
Ireland. The landowner, usually Protestant and sometimes an absentee, let his land 
to a number of prosperous middlemen, often Catholic, who sublet the land to tenant 
farmers.54 The lease for the middleman was equivalent to purchasing an annuity, 
where the annual payments were the rents collected from the tenant farmers above 
the middleman’s own rent. The fine was equivalent to the sum required to purchase 
this annuity. The material added to De Moivre’s original is concerned initially with 
life-annuity valuations (using the relationship              that Hatton had used earlier) 
and then with issues related to the purchase of freeholds and the present value of 
fines for lease renewals.55
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These books did not, as Loraine Daston has pointed out, have much impact 
on setting the price of annuities as they were offered in the market. They were, I 
believe, used as reference guides for buyers. In addition to the earls of Macclesfield 
owning these books, two examples support this belief, one from real life and one 
from fiction.

 Henry Stewart Stevens was a barrister and one-time student of De Moivre. 
By the 1740s, Stevens had purchased property in the countryside and had set himself 
up as a country squire in Berkshire. Soon tiring of country life, Stevens wanted to 
purchase a life annuity on his own life, thus having an annual income without the 
worry of estate management. With this and other money he had, he planned to leave 
his squiredom and settle in France or Italy.56 Someone else, a physician named Richard 
Allen, had already purchased an annuity from the Exchequer Office on Stevens’s life 
that paid £100 per year. Stevens wanted to buy this annuity from Allen. On February 
10, 1744, Stevens wrote to Allen with an offer. Receiving no reply, he then wrote to 
one of Allen’s neighbors outlining the reasons why Allen should sell; essentially, Allen 
needed a large amount of cash to settle an estate. Stevens offered one thousand guineas 
(£1050) for the annuity. He argued that the amount was a good price since he felt 
that if Allen sold the annuity on the open market he would get only £700 for it,57 the 
standard seven-years purchase. Stevens took his offer price from Thomas Simpson’s 
1742 Doctrine of Annuities and Reversions,58 the most current, mathematically sound 
pricing he could find. He even included a copy of the book in his correspondence with 
Allen’s neighbor. Allen must not have sold. Stevens remained a country squire and 
eventually held the position of deputy lieutenant of the county of Berkshire.

The fictional example is from Henry Fielding’s Tom Jones, published in 1749. 
A basic outline of the story is that Squire Allworthy is rich and has no children. His 
sister Bridget has married a Captain Blifil and they have a son, the odious Master 
Blifil who is to be Allworthy’s heir. The Captain had married Bridget for her money. 
There is also an illegitimate child, Tom Jones, whom Squire Allworthy has taken in 
and raised with Master Blifil. In Chapter VIII, Book II of the novel, Fielding writes 
of Captain Blifil’s plan to use Allworthy’s money to make changes to the house and 
gardens of the estate on Allworthy’s death:

Nothing was wanting to enable him to enter upon the immediate Execution of 
this Plan, but the Death of Mr. Allworthy; in calculating which he had employed 
much of his own Algebra besides purchasing every book extant that treats of the 
Value of Lives, Reversions, &c. From all which he satisfied himself, that as he 
had every Day a Chance of this happening, so had he more than an even Chance 
of its happening within a few Years.59

Of course, Captain Blifil and Bridget die before Allworthy. After some adventures 
surrounding Tom’s love interest, Sophia Weston, who is engaged against her wishes 
to Master Blifil, it turns out that the good-hearted but illegitimate Tom is Bridget’s 
eldest son. With Master Blifil revealed to Allworthy as the odious man he is, Tom 
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becomes Allworthy’s heir, marries Sophia, and all ends happily. Although his actions 
are the subject of satire by Fielding, the fact that Captain Blifil had his head buried in 
some annuity books indicates that reading these books was a fairly common activity 
among the landed, as it was for the Macclesfields, apparently.

Beyond the books, another reference guide for the annuity or lease purchaser 
was the private consultant. There is very little surviving evidence of this activity 
in and around the 1730s, but it does exist. William Jones’s papers provide some 
examples. In addition to his 1740 correspondence with the Earl of Hopetoun, Jones 
also handled two other queries in the 1730s. On May 12, 1732, fellow Welshman 
Moses Williams wrote to Jones asking him for help. A woman aged 32 was receiving 
an annuity of £200 for her lifetime and the lives of two others, a man aged 65 and 
his wife, aged 63. On the death of the man and his wife, the woman was to receive 
£400 per annum. Williams asked Jones to determine for him the value of the annuity 
and the value of the reversion. A year later, John Fortescue wrote to Jones with an 
annuity question. Fortescue was to pay a man a lump sum of £4500. The man was 
willing to take the money as a life annuity and so Fortescue wanted to know what the 
annual payment would be when the interest rate was 3 or 3.5%.60 

There were others, besides Jones, who did this kind of consulting. In a 1729 
advertisement directed at the nobility and gentry, the land surveyors John and 
Samuel Warner indicated several services they offered in addition to their normal 
surveying and mapping of estates:

They [the Warners] likewise Compute Interest, Estimate the Value of Annuities 
for Lives, Calculate the present Worth of Leases, Rents or Pensions in Possession 
or Reversion at any Rate of Interest, Simple or Compound.61

If they were advertising, they must have perceived that there was a market for life-
contingent calculations, however crudely done, related to land.

After the publication of Annuities upon Lives, Abraham De Moivre also 
carried out work as an annuity consultant in addition to, and possibly eventually 
in place of, his work as tutor. He also, to a lesser extent, gave advice on games 
of chance.62 There is only one known annuity valuation in De Moivre’s hand.63 It 
is undated, through in all probability it is post-1725.64 Also, the recipient of the 
valuation is unknown and there is not enough information to determine how De 
Moivre obtained his numerical results. All that is known is that De Moivre evaluated 
an estate in which a reversion was involved. The valuation was from the point of 
view of someone buying the reversion; De Moivre was providing guidance to the 
buyer. The estate was originally worth “25 years purchase.” De Moivre gave his 
evaluation for three different scenarios depending on how many years had elapsed 
since the estate was first purchased.

When De Moivre published the second edition of Doctrine of Chances in 
1738, he placed an advertisement in a London newspaper in July of the next year. 

© 2011 by Taylor & Francis Group, LLC



170 

 Chapter 11    

Initially, it was addressed to the subscribers of the book who had not obtained their 
copies. After telling his subscribers that they could pick up their book at Slaughter’s 
Coffeehouse, De Moivre added,

He also takes this Opportunity of making it his Request to those, who are pleased 
to consult him by Letter about any Case relating to Leases, for a Number of 
Years certain, or to Annuities upon Lives, to mention what the Rate of Interest 
is, which is agreed upon between the contracting Parties.65

De Moivre dealt with his clients in confidence regarding these valuations. Presum-
ably, his clients were bargaining with others and came to De Moivre to seek a rea-
sonable price without the other side’s knowledge.66 The confidential nature of his 
dealings with clients is seen in an advertisement he placed in another London news-
paper two years later in 1741.

If the Gentleman who Yesterday spoke to Mr. A. De Moivre upon the Pavement 
in St. Martin’s-Lane, about a Question relating to Annuities on Lives, will come 
to Slaughter’s Coffee-house, he shall receive Satisfaction about the same; and his 
Pardon asked for the Answer he received, it being not immediately recollected, 
by Reason of different Dress and other Circumstances, that he was the same 
Person who some Days before had proposed the Question.67

Once more De Moivre’s cantankerous nature begins to rise up, this time while he 
is trying to maintain the confidentiality of his clients. One can only imagine the 
interaction between De Moivre and the gentleman on the pavement as De Moivre 
thought the person in front of him was trying to get information on someone else’s 
business dealings. 

There is a hint of De Moivre’s recognition of the necessity to keep a confidence 
that appears in an autograph book that he signed for the Church of England 
clergyman and antiquary Cox Macro.68 De Moivre and Macro may have met through 
mutual connections with Joseph Goupy, designer of the frontispiece for Doctrine of 
Chances, or perhaps Goupy’s pupil in drawing, Brook Taylor. Macro was Goupy’s 
patron.69 Macro’s book contains entries from several people; each person provided a 
signature with some kind of quotation or, in one case, a drawing. De Moivre wrote 
in the book, “Est et fideli tuta silentio merces” and then signed his named. This 
is a line taken from Book III.2 of the Odes, written by the lyric poet Horace of 
ancient Rome. A translation of the line is “There is also sure recompense for faithful 
silence.” The poem originally advised the reader not to divulge the mysteries of the 
gods;70 but “modernized” to the eighteenth century, it equally applies to De Moivre’s 
relationship with the gentleman on the pavement outside Slaughter’s Coffeehouse.

A smidgeon of evidence survives indicating that De Moivre’s methods for 
the valuation of life-contingent contracts related to real property were widely used. 
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Just prior to De Moivre’s death in 1754, but well after the 1st Earl of Macclesfield’s 
death, the High Court of Chancery explicitly recognized De Moivre’s work. The 
recognition came in the form of a rejection. In a case that it considered involving 
an undervalued reversion on an estate, the court ruled that it could not impose De 
Moivre’s methodology.71 The key issue for the court was that there was no fraud 
involved when the two parties came to an agreement on the purchase price. The 
court did recognize the good deal that the purchaser of the reversion enjoyed, and so 
did not award any court costs to him after it ruled in his favor.72

The foothold established by annuities as an application of probability moved 
further from land and more into the general life annuity marketplace as the eighteenth 
century progressed. By the end of the eighteenth century, attention to annuity and 
related calculations became the main focus of British activity in probability.
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De Moivre’s Miscellanea Analytica appeared in 1730.1 The only known advertisement 
for its availability on publication is in the May 1730 issue of The Present State of the 
Republic of Letters.2 The book was sold by subscription with De Moivre controlling 
the distribution of the copies. This situation is the same as the first edition of Doctrine 
of Chances. The difference is that the subscription list to Miscellanea Analytica was 
published with the book. 

A careful examination of the list provides some insight into De Moivre’s 
knowledge community: his close friends, his colleagues, his students, and his 
patrons.  The great majority of subscribers were a small group of the Whig political 
elite that had close ties to one another through blood, through marriage and through 
the vast political patronage web set up by Robert Walpole that was at the foundation 
of how he ran the government. There were a few Huguenot friends and most of 
his surviving mathematical friends: John Colson, Alexander Cuming, Martin 
Folkes, William Jones, John Machin, Colin Maclaurin, Edward Montagu, Nicholas 
Saunderson, James Stirling, and Brook Taylor. Newton was dead by this time, but 
he was represented by John Conduitt, who had married Newton’s niece. For some 
unknown reason, his long-time friend and colleague Edmond Halley is missing 
from the list. Beyond the mathematicians, some members of the Royal Society were 
among the subscribers. Many of this group were physicians, aristocrats, or Members 
of Parliament.3

The choice of publishers for Miscellanea Analytica, Jacob Tonson and John 
Watts, also reflects De Moivre’s high-level Whig connections. There are two Jacob 
Tonsons—uncle and nephew. The nephew was the active publisher in 1730 and 
therefore responsible for getting Miscellanea Analytica into print. The uncle had 
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retired from working as a publisher in about 1720, but remained active in editing and 
in advising his nephew. The uncle was also the one with strong political connections. 
He was a founder and permanent secretary of the Kit-Cat Club, which was devoted 
to furthering Whig political objectives. Its membership included leading literary 
figures and politicians. Robert Walpole was a member. About one-fifth of the known 
members of the club, or their surviving sons in 1728, subscribed to Miscellanea 
Analytica.4 With the exception of Walpole, these subscribers from the Kit-Cat Club 
were all aristocrats. It is likely that De Moivre’s political connections helped him to 
secure the Tonsons as the publishers for his book.

Most subscribers to Miscellanea Analytica bought a single copy, perhaps for 
themselves or perhaps just to support De Moivre. Others supported De Moivre more 
lavishly. John Conduitt purchased fifteen copies and former pupil John Montagu, 
2nd Duke of Montagu, purchased ten. They may each have kept one, if that. Other 
multiple-copy subscribers had an interest in mathematics as well as in supporting 
De Moivre. Martin Folkes, to whom Miscellanea Analytica is dedicated, purchased 
seven copies; three remained in his library at his death, including a presentation copy 
printed on large pages with gilded edges.5 The presentation copy was bound in Turkish 
leather, imported goatskin that was used only in the highest quality bookbinding 
work.6 Colin Maclaurin purchased six copies, all meant for mathematical colleagues 
in Scotland.7

By examining the subscription list in a slightly different way, attempts can 
be made at answering two questions that come to mind: Why did De Moivre put 
this material into a book rather than writing a number of articles that would appear 
in Philosophical Transactions, for example? Why did some wealthy individuals, 
aristocrats among them, buy Miscellanea Analytica when they may not have been 
interested in the actual contents of the book?

A simple answer to the first question might be found by ignoring the 
subscription list and examining the Royal Society’s treatment of mathematics, 
both at its meetings and in its publications. A read through the Royal Society’s 
minutes of their meetings in the journal books shows scant attention paid to De 
Moivre’s primary research interests—topics in pure mathematics.8 An examination 
of Philosophical Transactions shows a decline in interest in mathematics between 
the two decades of the 1710s and the 1720s. From 1710 to 1719, about 10.5% of the 
papers were on topics related to pure mathematics or mathematical physics. From 
1720 to 1729 the percentage declined to about 2.5%. The simple, but incomplete, 
answer is that De Moivre needed an outlet for his mathematical publications, and 
with declining interest in mathematics within the Royal Society, he had to create 
his own. Due to the continuing necessity to teach to make a living and the time that 
it involved, he accumulated his work over several years and then went to his Whig 
patrons to get his work into print.

There is a more complex answer to the first question. In the introduction to his 
work that describes the priority dispute between Newton and Leibniz, Rupert Hall 
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outlines some of the differences between the pursuit of mathematics today and in 
the eighteenth century. After noting that “success in the scholarly or academic world 
depended far more on a militant combativeness then than it does now,” Hall goes 
on to say:

To put it crudely, an achievement in scholarship, science, mathematics, or 
medicine was a marketable commodity, a highly personal property: The 
recognition it conferred might be a first step toward attainment of a bishopric 
or an office of state. And the rules of the marketplace were both capricious and 
very different from those that now prevail. From the late nineteenth century, 
peer evaluation has been the rule of science and learning in the civilized world; 
and laymen have largely accepted the judgment of the internal experts. In the 
lifetimes of Newton and Leibniz what counted most was not the opinion of 
one’s peers but the direct impression made on princes and ministers, prelates and 
magnates, who exercised enormous personal powers of appointment.9

De Moivre had a number of ministers and magnates on his subscription list. As late 
as 1730, he may have been continuing to demonstrate his talents in pursuit of the 
elusive patronage position that never came his way.

To try to answer the second question, it is useful to think of Miscellanea 
Analytica as a luxury item in the book world. One guinea was near the high end 
as a price for a book. By purchasing one or more subscriptions, and regardless of 
whether the book was taken home or left with De Moivre, the subscriber could be 
identified as a patron of the leading mathematician in England after Newton. Having 
the book on the subscriber’s bookshelf would be an indication of that patron’s 
erudition or intellectual union with an important aspect of science. In a sense, the 
subscriber identified himself with the scientific quality of the author. Horace Walpole 
claimed to be very poor at mathematics,10 and yet had a copy of the first edition of De 
Moivre’s Doctrine of Chances in his library.11 It would not have been an easy read 
for Walpole, but its display would indicate Walpole’s awareness of the importance 
and popularity of the subject, as well as the importance of the book’s author.

For De Moivre, the sale of Miscellanea Analytica by subscription had two 
advantages. The first is that he knew he could cover the printing costs prior to 
publication. The second, and more important, reason is that, since he controlled the 
distribution of the book, he could give copies of the book to those nonsubscribers 
who he thought should receive it. These gift copies would be taken from any extra 
copies De Moivre had printed or from the books left with him by subscribers. This 
was probably how James Stirling received his copy of the first edition of Doctrine 
of Chances. For Miscellanea Analytica, this type of distribution is illustrated by 
the situations of Nicolaus and Johann Bernoulli. Despite the fact that they had not 
corresponded with De Moivre for fifteen years or more, both Bernoullis likely 
received copies of Miscellanea Analytica directly from De Moivre. In a 1731 letter 

© 2011 by Taylor & Francis Group, LLC



176 

 Chapter 12    

to Nicolaus Bernoulli, Gabriel Cramer wrote that if Nicolaus had not yet received 
a copy of Miscellanea Analytica, he should soon receive one from De Moivre. 
The reason was that during Cramer’s visit to London prior to the publication of 
Miscellanea Analytica, De Moivre told Cramer of his plans to send copies of his 
book to both Johann and Nicolaus Bernoulli.12 

As its title suggests, Miscellanea Analytica is a collection of results on a variety 
of mathematical subjects. Several of the major topics, whose results date from the 
mid-1720s and before, were described in Chapters 7 and 9. Material in Miscellanea 
Analytica that was discussed in Chapter 7 includes De Moivre’s unique approach to 
summing infinite series of numbers and his work on centripetal forces. Two topics 
described in Chapter 9 are the so-called “De Moivre’s theorem,” which states a 
trigonometric relationship involving            , as well as the theorem’s application 
to solving Cotes’s problem regarding trinomial divisors; and the development 
of a generating function to solve a problem in probability dealing with the sum 
on the faces that show in the throw of several dice. There is much more material 
that appears in Miscellanea Analytica. De Moivre provides greater detail to his 
trigonometric solution to the duration of play problem, as well as a further treatment 
of recurrent series. He delves into enough additional problems in infinite series 
that the French academician, Pierre de Maupertuis, who was not interested in these 
types of problems but subscribed to the book anyway, found Miscellanea Analytica 
not to his liking. Maupertuis’ subscription was probably connected to De Moivre 
sponsoring Maupertuis for fellowship in the Royal Society during the academician’s 
visit to London in 1728. After much ink spilt on series, there is an entire section in 
Miscellanea Analytica devoted to responding to Montmort, although the man had 
been dead for a decade or more. Finally, there is his major contribution to probability 
that treats the normal approximation to binomial probabilities.

The part of Miscellanea Analytica containing the response to Montmort 
(Book VII) has the title “Responsio ad quasdam criminationes” or “Response to 
certain accusations,” in translation. De Moivre begins his response by giving a 
brief outline of how he began to work in probability theory and of Montmort’s re-
sponse to reading De Mensura Sortis given in his letter to Nicolaus Bernoulli that 
appears in the second edition of Essay d’analyse. This is followed by a list con-
taining several of Montmort’s comments and complaints about De Moivre’s work. 
To end this introductory material, De Moivre gives a general defense of his own 
work. The particulars take up the rest of Book VII. In the middle of his defense, De 
Moivre could not resist quoting part of Bernard de Fontenelle’s éloge of Montmort 
from 1719. In the quoted extract, after mentioning De Moivre in the éloge and the 
dispute with Montmort, Fontenelle did a double entendre on Montmort as lord of 
the manor in the role of landowner and mathematician. De Moivre showed that he 
understood the double entendre by writing in Miscellanea Analytica that he asked 
Pierre Varignon to pass on his thanks to Fontenelle for the compliment he received 
in Montmort’s éloge.

1i = −
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Book VII shows De Moivre at his best and at his worst. He is at his intellectual 
best in the development of his generating function to solve the dicing problem for 
the sum of the faces that show in the throw of the dice. This is clouded somewhat 
by a preface containing a long discussion devoted to why he could not possibly 
have relied on either edition of Montmort’s Essay d’analyse to obtain his answer, 
which appeared without proof in both De Mensura Sortis and Doctrine of Chances. 
There is no mention in Miscellanea Analytica that his solution using a generating 
function was obtained after the publication of Doctrine of Chances. All the 
manuscript evidence points to a different method of solution prior to the 1720s that 
was independent of Montmort’s approach, with the generating function dating from 
the mid-1720s. Further into the dark side is De Moivre’s explanation of why he 
and Montmort stopped corresponding. He claims that both he and Montmort were 
too busy. I have already commented on this in Chapter 7; as I said, De Moivre’s 
explanation just does not ring true.

There is a lot more to Book VII. For example, Montmort had criticized De 
Moivre for his use of finite differences without referencing Montmort’s work in 
Essay d’analyse when solving some problems in probability that require summation 
of series. De Moivre’s first technical response in Book VII to Montmort’s complaints 
is to review the theory of finite differences from Newton’s original work and then to 
build on it substantially. Using one of Montmort’s problems in finding the sum of a 
particular infinite series, De Moivre shows that there is more than one way to obtain 
the solution, the method of finite differences being only one of them.

After finite differences, De Moivre goes on to treat combinatorial problems 
in Book VII. Initially, he notes favorably that Montmort had developed methods 
for finding combinations based on Blaise Pascal’s arithmetical triangle from the 
middle of the seventeenth century and on methods put forward by John Wallis 
later in the seventeenth century. De Moivre then writes that Montmort’s treatment 
of combinations went beyond what had been done earlier. On the other hand, De 
Moivre found that for some problems it was difficult to apply the usual methods, so 
an approach using probability was preferable. 

He begins the discussion of his probability approach by illustrating it 
with simple permutations and combinations. Suppose, for example, that C is the 
number of combinations of n different objects taken r at a time. By De Moivre’s 
definition of probability, the probability of obtaining a particular combination is 1/C. 
Consequently, if we can find the probability of a particular combination occurring, 
by inverting the solution we can find the number of combinations. For example, 
consider finding the probability of selecting three different items from n in any order. 
De Moivre would argue this as follows: the probability of selecting any of the three 
items is 3/n; given that one item has been selected, the probability of selecting one 
of the other two is 2/(n – 1); and given the first two selections, the probability of 
obtaining the last item from those that remain is 1/(n – 2). The required probability 
is the product (3/n)(2/(n – 1))(1/(n – 2)), so the required expression for the number 
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of combinations is n(n – 1)(n – 2)/(3 · 2 · 1).   After simple examples such as this, 
De Moivre went on to consider much more complicated ones. 

What might be considered a quirky approach to combinatorics found some 
traction in Britain. Thomas Simpson acknowledged this approach in 1740 at the 
very beginning of his Nature and Laws of Chance as he was dealing with simple 
permutations and combinations.13 Much further removed is the influence on the 
Reverend Philip Doddridge. Until his death in 1751, Doddridge used De Moivre’s 
method to justify the derivation of simple permutations and combinations in his 
mathematics lectures at the dissenting academy at Northampton.14 The way in which 
it is set out in his lecture notes indicates that Doddridge used the method to teach his 
students how to compose and write down a good logical argument.

Some of Book VII contains new material such as the development of his 
generating function for the dicing problem. Other parts of Book VII are a rehash 
of old material with some small additions and comments. For example, De Moivre 
goes over Woodcock’s problem that he solved and published in Doctrine of Chances. 
The problem is a variation on the gambler’s ruin problem with the pot increasing in 
a specified way after each round of play. In his treatment of Woodcock’s problem in 
Miscellanea Analytica, De Moivre initially stated the solution that he had obtained 
in Doctrine of Chances in 1718.15 Then he quoted an extract from a letter written 
by Nicolaus Bernoulli to De Moivre in which Bernoulli gave a simple solution to 
the problem. The extract had also appeared earlier in Doctrine of Chances, followed 
by an acknowledgment from De Moivre that Bernoulli’s solution was very simple. 
Following the extract from Bernoulli’s letter in Miscellanea Analytica, De Moivre 
played a little tit-for-tat with Bernoulli by giving an even simpler solution to 
Woodcock’s problem. He said that his former student, the barrister Henry Stewart 
Stevens, had shown him the solution in 1720 or 1721. Then he said that after Gabriel 
Cramer visited Nicolaus Bernoulli in the late 1720s, Bernoulli wrote to Cramer 
informing him of a new solution to Woodcock’s problem. Cramer passed the news 
on to De Moivre when he visited him in London in 1728. De Moivre did not see 
Bernoulli’s new solution. Without checking with Bernoulli—De Moivre had ceased 
corresponding with him over a decade before—De Moivre guessed that Bernoulli’s 
solution was the same as the one from Stevens. He staked out a priority claim without 
having any information of a rival claim.

Late in 1721, Alexander Cuming suggested a probability problem for De 
Moivre to work on. De Moivre claimed that he found a solution the next day.16 
The two probably met through the Royal Society; Cuming was elected a fellow in 
1720. Cuming is an interesting character who had a checkered career.17 He became a 
baronet on the death of his father in 1725. The height of his career occurred in 1730 
when he travelled to America and returned with a number of Cherokees to sign a 
treaty between Britain and the Cherokee nation. Seven years later he was in debtors’ 
prison, where he remained for eighteen years. He was still throwing out challenge 
problems in probability from debtors’ prison in the 1740s.18 He eventually died in 
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poverty. His 1721 challenge problem to De Moivre resulted in one of De Moivre’s 
major accomplishments in probability—the normal approximation to binomial 
probabilities.19

The whole of Book V of Miscellanea Analytica is about binomial probabilities, 
expressed in terms of the expansion of (a + b) n, where a is the number of favorable 
chances and b is the number of unfavorable ones. The exponent n is the number of 
experiments carried out, trials made, or games played. The probability of success, or 
of achieving a favorable outcome, is p = a/(a + b).

Cuming enters in Chapter II of Book V. It is not clear exactly what it was that 
Cuming suggested to De Moivre to work on and what were De Moivre’s additions 
and extensions to the problem. De Moivre broke this section of Miscellanea Analytica 
into four problems. The first two problems deal with the deviations from the binomial 
mean. The third problem is about finding an approximation, when n is large, to the 
middle term in the expansion of (1 + 1) n all divided by 2 n. In terms of outcomes 
of a binomial experiment, the middle term is associated with n/2 successes and n/2 
failures when n is an even number. The fourth problem that De Moivre considers is 
how to relate other binomial probabilities to the middle term in the expansion.

The first problem has a very simple statement. Two players of equal skill, A 
and B, play n games. At the end of these games, the player who wins the majority of 
games gives a spectator a number of units of money corresponding to the difference 
between the number of games the player has won and n/2. What is the expected 
amount of money that the spectator is to receive? In modern probability notation, let 
X be the number of games that player A wins. The random variable X has a binomial 
distribution with the number of trials equal to n and probability of success p = 1/2. 
What is required is to find E( |X  – n /2 |) , where E denotes the operator to find an 
expected value. De Moivre showed that this expectation is n/2 times the middle 
term in the expansion of (1 + 1) n, all divided by 2 n. Written in its ugliest detail, the 
solution is
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De Moivre followed this problem by a second one that generalizes the first. 
The players A and B no longer have equal skills. Instead, their respective skills are 
given by p and q, where p + q = 1. In this case, it is required to find E( |X  – np | ) , 
where it is assumed that np takes on an integer value, call it m. De Moivre shows that 
his expectation in this case is given by
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which reduces to the ugly expression of the answer to the first problem when p = 
1/2 and m = n/2. As before in Chapter 5, the combinatorial coefficient is given by
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Since the answers to these first two problems are not obvious and consequently 
the middle term of the binomial did not initially arise, it may be that these two 
problems were Cuming’s initial suggestions and that this was what De Moivre 
solved in a day. Even if this is the case, the remaining problems were solved soon 
thereafter since De Moivre in 1733 dated his discovery of the solution to the third 
problem to 1721.

De Moivre’s third problem in Chapter II of Book V follows naturally from 
the first. Since the solution to the first problem involves the middle term in the 
expansion of (1 + 1) n divided by 2 n, it is natural to consider an approximation to 
this expression when n is large. Large n was a situation that Johann and Nicolaus 
Bernoulli previously considered. The approximation involves infinite series expan-
sions,20 thus supporting De Moivre’s dictum that all problems in probability could 
be solved through the use of the binomial theorem or by infinite series, in this case 
together. In Miscellanea Analytica, De Moivre gives
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as the approximation for large n. 
Given the middle term, which is also the term of maximal value in this case, it 

is also natural to consider other terms in the binomial expansion. This is the fourth 
problem that De Moivre considers in Chapter II of Book V. With the middle term 
associated with m = n/2 successes, De Moivre attacked the problem of finding the 
term that has m + l successes. Denoting the value of the maximal term by M and the 
term with m + l successes by Q, De Moivre obtained the ratio
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to express the relationship between the two terms.
The remainder of Book V, Chapters III and IV, deals with other aspects of the 

binomial expansion, or distribution as it applies to probability. In Chapter III, De 
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Moivre derives the maximal term in the expansion of (a + b) n. His result depends on 
issues such as whether n or n – 1 can be expressed as integer multiples of a + b. In 
Chapter IV, De Moivre derives the points of inflection of the binomial.

The first two problems in Chapter II, or perhaps all of Chapter II, look like 
they were motivated by a result in Jacob Bernoulli’s Ars Conjectandi that is the first 
expression of the law of large numbers. Rather than the expectation of |X – np | , 
Bernoulli was interested in probabilities concerning |X/n – p | . He wanted to find n, 
or k since he writes n = k (a + b), such that 
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for some chosen positive constant c. The value of k, and hence n, is a function of a, 
b, and c. Nicolaus Bernoulli turned the problem around into finding bounds for the 
probability for a given value of n. Chapter I of Book V of Miscellanea Analytica is 
devoted to a review of the work of both Bernoullis. Motivated by their results or not, 
De Moivre definitely saw the connection. Following each of the first two problems, he 
gives corollaries in which he states that as more games are completed, the proportion 
of games won by the two players will be close to either 1/2 each or to  p and q 
as the case may be. De Moivre repeated these observations in more detail when he 
reproduced the first two problems in his second edition of Doctrine of Chances.

De Moivre showed at least some of his results in Book V, Chapter II to Cuming 
in the early 1720s and then sat on them for some time. Cuming seems to have been 
under no restriction to keep the results to himself. Around 1725, he told James 
Stirling about De Moivre’s approximation to the middle term of (1 + 1) n divided by 
2 n and challenged Stirling to find the result using finite difference methods.21 Over 
time Stirling did respond to the challenge. He had the same problem as De Moivre 
in getting his research done and his results to print. Putting his research together 
and getting it published took time. He was planning his own book, Methodus 
Differentialis, as early as 1725, but it did not get it to print until 1730 due, like De 
Moivre, to his necessity to teach to make a living.22 

Stirling wrote to De Moivre on June 19, 1729, with his solution to finding the 
middle term of the binomial.23 It was in the form of an infinite series given by
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and so on. For n = 100 and carrying the series to ten terms, Stirling obtained 
0.0795892373872 for the probability of obtaining 50 successes in 100 trials.24 This 
agrees with a modern exact calculation of the probability to twelve significant digits 
using R, a programming language. De Moivre’s approximation in Miscellanea 
Analytica yields 0.0795559 to six significant digits. 

De Moivre inserted Stirling’s letter not after his work on the normal 
approximation to binomial probabilities in Book V, but instead near the end of his 
discussion of finite difference methods in Book VII, Chapter II where he replies to 
Montmort’s accusations against him. In the preamble to the presentation of Stirling’s 
letter, De Moivre discusses problems with convergence of series based on finite 
difference methods and how Stirling’s methods have overcome this problem.

Within a few days of Miscellanea Analytica appearing early in 1730, and 
presumably Stirling receiving his copy as a subscriber, Stirling wrote again to De 
Moivre.25 This time he informed De Moivre that the table of logarithms that De 
Moivre had calculated for use in his approximation to the binomial had errors in 
it. The table contains numerical values of log10(x!) for values of x between 10 and 
900 in steps of 10. Stirling also supplied De Moivre with a new result that he had 
obtained for an approximation to x!. As De Moivre explained it, the approximation 
is obtained from the series

( )10 3 5 7
7log

2 12 8 360 32 1260 128 1680
a a a az z az

z z z z
− − + − + −

× × × ×


plus a constant, where z = x + 1/2 and a = ln(10) in the series. The constant is 
(1/2)log10(2π) or                 . The series can be obtained from Proposition 28 in 
Stirling’s Methodus Differentialis, which at the time was still in press. De Moivre 
would have received his copy late in 1730. The proposition deals with finding 
the sum of the logarithms of numbers which form an arithmetical progression. 
The earlier series sent to De Moivre in 1729 that approximates the middle term 
in the binomial is given in Proposition 23 of Methodus Differentialis.26

The numbers 12, 360, 1260, and 1680 in Stirling’s new series were familiar to 
De Moivre. The number 2     = 2.168, which was used in his approximation to the 
middle term in the binomial is obtained from De Moivre’s derivation of an infinite 
series given by

1 1 1 1 .
12 360 1260 1680

− + − +

In particular,                                                            to six decimal places. How De Moivre 
obtained 2      is not given in Book V of Miscellanea Analytica. The details are saved 
for Book VI, which is devoted to a number of problems in infinite series. After 

212 2.168
125

=

10log ( 2 )π

212 2.168
125

=

1/12 1/360 1/1260 1/16802 2.168208e − + − =
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seeing Stirling’s result, De Moivre went back to his infinite series and reworked the 
problem. He obtained the series

( ) ( ) 3 5 7
1 1 1 1 1 1ln ln 2
2 2 12 360 1260 1680

x x x
x x x x

π − + − + − + − + 
 



for ln((x – 1)!). His new results along with the corrected table were published in 
a supplement to Miscellanea Analytica. Presumably, it was printed at De Moivre’s 
expense and sent to the subscribers who had picked up their books. In a corollary in 
the supplement, De Moivre notes that the series

1 1 1 11
12 360 1260 1680

− + − + −

approximates ( )ln 2π  and attributes this insight to the series he had received from 
Stirling. In a corollary that immediately precedes this, De Moivre recognized that 
there were problems with the convergence of his series after the first five terms. 

As a brief aside, Stirling’s series from his Proposition 28 leads to

1 1
2 212

2

x x
x eπ

+ − − + 
 

as an approximation to x!. De Moivre’s series leads to 2 .x xxx eπ −  Today, the latter 
approximation is the one that is typically used and is almost always called Stirling’s 
approximation.27

De Moivre gathered his conclusions together on the normal approximation 
to binomial probabilities, did some further work, and then put it all together in one 
document that he titled Approximatio ad Summam Terminorum Binomii       in 
Seriem expansi.28 It was published in November 1733. As in Miscellanea Analytica, 
he dealt initially with the case in which a = b = 1. With Stirling’s insight, he could 
now express M as 

2
nc

where c is the “Circumference of a Circle whose Radius is Unity,” or in other 
words 2π. With one exception, De Moivre refers the reader to his Miscellanea 
Analytica for all the technical details requiring infinite series. The exception is a 
new approximation he obtained for finding the term that has m + l successes, where 

,

|
n

a b+
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m = n/2. De Moivre showed that 
22ln .Q l

M n
  ≅ − 
 

De Moivre went on to consider the general case in which a ≠ b. There he found that 
the maximum in the expansion of (a + b) n occurs when “the Indices of the Powers 
of a and b have the same proportion to one another as the Quantities themselves a 
and b.” This is the same as saying that maximum occurs when the power of a, or the 
number of successes, in the expansion of (a + b) n is m = np, provided that np is an 
integer. The value of M in the general case is

1
2 npqπ

and the relationship between the maximal value and the value for m + l successes, 
where m = np, is given by

2
ln

2
Q l
M npq

  = − 
 

approximately. 
De Moivre continued to interact with James Stirling as the decade of the 

1730s progressed. In the late 1730s, Stirling was corresponding with Leonhard 
Euler about infinite series.29 Stirling must have kept De Moivre informed about the 
correspondence. This is apparent in a letter written in July 1744, from De Moivre 
to Philip Stanhope.30 When Stanhope and De Moivre last met in person, one of the 
topics of their discussion turned to Euler’s method of evaluating the series

2 2 2 2
1 1 1 1 ,
1 2 3 4

+ + + +

which sums to π 2/6. First considered in the mid-seventeenth century, it was not 
until 1736 that Euler became the first to obtain the result.31 It is known as the Basel 
problem since Jacob Bernoulli tried to solve the problem; when he could not, he 
asked that anyone who found the solution should send it to him in Basel. During the 
face-to-face discussion with Stanhope, De Moivre told the earl that he had solved 
the Basel problem “some years ago.” Stanhope replied that he thought the solution 
could be obtained through Newton’s quadratures. Part of the letter is devoted to 
showing Stanhope how a combination of quadratures and infinite series methods 

,
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from Miscellanea Analytica can be used to show that

2 2 2 2
1 1 1 1
1 3 5 7

+ + + +

sums to π 2/8. If

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 .

42 4 6 8 1 2 3 4
 + + + + = + + + + 
 

 

is added to De Moivre’s series, then Euler’s series is obtained. On denoting the sum of 
Euler’s series by S we have the relationship S = π 2/8 + S /4, which yields S = π 2/6. 
De Moivre told Stanhope that he had heard of Euler’s result from Stirling after Euler 
had written Stirling about it “about seven years ago.” All that De Moivre learned 
from Stirling, besides the result, is that Euler had not given Stirling the complete 
proof to the result and that Euler “had done it by a Method peculiar to himself.”

Miscellanea Analytica and the Approximatio were written in Latin. From 
medieval times, Latin was the international language of diplomacy, law, scholarship, 
and the western part of the Christian church. It became the lingua franca of the 
Renaissance and remained the language of science into the eighteenth century. 
Miscellanea Analytica and the Approximatio were written with an international 
audience in mind. De Moivre’s composition in Latin was done intentionally 
and began early in his career. For example, he used his 1704 Animadversiones 
criticizing Cheyne as an entry into correspondence with Johann Bernoulli and the 
wider Republic of Letters. As De Moivre stated in the second edition of Doctrine of 
Chances, De Moivre had the Approximatio printed for private distribution among 
his friends. In view of the language used, it was not only for his British friends 
(James Stirling’s copy is held by University College London), but also for others 
on the Continent. There is a copy in the Basel University Library that is bound with 
Miscellanea Analytica and its supplement.32 Since this book survives in its original 
binding, it may have been a copy obtained originally by some Swiss mathematician, 
finding its way eventually to the Basel library. Gabriel Cramer, as well as Johann 
and Nicolaus Bernoulli, are all possible candidates for the Swiss mathematician. All 
of them apparently received copies of Miscellanea Analytica and therefore would be 
likely recipients of the Approximatio as well. 

It is therefore of interest to divide De Moivre’s publications into those written 
in Latin, and those in English. His work in natural philosophy, material on centripetal 
forces in particular, is published in Latin. This includes his 1717 paper on the subject 
in Philosophical Transactions and the fuller treatment in Miscellanea Analytica. All 
his research that deals with finding roots of equations using trigonometric methods 
based on divisions of the semicircle appears in Latin. The research is developed 
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in papers published in 1707 and 1722 in Philosophical Transactions, as well as 
the material surrounding “De Moivre’s theorem” in complex analysis in Miscellanea 
Analytica. Publications that are in English only deal with subjects of interest mainly to 
British mathematicians. These include, for example, generalizing Newton’s binomial 
theorem to the multinomial situation; given a curve described by an equation involving 
a polynomial in y and a polynomial in x, solving for y; the study of a curve given in 
Newton’s catalog of curves; and methods for the valuation of annuities. 

De Moivre’s work in probability appears both in Latin and in English. This 
deserves some further scrutiny. His first publication in probability is in Latin. In 
one sense it was an international showcase for his mathematical talents. Using 
the connections of his friend Pierre Des Maizeaux, De Moivre made sure that De 
Mensura Sortis was distributed at the highest level of the Académie royale des 
sciences in Paris. After 1711, De Moivre’s probability publications are sometimes 
in English and at other times in Latin. By separating out the Latin publications, 
we can see that De Moivre was interested in having his international audience 
see what he thought was his most important work. From his discussions in 1717 
with Brook Taylor on what he thought should be in the allegorical frontispiece in 
Doctrine of Chances,33 De Moivre considered that he had made three important and 
highly original contributions to probability up to that point in time: the Poisson 
approximation to binomial probabilities; the solution to the problem of the pool 
for four or more players; and the trigonometric solution to the duration of play 
problem. The first appears in De Mensura Sortis. The second and third are in 
articles in Latin appearing in issues of Philosophical Transactions for 1714 and 
1722, respectively. History would grant that his other major contributions are his 
development of generating functions (in Latin in Miscellanea Analytica), and his 
normal approximation to binomial probabilities and related material (in Latin in 
both Miscellanea Analytica and the Approximatio). All these results found their way 
into English in Doctrine of Chances. Finally, his response to Montmort’s accusations 
of plagiarism was put in Latin in Miscellanea Analytica for any educated person, in 
Britain or on the Continent, to read and understand.

De Moivre continued to be the mathematics man for the Royal Society. In June 
1733, the Royal Society received a gift of a book from Claude Richer du Bouchet.34 
Writing from Paris, Richer sent the book Analyse générale ou méthodes nouvelle 
pour resoudre les problêmes de tous les genres by Thomas Fantet de Lagny. Lagny 
had been a fellow of the Royal Society since 1718, sponsored by De Moivre. Lagny 
was in his seventies when the book was published. He may have been ill at the time 
since it was Richer who edited the material and brought the book to print. Richer’s 
gift was accompanied by a request. According to the minutes of the meeting, Richer 
“expresse[d] a zealous inclination to be recommended to the Society in the capacity 
of a candidate for election.” The Royal Society referred the book to De Moivre. 
Richer was never elected fellow of the Royal Society and, moreover, was never 
made a member of the Académie royale des sciences.
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Following quickly on his mathematical triumphs of the early 1730s, De 
Moivre was struck by tragedy. It had started on a very promising note. His nephew, 
Daniel junior, was employed by Sir Joseph Eyles, a London merchant with powerful 
connections. Eyles was a director of the East India Company, the Bank of England 
and London Assurance. His brother, Sir John Eyles, was also a director of the East 
India Company and the Bank of England, as well as a director of the South Sea 
Company. When he was studying at Cambridge, Sir John’s son Francis subscribed to 
Miscellanea Analytica and so was possibly a De Moivre student at one time. Daniel 
junior’s job may have come through his uncle’s connections. At some point very 
early in the 1730s, using South Sea Company connections, Daniel decided to break 
out on his own as an exporter of British luxury goods.35 For his enterprise to work, 
Daniel needed the South Sea Company. Prior to 1713, Spain severely restricted 
trade between other countries, including Britain, and her colonies in the New World. 
By the Treaty of Utrecht that ended the War of Spanish Succession, the South Sea 
Company was allowed to send one ship a year to New Spain with a 500-ton cargo and 
was given the monopoly for supplying New Spain with slaves from Africa.36 Eying 
this new market, Daniel convinced Sir Joseph Eyles and a few others, including his 
father Daniel senior, to underwrite an enterprise to export British-made jewelry and 
other luxury items to Veracruz in Mexico, at the time a part of New Spain.37 As a port 
city and one of the two commercial centers of New Spain, Veracruz had a wealthy 
merchant class that could be interested in Daniel’s merchandise. After obtaining a 
little more than £1400 in loans, including £700 from Sir Joseph Eyles and £90 from 
his father, Daniel junior went on a buying spree. He bought rings, earrings, watches, 
gold and silver chains, and silver boxes from several Huguenot and non-Huguenot 
artisans. He also kitted himself out for the trip with the purchase of several items of 
clothing, a cutlass, a field bed, and a hammock. In September 1732, Daniel junior 
set sail on the South Sea Company trading ship, the Royal Carolina for the British 
colony of Jamaica and then on to Veracruz. Prior to his departure he wrote his will, 
naming his wife, Marianne, as well as Sir Joseph Eyles and one other, as executors.

Then it all came apart. Daniel De Moivre senior died in 1733 at the age of about 
64, followed by Daniel junior the next year at the age of about 27. Daniel junior had 
not sold all the goods he took to Veracruz. By order of the Prerogative Court of 
Canterbury, Sir Joseph Eyles became the sole executor of Daniel junior’s estate.38 
The estate was not settled until 1738 or later. In May of that year, Daniel’s creditors 
were informed that they were to come and substantiate their claims before one of the 
masters in Chancery in order to receive payment.39 It is difficult to say what kind of 
financial straits the family was in. In his will, Daniel senior had bequeathed £200 to 
his son and the remainder of his estate, an unspecified amount, to his wife, Anne.40 
The newspaper announcement to Daniel junior’s creditors makes no mention of 
bankruptcy. There may have been sufficient money to pay all the creditors, but it 
would have been tied up in the courts until they were all paid. Until Marianne De 
Moivre remarried in 1737,41 it is likely that Uncle Abraham provided some financial 
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support to Daniel junior’s family. He may also have given some support to his sister-
in-law Anne De Moivre until her death.

Daniel De Moivre junior was fairly close to his uncle. A list of his corres-
pondents in 1732 and 1733 shows that he sent letters to his mother and father, his 
wife, his business associates, and his uncle Abraham. Despite the closeness, he 
had little interest in his uncle’s work. Based on a list of the books that he owned at 
the time of his death, his reading habits ran to belles lettres like his uncle. But he 
did not own any books on mathematics. He also gambled in a moderate way, play-
ing at cards. Keeping accounts in 1731 and 1732 in preparation for the voyage to 
Veracruz, he jotted down his wins and his losses for his card games. At any weekly 
game, his wins and losses were as much as £4. Typically, in a month he averaged 
about £1 on the win side. There is no mention in his papers of any gambling advice 
from his uncle. 

The tragedy behind him, Abraham De Moivre was planning to publish the 
second edition of Doctrine of Chances as early as 1736. At that time he advertised for 
subscribers to the book. The price for a subscription was one guinea, or 21 shillings; 
and he planned to print only as many books as the number of subscriptions that he 
received.42 This was similar to his plan for the publication of the first edition and 
for his Miscellanea Analytica.43 This time he changed printers to one named Henry 
Woodfall, another well-respected printer.44 At the time De Moivre was 69 years old. 
According to soon-to-be-released actuarial tables, he should have been very near the 
end of his life. Thomas Simpson’s 1742 life table45 shows only 75 survivors to age 
69 out of 1280 births and only 29 survivors to age 80. 

At the beginning of 1738, when Doctrine of Chances came off the press, De 
Moivre advertised in the London Daily Post and General Advertiser for subscribers 
to pick up their book from Slaughter’s Coffeehouse. At least that is my conjecture. 
There are several issues of the newspaper from the beginning of 1738 that have 
not survived. An advertisement placed in the newspaper for July 11 and July 18 
states that De Moivre had earlier advertised the availability of the book and that 
subscribers who had not yet picked up their copy could send for them at Slaughter’s 
before the end of the year.46 The two-year time span between collecting subscriptions 
and the final publication is similar to what occurred with Miscellanea Analytica and 
the known time between when he decided to publish the first edition of Doctrine of 
Chances and when it actually saw print.47

De Moivre took his accumulated results in probability since 1718, including 
material in Miscellanea Analytica, and revised what he had in the first edition of 
Doctrine of Chances by changing the wording and adding more examples and 
explanation to make the new edition of the book. He also included all his work 
on annuities. On that subject, De Moivre corrected on error that he had made in 
Annuities upon Lives when dealing with successive lives. This is an annuity contract 
that pays an annual amount for the life of the annuitant and then upon his or her 
demise for the life of a second-named person. 

© 2011 by Taylor & Francis Group, LLC



189

 The Decade of the Doctrine Enhanced    

When the first and second editions of Doctrine of Chances are compared, the 
major additions of new results to the second edition from his published work are 
the generating function to obtain the probability of the sum of the faces that show 
on the throw of dice; the trigonometric solution to the duration of play problem; the 
expectation of the absolute deviation from the mean for the binomial distribution; 
and the normal approximation to binomial probabilities. It would be his magnum 
opus in probability, a complete compendium in English of the latest results in the 
theory and application of probability. 

As the pièce de résistance to the new edition, De Moivre translated the 
Approximatio into English, intending it to appear at the end of the book. It did not 
quite work out that way. As the book was in press, he could not resist adding some 
new problems that had recently been posed to him. They were tagged onto the end 
of the book.

One of the new probability problems that De Moivre added as the book was 
going to press harks back to a challenge problem set by Nicolaus Bernoulli for 
De Moivre in 1714 or 1715. In the late 1720s, Bernoulli described the problem to 
Gabriel Cramer.48 A and B play a game with a four-sided die with the sides marked 
0, 1, 2, and 3. Both A and B put stakes, not necessarily of the same amount, into a 
pot. When they take their turns throwing the die each takes out of the pot a unit of 
money corresponding to the number shown on the die. There is an exception. When 
A throws the die and 0 shows, then he puts one unit of money into the pot; and if a 
2 or 3 shows and the pot has less money than what shows on the die, then he puts 
into the pot the difference between what is in the pot and what shows on the die. 
The problem is to find what stakes A and B should each put into the pot so that it 
is a “fair game” in that each has the same expectation. Bernoulli intended this as a 
problem that could not be solved using the binomial theorem or infinite series. The 
problem suggested to De Moivre and solved by him in 1738 is easier—and it could 
be solved using infinite series.49 A number of players each put equal stakes into a pot 
and then play with a four-sided die. The die is now marked T, P, D, and A rather than 
0, 1, 2, and 3. The players throw the die in turn until the pot is won. If T shows on 
a throw, the player throwing it wins the pot. If P shows, then the player adds to the 
pot so that it doubles in size. If D shows, there is no change to the size of the pot. 
Finally, if A shows, then the player takes half the pot. At the completion of a throw, 
the turn passes to the next player. The problem is to find the expected winnings of 
each player.

The solution to another problem made further inroads into the use of generating 
functions to solve probability problems. It was De Moivre’s solution to the problem 
of runs.50 A run of successes of length r in a sequence of n trials, each of which may 
result in success or failure, is any set of r successes in a row. It is usually assumed 
that the trials are independent and that there is a constant probability of success p 
from trial to trial. De Moivre states the problem and gives the solution through a 
generating function. The expansion of the generating function can be done using one 
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of De Moivre’s results in recurring series. His discussion of the problem contains 
some numerical examples but no further proof or explanation of how he obtained 
the generating function. 

Over a century later, Isaac Todhunter explained how the generating function 
could be obtained through a recurrence relationship.51 First, a run of length r in a 
series of  n trials can be obtained by a run of r successes in n – 1 trials irrespective of 
what happens on the nth trial, or by not obtaining the run in the first n – r – 1 trials 
followed by a failure and then r successes in a row. Consequently, the run probability 
for r successes in n trials is the sum of the run probabilities involving r successes and  
n – 1 trials and r successes and n – r – 1 trials. 

Not having access to Todhunter’s book, which was 120 years into the future, 
De Moivre’s former student Philip Stanhope, 2nd Earl of Stanhope, read the second 
edition and attacked the problem of runs in his own way in the 1740s. He recognized 
that a run of exactly r successes in n trials can occur in those n trials by having  
r successes and n – r failures, or r + 1 successes and n – r – 1 failures, or r + 2 
successes and n – r – 2 failures and so on. The required run probability, which 
Stanhope successfully obtained, is then a weighted sum of the probabilities of these 
events of successes and failures. In correspondence with Stanhope, Thomas Bayes 
also attacked the problem of runs, but his solution is incorrect.52

From a modern viewpoint, the 1736 advertisement for the proposed new 
edition of Doctrine of Chances overstates the claims about what De Moivre had 
done in his book. It is likely that Pierre Des Maizeaux wrote the advertisement. 
The advertisement was part of a report on new publications coming out of London 
and Des Maizeaux was one of the active writers for Bibliothèque raisonnée, where 
the report appeared. In the advertisement, the question is asked, Can we reasonably 
conjecture based on past experience? The writer goes on to answer his own question 
in the affirmative, but was incorrect. His answer was that while single events might 
be unpredictable, there is stability and order in the long run. Writing in 1749, the 
philosopher and physician David Hartley made the distinction very clearly between 
two different questions and the applicability of their answers.53 In his Observations 
on Man, Hartley saw De Moivre’s result on the stability of long-run frequencies 
“as an elegant method of accounting for that order and proportion, which we every 
where see in the phænomena of nature.” The question in the advertisement was 
another one altogether, which Hartley calls “the inverse problem.” Given that a ratio 
of successes to failures has been observed in the past, what is the probability that the 
observed ratio deviates from the true ratio by any given amount? This is the question 
that Thomas Bayes answered satisfactorily in his posthumous publication in 1763.54 
Hartley attributed the solution only to “an ingenious Friend,” which prompted 
Stephen Stigler to assess the evidence about who this friend might be.55 Stigler came 
to two possibilities: Nicholas Saunderson and Thomas Bayes. New evidence that 
might tip the balance in favor of Bayes is that most of Bayes’s known mathematical 
manuscripts date from the 1740s.56
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This is a tale of two Thomases: Thomas Simpson and Thomas Bayes. Each appears 
on the mathematical scene, seemingly independently, late in De Moivre’s career. 
They were both influenced by De Moivre’s work, especially his work in probability 
and its applications. For his part, De Moivre was unhappy with some of the work 
of each Thomas, more so that of Thomas Simpson. These are also stories of a 
connection broken and a connection never made. After a cordial beginning, De 
Moivre had a distinct falling out with Thomas Simpson. Although he probably knew 
Bayes, or knew of him, Bayes was apparently never part of De Moivre’s closer circle 
of friends and colleagues.

There are some similarities between the two mathematicians named Thomas. 
And they probably knew one another by the late 1740s. Both had patrons, or at 
least very helpful individuals, who were formerly De Moivre’s students. Simpson 
obtained a position teaching mathematics at the Royal Military Academy at 
Woolwich in 1743 on the recommendation of Martin Folkes. It was a new position; 
the Academy was founded only two years earlier in 1741. Bayes probably met 
Philip Stanhope, 2nd Earl Stanhope, on one of Stanhope’s visits to Tunbridge Wells, 
where Bayes was the minister at the dissenting chapel. It was a popular spa town 
for the wealthy. Subsequently, they corresponded and when Bayes was put up for 
fellowship in the Royal Society, Stanhope was his first sponsor. Both Simpson and 
Bayes were elected fellows of the Royal Society in the first half of the 1740s, Bayes 
in 1742 and Simpson three years later in 1745.1 They were elected on the basis of 
their mathematical interests. Both had a common friend in another Royal Society 
fellow, John Canton; through Canton, Bayes commented on a paper by Simpson.2 
No confirmed portrait of either Bayes or Simpson is known to survive and both died 
in 1761, within two months of each other.3
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There are also some significant differences between the two Thomases. Bayes 
was moderately wealthy, while Simpson initially struggled before he obtained his 
patronage position. Simpson was prolific in his mathematical writing; Bayes wrote 
very little and had his major work published posthumously. Simpson had little formal 
education and was self-taught in mathematics. Bayes may have been tutored in his 
youth or entered a dissenting academy in London, and then entered the University 
of Edinburgh, where he prepared for the Presbyterian ministry. Along the way at 
Edinburgh, he studied mathematics under a lesser known member of the Gregory 
family of mathematicians.

Thomas Simpson
When De Moivre and Simpson first met, it was at a dinner. Their initial meeting was 
cordial. De Moivre was his usual “très joyeuse compagnie” as Jean Des Champs 
described him in the late 1740s.4 When introduced to Simpson, De Moivre held 
open his arms and is reported to have said, “I am delighted to see you, I honour your 
talents and embrace you with all the vivacity of a Frenchman and the sincerity of an 
Englishman.”5 Before dinner, they talked mathematics. De Moivre gave Simpson 
a problem to work on at his leisure. As described by the French astronomer Joseph 
Jérôme de Lalande, it required integrating a complicated differential equation. Put 
in its historical context, this is the continental language of calculus. De Moivre 
probably challenged Simpson to find the quadrature of a curve defined by a fluxional 
equation or to find a certain fluent from its fluxion. The meeting could have occurred 
in the mid-1730s as Simpson was gaining a reputation as a tutor in mathematics.

By the early 1740s their relationship had soured considerably. Their estrange-
ment is evident in the exchanges between them in De Moivre’s 1743 edition of his 
Annuities on Lives and Simpson’s response to it that same year. Although the dispute 
has been described by historians of statistics such as Stephen Stigler and Anders 
Hald through De Moivre’s and Simpson’s publications on annuities,6 a slightly fuller 
story emerges when other source material is considered.

The conflict between De Moivre and Simpson has its origins in the publication 
of De Moivre’s second edition of Doctrine of Chances, De Moivre’s magnum opus 
in probability. A work of this caliber, arguably by Britain’s then preeminent mathem-
atician, attracts some of what might be called riding-on-the-coat-tails activity. John 
Arbuthnot’s Laws of Chance was resurrected, but not Arbuthnot himself to do a new 
edition. The printer for Arbuthnot’s original edition of 1692, and a subsequent one 
in 1714, was Benjamin Motte, a prominent printer and bookseller who published 
several works of Arbuthnot’s friends in the Scriblerus Club, including Gulliver’s 
Travels by Jonathan Swift. Arbuthnot died in 1735, so Motte gave responsibility for 
the revision of Laws of Chance to John Ham, a mathematics teacher at a school in 
Hatton Garden located about half a mile from Motte’s shop. By this time Motte was 
in partnership with Charles Bathurst. A third, probably pirated, edition came out in 
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1731, of which no copies seem to have survived. It was printed by James Roberts.7 
The third edition may have been a coat-tail effect of the publication of Miscellanea 
Analytica in 1730. Although Motte and Bathurst’s fourth edition of Laws of Chance 
bears the publication date of 1738, advertisements for its availability at their shop 
appear in mid-September, 1737, just prior to the release of Doctrine of Chances.8 
These advertisements continued until March 1738.9 The fourth edition contains all 
of Arbuthnot’s original material, primarily an English translation of Huygens’s De 
ratiociniis in ludo aleae, and Arbuthnot’s analysis of some games of chance. Ham 
added new material, some taken directly from De Moivre’s first edition of Doctrine 
of Chances and some containing analyses of games not considered by De Moivre. 
Ham also considered De Moivre’s problem of finding the number of trials required 
to obtain, with probability 1/2, at least two successes in a series of independent trials 
whose outcomes are success or failure. While De Moivre assumed that the number 
of trials was large and the probability of success small to get what is known as the 
Poisson approximation to the binomial, Ham was able to get an infinite series ap-
proximation to the solution that relaxed this assumption.10 Ham’s update of Arbuth-
not’s book was no real threat to De Moivre’s work or to his new book, which had 
many new, additional important results. 

On July 11 and July 18, De Moivre placed an advertisement in a London 
newspaper informing the subscribers to Doctrine of Chances that those who had not 
yet picked up their copy could send for them at Slaughter’s Coffeehouse by the end 
of the year.11 Then three days after this advertisement last appeared, on July 21 a 
very odd advertisement appeared in the same newspaper:

Mr. SIMPSON Defended.

THO’ it has been ungenerously replied to a late Advertisement, in favour of 
Mr. Simpson, and His New Treatise on the Doctrine of Chances, that such was 
scandalous, and evidently intended to injure him; it is thought proper to advertise, 
that no Harm was meant him at all, unless a good Opinion of his Abilities was 
Harm. What is meant by Bare-fac’d Piece of Villainy is not understood, unless 
the purchasing so valuable a PIECE, at so undervalued a Rate. The Author of the 
abus’d Advertisement professes Friendship to Mr. Simpson, and therefore could 
intend nothing but what is Honest. He will make good every Assertion of his 
New Discoveries, notwithstanding what has been enviously denied by a Person 
who meant to deny him the Honour. He agrees that the summing up of Series is 
something Curious, since a Method from thence may be deduc’d for finding the 
Superficial Content of any Writer, (a Curve Superficies never before attempted) 
and had the Writer of the Mock Advertisement (on Monday last) been sensible 
of the Praise he bestow’d, instead of what he intended, he would have been 
silent in several Particulars.

Button-Court, near the Monument.          N. READ12

© 2011 by Taylor & Francis Group, LLC



194 

 Chapter 13    

I have scoured the surviving London newspapers printed a month or more before this 
advertisement appeared and could find nothing to which the advertisement might 
refer. There are some clues that this advertisement may be a plant mocking Simpson’s 
intended book. For example, I have been unable to locate a Button Court in eighteenth-
century London, even on a 1756 London map of the area around the monument to the 
Great Fire of London.13 The writer identified by “N. Read” might be a statement not to 
read Simpson’s book rather than to a real person. Finally, the newspaper was operated 
and printed by Henry Woodfall, De Moivre’s printer for the second edition, so Woodfall 
may have been trying to protect his author by allowing the advertisement to run. The 
reference to “purchasing so valuable a PIECE, at so undervalued a Rate” refers to 
Simpson’s about-to-appear Nature and Laws of Chance. When it was advertised for 
sale in January of 1740, the book was priced at three shillings.14 This is a substantial 
difference from twenty-one shillings—the price of De Moivre’s book. 

Beyond the price, what may have upset De Moivre even more is the content 
of Simpson’s Nature and Laws of Chance. Unlike Ham’s update to the Laws of 
Chance, Simpson’s book is generally a cheap knock-off of the probability part of 
De Moivre’s second edition of Doctrine of Chances. Simpson went through most of 
De Moivre’s problems and provided one or two new ones of his own. For the most 
part, Simpson’s solutions parallel or repeat De Moivre’s and are sometimes simpler. 

There are a couple of exceptions where Simpson provided some of his own 
unique solutions. In the problem of finding the number of trials required to obtain, with 
probability 1/2, at least two or more successes in a series of independent trials, De 
Moivre appears to use a simple numerical technique called the method of false position 
to obtain a numerical solution. Earlier in De Mensura Sortis, De Moivre stated that the 
results could be obtained through a power series in the fluent y evaluated at y = ln(2). 
Simpson obtained a general infinite series solution to the problem, not specifically 
in ln(2), when the number of trials is large and the probability of success is small.15 
Simpson also attacked the problem of runs in a way that is different from De Moivre’s 
approach. In Doctrine of Chances De Moivre stated the problem and gave the solution 
through a generating function. His discussion of the problem contains some numerical 
examples but no further proof or explanation of the generating function. Simpson 
provided an explicit series solution to the problem.16 

Simpson’s publisher was Edward Cave. He seems to be the equivalent today 
of a mass-media publisher. He published Gentleman’s Magazine, whose circulation 
reached about 15,000 subscribers.17 At the price of three shillings, Simpson’s book 
was meant for the general public, the “mass audience” that Cave pursued. Since De 
Moivre’s book was sold by subscription and he controlled the distribution of it, De 
Moivre intended his book for a select audience. Even Simpson recognized this in his 
preface to Nature and Laws of Chance.

Despite the price differential and a mock advertisement that could not be 
attributed directly to De Moivre, or to any of his friends, no ill will seems to have 
broken out into the open at this time.
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In 1742, Simpson published his Doctrine of Annuities and Reversions. For this 
book he had a different publisher—John Nourse. Where De Moivre relied on his 
model of linear survivorship based on Halley’s table to carry out annuity valuations, 
Simpson was more closely tied to the actual life table. He tried to obtain a life table 
more applicable to London since Halley’s table is based on data from a small city in 
what is now the southwest of Poland.

Simpson was very adept at annuity calculations and always seems to have had 
his eye on the practical. He checked De Moivre’s approximation to joint-life annu-
ities that relies on the incompatible combination of linear and exponential survivor-
ship. To do this, he calculated the annuity values from his life tables, values based 
on the linear assumption alone, and values based on De Moivre’s assumption. For 
the single-life annuity values that he considered, Simpson found that for two lives, 
De Moivre’s approximation undervalued joint-life annuities by between 0.7 and 0.9 
years purchase and that the linear assumption overvalued the same annuities by be-
tween 0.1 and 0.3 years purchase. Clearly to Simpson, the simple linear assumption 
was a better approximation. This contradicted De Moivre’s very brief analysis of his 
approximation in the 1725 edition of Annuities upon Lives. 

Simpson, however, may not have been that careful with his own annuity 
calculations. I have compared his table that shows ax, the value of a single-life annuity 
issued at age x, to the value calculated using his life table.18 The graph shows the 
differences between these values for ages at issue 6 through 75 at rates of 3%, 4%, and 
5% interest. The differences are shown in years purchase and normally differ by 0.2 or 
0.3 years purchase with some larger differences at the higher and lower ages.

Differences between Simpson’s tabular values of ax and the values computed from his life 
table.
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De Moivre responded with a second edition of his annuity book in 1743. The 
title was changed slightly to Annuities on Lives. He ignored Simpson’s study of 
the accuracy of his approximation to the value of joint-life annuities. He preferred 
the simplicity of his approximation to some of Simpson’s approaches. Concerning 
Simpson’s whole approach to annuities, De Moivre wrote in his preface,

After the pains I have taken to perfect this Second Edition, it may happen, that 
a certain Person, whom I need not name, out of Compassion to the Public, will 
publish a Second Edition of his Book on the same Subject, which he will afford 
at a very moderate Price, not regarding whether he mutilates my Propositions, 
obscures what is clear, makes a Shew of new Rules, and works by mine; in 
short, confounds, in his usual way, every thing with a croud of useless Symbols; 
if this be the Case, I must forgive the indigent Author, and his disappointed 
Bookseller.19

Whether or not his approximation was accurate, De Moivre’s point about 
“obscures what is clear” and “makes a Shew of new Rules” is illustrated in their two 
approaches to the valuation of joint-life annuities. De Moivre’s valuation of a joint-
life annuity for two lives aged x and y is given by

( )( )
(1 )

,
1 1 (1 )

x y
xy

x y x y

i a a
a

a a i a a

+
=

+ + − +

where i is the rate of interest. At the end of his book he provides tables for ax at 
various ages of issue, as well as tables for the value of fixed-term annuities, so that 
the final calculation is simple and straightforward. Here is Simpson’s procedure for 
the same problem:

Case I.

If the two lives be equal; enter tab. II. with the common age, and against it you 
will have the value required.

Case II.

If the given ages be unequal, but neither of them less than 25, nor greater than 
50 years; take half the sum of the two for a mean age, and proceed as in Case I.

Case III.

If one or both ages be without the limits abovemention’d, but so that the 
difference of the values corresponding to those ages, be not more than 1/3 of the 
lesser; let 4/10 of that difference be added to the lesser value, and the sum will 
be the value sought.

© 2011 by Taylor & Francis Group, LLC



197

 The Two Thomases    

Generally,

Be the difference of the values what it will, multiply it by 1/2 the lesser of the 
two values, dividing the product by the greater; then the quotient, added to the 
lesser value, will give the true answer very near.20

There are similar complicated rules for the valuation of last-survivor annuities on 
two lives, as well as joint and last-survivor annuities on three lives.

De Moivre’s new edition of Annuities on Lives would have been simple and 
fairly quick to put together. He lifted the material on annuities from the second 
edition of Doctrine of Chances and, with some changes in notation, put it into his 
new book. This included his derivations based on the incompatible assumptions of 
exponential and linear survivorship—he liked the simplicity of it and believed the 
approximation to be accurate. Then he added some new material. One addition is a 
revision to the tables accompanying the book. In the second edition of Doctrine of 
Chances, De Moivre had provided tables for single-life annuities and annuities for a 
fixed term at a 5% rate of interest. Here he added tables at a 6% rate of interest to his 
Annuities on Lives. The second addition is a result on how to value annuities when 
the payments are semi-annual.

Simpson responded with a pamphlet entitled, An Appendix, Containing Some 
Remarks on a Late Book on the Same Subject, with Answers to some Personal and 
Malignant Misrepresentations, in the Preface thereof.  Published near the end of 
May 1743,21 it was printed and sold by Nourse for a sixpence. Simpson replied to all 
of De Moivre’s criticisms of his work and went on to point out some errors in the first 
and second editions of De Moivre’s book on annuities. He concluded with: “Lastly, I 
appeal to all mankind, whether in his treatment of me, he has not discover’d an air of 
self-sufficiency, ill-nature, and inveteracy, unbecoming a gentleman.”22 Rather than 
turning the other cheek, Simpson slapped right back at De Moivre.

De Moivre’s friend William Jones took exception to what Simpson had 
written. In the mid-1770s, Reuben Burrow was dining with John Robertson. Burrow 
was a mathematician and one-time assistant to Astronomer Royal Nevil Maskelyne; 
Robertson, a fellow of the Royal Society since 1741, was at the time clerk and 
librarian to the Royal Society. They dined at the Royal Society. Over dinner, as 
Burrow wrote in his diary, Robertson recollected an incident from over thirty years 
before. He told Burrow that Jones treated “his mathematical friends with a great deal 
of roughness and freedom.” He went on to say that “he rated Mr. Thomas Simpson in 
such a manner about his paper against De Moivre, that Simpson said he would never 
go see to see him more, but he did again however.”23 

Burrow did not state when this occurred, but it was probably soon after the 
Appendix was published. This would have been about a year and a half before Jones 
became Simpson’s first sponsor for his election to fellowship in the Royal Society. 

Some may think that this is a fight simply about competition from a cheap 
knock-off. The problem with this interpretation by itself is that until 1743, De 
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Moivre had not lost any money on his books. Doctrine of Chances was sold by 
subscription and the number of copies printed was covered by the subscription. 
The price of three shillings for Nature and Laws of Chance may not have been 
that relevant to De Moivre in terms of competitive pricing. It was the publication 
of Simpson’s annuities book that brought the conflict into the open. It is useful to 
separate Doctrine of Chances, which includes work on annuities, from Annuities on 
Lives. This will divide De Moivre’s dispute with Simpson into economic and non-
economic parts. 

For the economic part of the argument, I begin by looking at the publishing 
history of some of De Moivre’s books. So far, both editions of Doctrine of Chances 
were published by subscription. The 1725 Annuities upon Lives was not. It was 
printed by William Pearson and sold in the bookshops of Francis Fayram, Benjamin 
Motte, and William Pearson. Three years after its publication, Fayram was still 
advertising copies for sale.24 Though influential, it was not an immediate runaway 
bestseller. The cost was three shillings. This was the same price as Simpson’s 1742 
Doctrine of Annuities and Reversions.25 De Moivre’s 1743 Annuities on Lives was 
printed for the author by Henry and George Woodfall. Unlike Simpson’s books, 
I have found no newspaper advertisements for its sale by a bookseller or for its 
availability from the author. De Moivre must have sold the book himself to his 
network of friends and colleagues or to his clients who came to him for consultations 
regarding the pricing of annuities. 

De Moivre came out with a third edition of Annuities on Lives in 1750 with the 
offending paragraph against Simpson removed. It was printed and sold by Andrew 
Millar, a leading London printer who was known to deal generously with his 
authors.26 When Millar first advertised the sale of the third edition, the advertisement 
said “Price 2s. 6d. formerly sold for 5s.” In the same advertisement, he offered for 
sale Miscellanea Analytica and the second edition of Doctrine of Chances.27 Since 
both were published by subscription, these must have been extra copies that De 
Moivre still possessed and passed on to Millar. Miscellanea Analytica sold at ten 
shillings sixpence, half the original subscription price, and Doctrine of Chances sold 
at the full price of one guinea. 

I have carefully compared the second and third editions of Annuities on Lives 
that are in electronic format on Eighteenth Century Collections Online (ECCO). 
Stephen Stigler also did me the favor of examining original copies in his possession. 
With the exception of the title page, epistle dedicatory, preface, and pages 59 to 68, 
the type looks to be identical between the two editions. This includes all the letters 
and numbers, the placing of these letters and numbers on the page, and the size and 
lengths of mathematical characters such as equal signs and minus signs. Further, 
the errata in the second edition have not been corrected for the third. Stigler also 
noticed that the paper used for the changed pages is lighter than the pages where the 
print is identical between the editions. Millar produced a fourth edition of Annuities 
on Lives. It was advertised for sale late in 1752 and was priced at two shillings 
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sixpence.28 The font in the fourth edition is the same as that used in the second and 
third editions, but the type throughout the whole book has definitely been reset. The 
content is the same as the second and third editions with the addition of annuity 
tables at 3 and 3.5%.

I am left with the distinct impression that De Moivre was unable to sell many 
of his copies of the second edition of Annuities on Lives, which was probably priced 
at five shillings, two more than Simpson’s book. Here is a plausible reconstruction. 
Now in his eighties, De Moivre took all his leftover books to his new printer. His 
copies would not have been bound; bookbinding was separate from printing at this 
time. Millar printed a few new pages for Annuities on Lives, perhaps two full sheets 
meant for octavo pages or thirty-two pages in total, and replaced some of the pages 
in the remaining copies of the second edition to make the third edition. Miscellanea 
Analytica and the second edition of Doctrine of Chances were sold as is. Millar 
quickly sold out his copies of the third edition of Annuities on Lives and was then 
able to print a fourth to meet the demand for the book at the new price.

There could be other explanations for the transition from the second to the 
third edition of Annuities on Lives. One possible explanation is that De Moivre 
owned the type for the second edition and kept it intact. There would have been 
about sixteen trays of type. Since it was a mathematical book, Woodfall may not 
have had any further use for the type once he finished printing the book. The main 
argument against this is that type was expensive to manufacture, so it was usual to 
break up the type once a single sheet was printed. At most, De Moivre could have 
obtained the type for some of the mathematical expressions that were of no future 
use to his printer.

With the publishing background in place, we can now look directly at the 
economic part of the argument between De Moivre and Simpson. Before Simpson 
came along with his book on annuities, there were only a few books on the market 
that provided tables and methods to price annuities, usually related to land ownership. 
They relied on De Moivre’s methodology, and often stated it in print, or on other 
questionable methods. Simpson provided a new and valid approach to annuity 
valuations, backing it up with mathematical arguments. This gave him credibility 
in the marketplace for any consulting activities that he might carry out for annuity 
pricing. 

Many mathematicians used the writing of commercial arithmetic books to 
advertise or legitimize their profession as teachers or consultants. As teachers, they 
also used their own books in their classrooms. A good example of this kind of activity 
prior to the 1730s and 1740s is Richard Hayes. He authored several commercial 
mathematics books, including sets of interest tables and a book called An New 
Method of Evaluating Annuities on Lives. After teaching in someone else’s employ 
or in partnership with another for several years, in the early 1720s he opened his 
own school that trained students in commercial mathematics.29 His books were often 
printed for the author, and newspaper advertisements for his book often mention his 
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school. On the title pages of his books he describes himself as, “Accomptant and 
Writing Master.” 

Put in this context, we can see the second and subsequent editions of De 
Moivre’s Annuities on Lives in an economic light. His business as an annuity con-
sultant was expanding and the printing of Annuities on Lives gave his consultancy 
enormous credibility. The new edition of Annuities on Lives came out because he 
needed to keep pace with Simpson, who seems to have begun providing advice on 
annuity-related material in the early 1740s.30

I think there is also a non-economic side to De Moivre’s initial annoyance with 
Simpson that eventually exploded into print. De Moivre had shown this side of his 
character in his disputes with Cheyne and Montmort. During the Cheyne dispute, 
John Flamsteed commented how upset De Moivre was prior to the publication of 
Cheyne’s book on inverse fluxions. The book was on a subject in which De Moivre 
had recently published. Since his annoyance began prior to publication, De Moivre 
must have seen Cheyne’s work in manuscript form. He seems to have been concerned 
about the correctness of Cheyne’s results and the quality of his mathematics. In 
his dispute with Montmort, De Moivre seems to have been stung by Montmort’s 
accusations of plagiarism and claims that all of his work was derivative from what 
Montmort had done. His response to Montmort was to keep any new and important 
results that he obtained away from Montmort as much as possible. De Moivre’s 
response to Simpson might be rooted in these previous intellectual altercations. De 
Moivre knew that Simpson’s work was entirely derivative of more than twenty years 
of his own labor. And his work was sometimes copied in a way that he considered 
clumsy and inelegant.

Nothing more came of the argument between De Moivre and Simpson. As 
Lalande recounts, however, De Moivre was going to respond again to Simpson’s 
preface in Doctrine of Annuities and Reversions, but was convinced by his friends 
not to do so.31

Thomas Bayes
There has been some thought that Thomas Bayes studied the mathematics of 
probability with Abraham De Moivre. This is a thought that grew in John Holland’s 
mind, which he put on paper for his own lengthy biography of Bayes in the early 
1960s32 after reading George Barnard’s earlier brief biographical notes on Bayes.33 
Barnard had speculated that Bayes learned his mathematics from De Moivre. We 
now know that Bayes studied mathematics at the University of Edinburgh.34 The 
thought that Bayes learned probability from De Moivre may still continue. Banish 
that thought. I will argue that Bayes’s entry to probability was through Philip 
Stanhope and it probably resulted in a little friction at a distance between Bayes and 
De Moivre. Rather than Bayes studying with De Moivre, my take on the situation is 
that they had little to do with one another—a connection never made. I will concede 
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that Bayes was influenced by De Moivre through reading the second edition of 
Doctrine of Chances published in 1738.

It is Philip Stanhope who was responsible for Bayes’s election to fellowship 
in the Royal Society. It is also probably Stanhope who encouraged Bayes to work 
in probability. Stanhope’s family estate at Chevening was only about 15 miles from 
Tunbridge Wells. He definitely visited the spa town in 1736.35 The two may have met 
on, or shortly after, this visit. In 1736, Stanhope would have been 22 years of age and 
Bayes about 35. They had at least one other common interest besides mathematics. 
Stanhope was a pious person who was interested in theological questions.36 Bayes and 
Stanhope become relatively close. In 1747, Stanhope paid a two-guinea subscription 
to Bayes’s Presbyterian chapel in Tunbridge Wells.37 An aristocrat supporting a 
dissenting meetinghouse was not unheard of, but it was unusual.

In the late 1720s or early 1730s, entry into the Royal Society required recom-
mendations from three fellows. There was also the requirement that the prospect-
ive fellow “send in specimens to show what part of philosophy [he is] particularly 
conversant.”38 If this policy continued into the 1740s, then Bayes was required to 
submit some mathematical paper, perhaps not an original work but something that 
displayed his mathematical knowledge. A good candidate for this paper is one that 
Bayes wrote and sent to Stanhope. A copy of it is in Stanhope’s hand.39 The object of 
the paper is to find the quadratic factors of the expression

( ) 21 2cos ,n nx xθ− +

where θ is some angle between 0 and 2π. Since the quadratic factors are polynomials 
of degree two, the factors can contain three terms. Consequently, the problem is often 
expressed, as Bayes did, of finding the “trinomial divisors” of the original expression. 
This was a problem that De Moivre had considered and solved in his 1730 Miscellanea 
Analytica. De Moivre’s solution relies on geometric arguments and begins with the 
equivalent of what is now known as De Moivre’s theorem or formula. In his 1742 A 
Treatise of Fluxions, Colin Maclaurin provides a different geometrical solution and 
follows it with another one that uses only algebra.40 While still geometrical in nature, 
Bayes had yet another approach to solving the problem. I once argued that there 
was no apparent purpose to Bayes obtaining yet another solution unless it predates 
Maclaurin’s.41 A 1741 or early 1742 dating of Bayes’s manuscript therefore seems 
appropriate and corresponds to Bayes’s entry into the Royal Society.

Whether I am right or wrong that Bayes’s paper on trinomial divisors provides 
an illustration to the Royal Society of his competency in mathematics, the work 
seems to have piqued Stanhope’s interest in the problem and De Moivre’s solution 
to it. In 1744, Stanhope was in conversation with De Moivre about the problem, 
questioning De Moivre’s solution. On July 5, 1744, De Moivre wrote to Stanhope 
reiterating that the appropriate factors of the expression are of the form 1 – 2bx + x 2 
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where b is the cosine of an angle.42 Using a simple algebraic argument, De Moivre 
showed that this quadratic expression could not be factored further. He did this by 
showing that the equation 1 – 2bx + x 2 = 0 has imaginary roots given by               . 
Since b is the cosine of an angle, b2 – 1 is the negative of the square of the sine of 
the same angle. De Moivre wrote again to Stanhope a week later with a detailed 
algebraic example, demonstrating the case in the original expression when n = 3. 
You can almost feel De Moive’s frustration, yet careful patience, with his aristocratic 
former pupil. After he set out his derivations for Stanhope, De Moivre wrote, “but 
I believe your Lordship will be of opinion that this method of process is infinitely 
inferiour to the method I took before to prove the thing universally.”

His methods of proof in Miscellanea Analytica still seem to have been 
questioned by Stanhope. An undated letter from De Moivre that follows the first 
two opens:

After due examination of my fifth Corollary, I freely confess that the Transition 
from my Lemma to that Corollary was a little too sudden which occasioned 
some obscurity in it, and that althõ I have endeavoured in my former Letters 
to your Lordship to remove the Doubts that may be entertained about it, yet I 
am not entirely satisfied with what I have done, therefore permit me once more 
Mylord to try whether I shall this time be more successful, I hope your Lordship 
will forgive my dwelling so long upon the same subject, which fault proceeds 
from the earnest desire I have to clear up my thoughts to your Lordship to whose 
Judgment I shall be proud to submit whereof I have written.

Once again, De Moivre went on to explain his proof through some simple examples. 
This final letter may have been prompted by a possible meeting between Stanhope 
and De Moivre on July 24, 1744. On that day, Stanhope recorded in his expense 
account book that he spent one shilling at Slaughter’s Coffeehouse, his only recorded 
visit to the place.43

Re-enter Bayes. At some point, probably in the mid-1740s, Bayes and Stan-
hope were reading through De Moivre’s second edition of Doctrine of Chances and 
corresponding about their own solutions to problems in the book. For example, 
Bayes sent Stanhope his solution to the problem of runs, which De Moivre had con-
sidered in his book.44 Once again, De Moivre had only stated the solution through 
a generating function without showing how he obtained it. And there is a minor 
typographical error in the solution. Bayes gave Stanhope his own solution to the 
problem. And it is incorrect.

What may have annoyed De Moivre is Bayes’s other response to material in 
Doctrine of Chances, specifically the normal approximation to the binomial. This 
was De Moivre’s approximation to the ratio of the middle term in the expansion of 
(1 + 1) n to 2 n, which involves the series 1/12 – 1/360 + 1/1260 – 1/1680 to four 
terms. Using these numbers provides a good numerical approximation to the ratio. 

2 1b b± −
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In 1747, Bayes sent Stanhope a manuscript that opens with

It has been asserted by several eminent Mathematicians that the sum of the Logarithms 
of the numbers 1. 2. 3. 4. 5 &c to z is equal to (1/2)Log,c  + z + (1/2) × Log, z 
lessened by the series z – 1/(12z) + 1/(360z3)  – 1/(1260z5)  + 1/(1680z7)  – 
1/(1188z9)  + &c if c denote the circumference of a circle whose radius is unity.45

At some point, a copy of this manuscript was sent to John Canton, with some 
sentences added to the beginning and end of it. Canton eventually had it published 
in 1763, two years after Bayes’s death.46 Regarding the series that Bayes gave with 
z = 1, De Moivre had stated in Doctrine of Chances, “I perceiv’d that it converged 
but slowly.” Bayes spent the rest of his manuscript showing that the series in 
z diverges. In another manuscript that he sent to Stanhope, Bayes found his own 
approximation to the factorial using a different infinite series argument and applied 
it to approximating the ratio of the middle term in the expansion of (1 + 1) n to 2 n. 
Ultimately, it was the same approximation that De Moivre had obtained. If Stanhope 
had informed De Moivre of Bayes’s work, no doubt it would have annoyed De 
Moivre in the same way Stanhope had done by questioning the work on trinomial 
divisors in Miscellanea Analytica. De Moivre’s annoyance with Bayes may have 
gone further. Bayes’s demonstration that De Moivre’s infinite series diverged was 
also an indication of a flaw, perhaps a minor one but in a major topic, in De Moivre’s 
magnum opus. The normal approximation to the binomial was one of De Moivre’s 
greatest achievements, and it was perhaps slightly tarnished.

There is no other surviving historical evidence thus far that connects Bayes 
and De Moivre. Rather, the evidence that does survive closely connects Bayes 
and Stanhope; and there is a hint in other surviving evidence that Bayes and De 
Moivre never met. Prior to his election, Bayes was first brought to a Royal Society 
meeting on March 25, 1742. Only fellows and their guests could attend a meeting 
and the attendance of non-fellows was recorded in the minutes. Bayes was elected 
fellow on November 24, 1742.47 By this time De Moivre’s attendance at meetings 
appears to have been minimal. On February 10, 1743, Roger Paman was nominated 
to the fellowship. De Moivre, Robert Barker, and George Lewis Scott signed the 
nomination form as his sponsors. Of the three, it is likely only Scott attended the 
meeting. It was he who presented to the Society a book by Paman on fluxions, likely 
to demonstrate Paman’s suitability for election.48 The next year, on June 7, 1744, it 
was William Jones who presented some of De Moivre’s new work on annuities. The 
results were in the form of a letter to Jones that he brought to the meeting. There is 
nothing in the minutes to suggest that De Moivre was present. From all the surviving 
evidence, we can conclude only that Bayes knew of De Moivre’s work, and perhaps 
vice versa. We can also reasonably speculate that Bayes and De Moivre had little, if 
any, personal interaction.
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At the age of 72, Abraham De Moivre finally got his chance at an academic position 
in England. Following the death of Nicholas Saunderson on April 19, 1739, the 
position of Lucasian Professor of Mathematics at Cambridge became vacant. Prior 
to becoming Master of the Mint, Newton had held the professorship from 1669 to 
1702. In order to be eligible for the position, De Moivre was given by royal warrant 
an honorary degree of Master of Arts from Cambridge and was made a member of 
Trinity College.1 The election was described more than twenty years later by the 
Reverend William Cole, who was a student at Cambridge in 1739:

Mr. Colson was vicar of Chalke, near Gravesend. I think he was of neither 
University: a plain, honest man, of great industry and assiduity; but the 
University was much disappointed in their expectations of a Plumian Professor 
that was to give credit to it by his lectures. He was opposed by old Mr. De 
Moivre, who was brought down to Cambridge, and created M.A. when he was 
almost fit for his coffin: he was a mere skeleton, nothing but skin and bones, 
and looked wretchedly, not unlike his mezzotinto print which I have of him. Mr. 
Colson died at Cambridge, Jan. 1760, rector of Lockington, in Yorkshire.2

W. W. Rouse Ball used this anecdote, in part, for his description of the election in A 
History of the Study of Mathematics at Cambridge.3 Rouse Ball ignored that Cole had 
erred in Colson’s education and in saying it was the Plumian Professorship. Colson 
received a Master of Arts degree from Cambridge in 1728.4 Rouse Ball reduced the 
physical description of De Moivre to “very old and almost in his dotage.” He added 
that Robert Smith, Master of Trinity College, supported Colson. What both Ball and 
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Cole left out was that there was a third candidate. He was the Reverend Dr. Roger 
Long, an astronomer and master of Pembroke College, Cambridge.5 At the time of 
the election, both Colson and Long were 59 years old.

Cole’s anecdote illustrates something that De Moivre’s friend Matthew Maty 
mentioned in his biography of De Moivre. It was the discrimination that De Moivre 
had to endure as a foreign-born person living in England, even as a citizen. Cole’s 
description of De Moivre looks as if it is meant to defend the decision to appoint 
Colson—De Moivre already had one foot in the grave, so Colson was the obvious 
choice. His description conflicts with Charles-Étienne Jordan’s and Jean Des 
Champs’s recollections when they met De Moivre and found him to be very good 
company.6 These meetings occurred approximately around the time that De Moivre 
was considered for the position at Cambridge. Perhaps aging, De Moivre was not 
exactly decrepit; he was still successfully giving mathematics lessons in 1742. Some 
of Cole’s other prejudices perhaps stare out at you from his portrait. De Moivre was 
definitely thin. Cole looks like he enjoyed his food—a lot of it.7

Although Cambridge was done with De Moivre, De Moivre was not quite done 
with some of the people at Cambridge, dead or alive. He was involved in a minor way 
with Saunderson’s posthumous Elements of Algebra and interacted with Colson, who 
had been his friend since at least the time of De Moivre’s dispute with George Cheyne.

Blinded by smallpox as a one-year-old, Saunderson entered Cambridge in 1707 
at the age of twenty-five. Within months, he began lecturing young undergraduates 
on Newtonian physics as well as mathematical topics taken from Newton’s 
Arithmetica Universalis, which came out in 1707. He was very successful as a 
lecturer. In his early years at Cambridge, Saunderson was in contact with Newton, 
Halley, De Moivre, and other mathematicians.8 When William Whiston was ejected 
from the Lucasian Professorship in 1711 for his religious beliefs, Saunderson 
replaced him. His candidacy was supported and promoted by two of De Moivre’s 
friends: Isaac Newton and Francis Robartes. Like De Moivre, Saunderson, at the 
time, had no university degree and so was ineligible for the professorship. With 
Robartes’s help, Saunderson was given the degree of Master of Arts by royal warrant 
in 1711. Quickly thereafter, he was made Lucasian Professor of Mathematics. It 
was just prior to this time that De Moivre was looking for an academic position on 
the Continent and Robartes, recognizing his talents, was encouraging De Moivre to 
write on probability. 

While Saunderson was alive, De Moivre communicated two results to him that 
Saunderson included in his Elements of Algebra.9 De Moivre’s first result is related 
to the foliate curve that he had studied in 1715. This curve is given by the equation 
y 3 + y 2x  + yx 2 + x 3 = axy, where a is a known constant. Rather than this curve, De 
Moivre considered the curve given by the equation y 3 + y 2x  + yx 2 + x 3 = a. When he 
took the sum of squares of the terms on the left side of the equation and set it equal 
to b, a known constant, this gave him two equations in two unknowns. From the 
first equation and the second, given by y 6 + y 4x 2 + y 2x 4 + x 6 = b, he was able to find 
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closed-form solutions for x and y. The second result is similar to the first. In this case 
the initial equation is y 4 + y 3x  + y 2x 2 + yx 3 + x 4 = a. Given the sum of squares of 
the terms on the left side is equal to b, De Moivre was again able to get closed-form 
solutions for x and y. After some simplification, he applied these kinds of problems 
to his teaching. In the notebook of his lessons from 1742,10 he asked his student to 
solve for x and y from the equations y 2 + yx + x 2 = 21 and y 4 + y 2x 2 + x 4 = 273.11

On September 26, 1738, about eight months prior to his death, Saunderson 
wrote to De Moivre about a problem in the arithmetic of complex numbers:

Pray, when you write next, be so good as to let me know, whether you have 
any thing by you relating to the extraction of the cube root of an impossible 
binomial, such as 5 2− + − , or 5 2− − − , or whether in your reading you have met 
with any way of doing this with the same certainty as in the case of a possible 
binomial: for my part, I have met with nothing to the purpose about it, not even 
in Wallis himself, who attempts it.12

It is obvious that Saunderson did not think that De Moivre was in his dotage. De 
Moivre did have something, but had misplaced it in a heap of papers. When he 
finally wrote, it was to the editor of Saunderson’s book; Saunderson had been dead 
for nearly a year. De Moivre commented that John Wallis used a circular argument in 
trying to solve the problem in his Algebra about fifty or so years before. De Moivre 
found a solution for the cube root that required the trisection of an angle. This harks 
back to his 1707 paper in which he used trigonometric arguments to find the roots 
of certain polynomials of degree three, five, seven, and so on. It is no surprise that 
De Moivre went on to write in his letter that his method could be generalized to find 
n a b+ − , the nth root of any complex number. Like 1707, the method involves the use 
of cosines that depend on the value of n, and in this case a and b as well. 

There are two other interesting tidbits about De Moivre’s letter in Saunderson’s 
book. First, when pointing out Wallis’s circular argument, De Moivre references 
pages 190 and 191 of Wallis’s Algebra for this error. This is the Latin, not the English, 
edition of Wallis’s work. If he bought the book soon after he arrived in England, he 
would have been more comfortable reading it in Latin. The second tidbit is that his 
solution for           was presented to the Royal Society at a meeting of January 8, 
1740, nearly four months before he sent his letter to the editor of Saunderson’s book. 
The minutes of meeting duly record that “a Paper communicated from Mr De Moivre 
was shewn to the Society.”13 After a brief description of the problem, the entry 
concludes with “Mr De Moivre was ordered thanks for his curious Communication.” 
Full stop. In other words, it was read at the meeting but not recommended for 
publication in Philosophical Transactions. Very few mathematical papers appeared 
in Philosophical Transactions at this time.

De Moivre’s interaction with his old friend John Colson in 1742 has its origins 
earlier in the century. One of the great problems of navigation was the determination 

n a b+ −
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of longitude at sea. The traditional method was to measure, from a known fixed 
point, the time of departure, as well as the speed and direction of the ship. Finding 
an accurate speed requires having an accurate clock. There were two ways to 
do this: build a clock that would operate accurately at sea, or use astronomical 
observations that could be obtained accurately at sea. For example, in the 1680s 
Edmond Halley considered a method of determining longitude that relies on 
astronomical measurements obtained by observing the disappearance of fixed stars 
as the moon passes in front of them. Using new astronomical observations obtained 
at the Greenwich Observatory, he promoted this method in a paper in Philosophical 
Transactions in 1731.14 

Halley’s proposal was one of the responses to a 1714 Act of Parliament that 
established a Board of Longitude to adjudicate a prize to be offered to anyone who 
could measure longitude at sea accurately. A prize of £10,000 was offered to anyone 
who could determine longitude to within one degree, £15,000 for two-thirds of a 
degree, and £20,000 for one-half of a degree. Anyone showing promise could be 
reimbursed up to £2,000 in order to bring the invention up to working order. 

The clockmaker John Harrison began working on a special pendulum clock 
in 1726 that could keep accurate time at sea. Ten years later, Harrison successfully 
constructed and tested a clock that improved longitude reckoning greatly. He was 
awarded £500 to continue developing his clock. By 1741, Harrison was working 
on a second improved clock. It was examined by a group of twelve members of the 
Royal Society, which included Abraham De Moivre. Also in the group were three 
of De Moivre’s longstanding friends (John Colson, Edmond Halley, and William 
Jones) and three of De Moivre’s former students and friends (Martin Folkes, George 
Parker, 2nd Earl of Macclesfield, and Lord Charles Cavendish). These members of 
the Royal Society were so impressed by Harrison’s work that in January 1742 they 
wrote as a group to the Board of Longitude asking the board to continue Harrison’s 
funding.15 

Harrison’s invention was successful, but he did not receive his prize until 1763. 
And it was for the lowest amount—£10,000. The story of Harrison, the problems he 
faced, and the discrimination against him has been popularized in Dava Sobel’s 
book Longitude, which was made into a television series in 2000 with British actor 
Michael Gambon playing the role of John Harrison.

De Moivre had at least one other brush with the problem of the determination 
of longitude at sea. The only woman to try for the Board of Longitude prize, Jane 
Squire, proposed an astronomical solution, rather than a mechanical clock. Her 
proposal was to divide the sky into more than a million numbered spaces, which she 
called “cloves.” Based on the clove directly above the navigator at sea, and using an 
astral watch that was set to the movement of the stars, the navigator could calculate 
the longitude from Squire’s prime meridian, which ran through the alleged spot of 
Jesus of Nazareth’s manger at Bethlehem. Her proposal was not taken seriously, so 
in response she published in 1742 her correspondence with the commissioners and 
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other scientists.16 De Moivre was one of her correspondents. He was very kindly and 
patient, but pointed out one of the flaws in her method. The direction and distance 
travelled by a ship could not be accurately measured in practice. 

In his twilight years, De Moivre remained active in the Royal Society but may 
not have attended many meetings. The last paper that he wrote was on a topic in life 
annuities. William Jones presented it to a meeting of the Royal Society in 1744 and 
it was subsequently published in Philosophical Transactions.17 The problem that De 
Moivre tackled is how to evaluate an annuity in which there are annual payments 
made up to the year of death and a final payment proportional to the time elapsed 
between the last annual payment and the time of death. He may have attended a 
meeting about two years later on November 13, 1746, when a letter to him from 
the composer Johann Christoph Pepusch was presented to the Royal Society. It 
was subsequently published.18 Pepusch was trying to reconstruct the different types 
of ancient Greek music whose theory, originating with Pythagoras, was based on 
ratios of string lengths corresponding to the prime numbers 2, 3, and 5, he said.19 He 
added that other ancient writers such as Ptolemy added the prime numbers 7 and 11. 
Since the theory was mathematically based, Pepusch sought De Moivre’s help. De 
Moivre and his former student, George Lewis Scott, went over the ancient texts on 
music to try to explain their mathematical content to Pepusch. Pepusch’s Latin was 
weak and his Greek even weaker, which caused De Moivre in frustration to refer 
to Pepusch as “a stupid German dog, who could neither count four, nor understand 
anyone that did.”20 Probably prior to De Moivre’s frustration setting in, De Moivre 
and Scott, along with a few others, sponsored Pepusch’s nomination to fellowship 
in the Royal Society. He was put up because he had “distinguished himself by his 
curious enquiries into the Theory and antiquities of the Science of Musick.”21 De 
Moivre’s other main activities in the Royal Society around this time appear to be 
sponsoring candidates for election to fellowship. In the decade covering 1737 to 
1747, De Moivre was one of the sponsors on fifteen successful nominations for 
fellowship.22 At least four were former students. After a six-year hiatus, in 1753 De 
Moivre signed the nomination papers for one more candidate for fellow. This was 
Robert Symmer, who was a former student of Colin Maclaurin at Edinburgh.23 

Although he never received a patronage position, academic or otherwise, that 
would reflect his talents, De Moivre’s abilities were publicly recognized late in his 
life. This was done, of course, in a non-monetary way in line with the negative view 
on the British support for science held by the French historian and art critic, Jean-
Bernard Le Blanc.24 

In 1735, when he was in his late sixties, De Moivre was made a member of 
the Berlin-Brandenburgische Sozietät der Wissenschaften, known in England as the 
Berlin Academy of Sciences. It came about through the sponsorship of Philippe 
Naudé. A fellow Huguenot whose family escaped to Berlin instead of London after 
the Revocation of the Edict of Nantes, Naudé had read De Moivre’s Miscellanea 
Analytica and was impressed enough by the work to put De Moivre’s name forward 
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to the Berlin Academy. Two years after his election in Berlin, De Moivre returned 
the favor by acting as one of Naudé’s sponsors for fellowship in the Royal Society.25 

Another non-Brit recognized De Moivre’s talents in a different way. Born in 
Geneva, the medalist Jacques-Antoine Dassier had studied in France and Italy. He 
came to England in 1740, where he took a position as an assistant engraver at the 
Mint within a year of his arrival. Prior to taking his position at the Mint, he proposed 
to make a set of thirteen medals featuring the busts of distinguished Englishmen 
who were still living. The medals would be financed by subscription at a cost of four 
guineas for the set or seven shillings sixpence for an individual medal. De Moivre’s 
medal was the second or third one made. His medal and that of the poet Alexander 
Pope were cast in 1741. The medal set also features two of De Moivre’s former 
students: Martin Folkes and John Montagu, 2nd Duke of Montagu. Folkes’s medal, 
the first of the set, was cast in 1740 and Montagu’s in 1751, about two years after 
his death.26 

De Moivre also went from a medal to a statue. At some point in the eighteenth 
century, his bust, along with one of Newton and another of Pope, stood in the 
orchestra pavilion at Vauxhall Gardens, a pleasure garden that was very near the 
Thames River in South Lambeth.27 

Finally, De Moivre had some hope of a monetary reward. On the death of 
the Prussian philosopher and mathematician Christian Wolf, a position as associé 
étranger became vacant in the French Académie royale des sciences. There were a 
fixed number of foreign members in the Académie royale and a new member was 
elected only on the death of a current member. The standard procedure was that the 
members of the Académie royale would put forward two or more nominations to 
the king, who would select one. After Wolf’s death, the members met on August 14, 
1754, and selected De Moivre and the Swiss biologist Albrecht von Haller for the 
king’s consideration.28 The king chose De Moivre. According to Maty, De Moivre 
considered his election the crowning achievement of his career.29 Within a week, the 
news reached London.30 After reporting his election and commenting that he had a 
long and distinguished career, the London newspapers added, “It is also said, that 
his Most Christian Majesty is inclined to bestow a Pension on him, as a Mark of his 
own Esteem for Science.” The inclination did not have to last long; De Moivre was 
dead within a little more than three months. De Moivre was replaced by his former 
student, George Parker, 2nd Earl of Macclesfield. There was no mention of a pension 
when his election was announced.31

By 1744, De Moivre was starting to have problems with his eyesight. In a 
letter that year to Philip Stanhope, 2nd Earl of Stanhope, De Moivre mentioned that 
he had wished to reply to Stanhope’s questions at greater length, but the weakness of 
his eyes prevented him from doing so. His handwriting was also beginning to look 
a little shaky.32 Over the next decade, his sight and his hearing declined further.33 
In May of 1751, the newspapers reported that he was dangerously ill.34 De Moivre 
survived that particular scare. Just prior to his death, he was in serious physical 

© 2011 by Taylor & Francis Group, LLC



211

 Old Age    

decline, sleeping twenty hours a day. His mind remained sharp, however. Matthew 
Maty reports,

Although he came to need twenty hours sleep, he spent the remaining three or 
four hours taking his only meal of the day and talking with his friends. For the 
latter, he remained the same: always well-informed on all matters, capable of 
recalling the tiniest events of his life, and still able to dictate answers to letters 
and replies to inquiries related to algebra.35

He died on November 27, 1754, and was buried from St. Martin-in-the-Fields 
Church on December 1.36 

In his will, which he drew up ten years prior to this death, De Moivre left an 
estate of £1600 invested in South Sea Annuities.37 His first priority was to provide for 
his relatives. Amounts of £600 were bequeathed to both Sarah and Anne De Moivre, 
the two daughters of his nephew Daniel junior. The yearly interest on £400 in these 
annuities was given to Anne De Moivre, the widow of his brother Daniel senior. 
On the death of his sister-in-law, her money was to go to his grand-nieces. Daniel 
junior’s widow, Marianne Gomm, had remarried and she was to receive only the 
annuity payments for her daughters until they reached the age of twenty-one or were 
married. In the event that his grand-nieces both died before the age of twenty-one, 
an event which did not occur, £1400 of his investments was to be divided among the 
survivors of his friends and one relative: Martin Folkes, Edward Montagu, William 
Jones, Peter Wyche, and John Le Sage. The remaining £200 would be split evenly 
between the French Hospital and the poor of the Parish of St. Anne, the parish in 
which he resided. Excluding his cousin Le Sage, the remaining four beneficiaries 
were all fellows of the Royal Society. Of these, all were fairly wealthy landowners 
except Jones. De Moivre’s estate was administered by his executors, George Lewis 
Scott and Francis Philip Duval. Scott, a barrister, and Duval, a physician, were 
both fellows of the Royal Society. Both had De Moivre as one of their sponsors for 
election to the fellowship. De Moivre directed that his books be sold and that Scott 
be given his manuscripts with the condition that they would not be published. Not 
only were the manuscripts never published, none of Scott’s own manuscripts or any 
in his possession seem to have survived.

Two codicils were attached to the will. The first, dated March 9, 1751, in-
structed his executors to give John Gray the sum of £5 as a mark of his esteem for 
the man. Gray was elected a fellow of the Royal Society in 1732 and was a friend of 
James Stirling.38 Halley, Stirling, and Machin were Gray’s sponsors for his fellow-
ship. De Moivre did not know Gray well prior to 1744 when he made out his will. 
According to De Moivre, Gray had been out of the country for some time; according 
to Gray’s 1769 will, he owned a sugar plantation in Jamaica, which may account for 
his absence.39 When he returned to England, he lived on a street by Covent Garden 
near where De Moivre lived. When Robert Symmer was nominated for fellowship 
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in 1753, Gray was one of his sponsors along with De Moivre. The second codicil 
is dated August 2, 1752. In it De Moivre instructed his executors to give Susanna 
Spella £25. She had been his housekeeper for several years; and the only condition 
to the bequest was that she had to be his housekeeper at the time of his death.

In the decade between his correspondence with Stanhope in 1744 and his death 
in 1754, despite failing eyesight and other problems that are attendant on old age, De 
Moivre continued to work as a consultant in the valuation of annuities and games 
of chance. He had help from his former student, James Dodson. This information 
surfaces only after De Moivre’s death. Within two weeks of De Moivre’s death, an 
advertisement was placed in the London Evening Post that confirms his ongoing 
consulting work in annuities and games of chance.40 An unnamed individual in the 
advertisement said that he had been helping De Moivre in his consulting work for 
several years because of De Moivre’s impaired eyesight. That unnamed individual, so 
the advertisement said, was now going to continue De Moivre’s consulting business 
at Pons Coffeehouse, one that De Moivre frequented with his Huguenot friends.41 
What points to Dodson as the unnamed individual is that about nine months after 
the initial notice to the public about the consultant replacing De Moivre, Dodson 
placed an advertisement in the same newspaper stating that he was in the business 
of carrying out surveys of estates in land. He could be found at Pons Coffeehouse, at 
Bank Coffeehouse, or at the Royal Mathematical School.42 Between the time of De 
Moivre’s death in November 1754 and the placing of the Dodson’s advertisement in 
September 1755, Dodson obtained the position of master at the Royal Mathematical 
School.43

In a letter to Georges-Louis Leclerc, Comte de Buffon, written in the late 
1730s or early 1740s, Jean-Bernard Le Blanc confirmed that De Moivre gave advice 
to gamesters on the calculation of probabilities. In his letter he says,

I must add that the great gamesters of this country, who are not usually 
great geometricians, have a custom of consulting those who are reputed able 
calculators upon games of hazard. M. de Moivre gives opinions of this sort 
every day at Slaughter’s coffee-house, as some physicians give their advice 
upon diseases at several other coffee-houses about London.44

By the time this was filtered through Victorian sensibilities, Samuel Smiles 
transformed the information in this quotation to “It is said he derived a precarious 
subsistence from fees paid to him for solving questions relative to games of chance 
and other matters connected with the value of probabilities.”45

The only thing precarious about De Moivre was perhaps his health; financially 
he was very comfortable. Le Blanc also indicated the kind of help that gamesters 
might receive from mathematicians. Professional gamesters often wrote out tables 
of probabilities giving the various chances in each of the games they played. They 
either had the table memorized or kept it in their pockets when at the gaming table. 
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Going to see De Moivre to get a probability table constructed was a convenient walk 
for a gambler. Many gaming houses were not far from Slaughter’s Coffeehouse; 
there were several of them in Haymarket and Covent Garden in the 1730s.

De Moivre continued to answer other requests for mathematical advice. Sir 
Alexander Cuming, who had inspired De Moivre to obtain the normal approximation 
to binomial probabilities, wrote to De Moivre in 1744 from debtors’ prison about a 
problem in finding limits. It was a challenge problem with a trick to it that spoke to 
Berkeley’s criticism of Newton’s approach to the calculus in The Analyst. Cuming 
also wrote to Colin Maclaurin and got a different answer from him.46 The problem is 
to find the sum for infinite series
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when a = 0. The problem highlights Berkeley’s point that at the beginning of a 
problem a term is nonzero and then later is set to zero. The term within the large round 
brackets is an infinite geometric series which sums to (a + b)/a. Consequently, the 
complete expression reduces to (b – a)/(a + b) when a is nonzero. When a is then set 
to zero in this final expression, the sum reduces to 1. An answer of 1 was De Moivre’s 
response to Cuming’s query. Maclaurin noted that when the infinite series is truncated 
to any finite number of terms, the sum is 0 when a = 0. On taking the limit by infinitely 
increasing the number of terms, he decided that 0 was the correct answer, even though 
he recognized that the reduced expression (b – a)/(a + b) = 1 when a = 0. The 
theory of limits was not well understood as the calculus was developing in the 
seventeenth and eighteenth centuries.47 After obtaining different answers from 
De Moivre and Maclaurin, Cuming wrote to Philip Stanhope about it, challenging 
him for a solution.48

The bookseller, Andrew Millar continued to advertise the second edition of 
Doctrine of Chances along with Miscellanea Analytica and the fourth edition of 
Annuities on Lives until a third edition of Doctrine of Chances was advertised for 
sale on January 24, 1756.49 Until at least 1760, Millar advertised the sale of the new 
edition as well as of the other two books.50 He continued the book as a luxury item. 
The price of the new edition was the same as the second, one guinea. It was bound 
and printed on Royal paper, which was heavy good quality paper, the second most 
expensive available.51

Just as James Dodson helped De Moivre in his consulting work, someone 
else helped De Moivre bring the third edition of Doctrine of Chances to press. 
This was Patrick Murdoch, a Church of England clergyman who was also a 
good mathematician. A contemporary and fellow student with Robert Symmer at 
Edinburgh, he had also studied under Maclaurin. One possible reason De Moivre 
chose Murdoch was that the clergyman had gone through Maclaurin’s manuscripts 
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after his death in 1746 and put together the book An Account of Sir Isaac Newton’s 
Philosophical Discoveries, in Four Books that was published in 1748.52 The book 
“ranks as one of the most adept popular expositions of Newtonian natural philosophy 
published in the Enlightenment.”53 For the third edition of Doctrine of Chances, 
De Moivre took a copy of his second edition and made some marginal notes and 
corrections in it.54 Murdoch made a few more corrections and additions, then 
reordered the material. The probability problems in the new edition are unaltered 
from the old one, other than some shuffling and renumbering of them. There are 
no new results; rather some additional explanatory material is added to some of the 
problems. Murdoch took all the material on annuities and placed it at the end of 
the book. Almost the entire section on annuities is the same, word-for-word, as the 
fourth edition of Annuities on Lives with the errata corrected. There is an additional 
chapter in the annuities section. This is Chapter IX in which De Moivre (or perhaps 
Murdoch or Dodson) admits the problem of the incompatibility of the linear and 
exponential survivorship models in the evaluation of joint-life annuities. Another 
approach is given that is claimed to be a more accurate approximation to the true 
value of the joint-life annuity. 

All these changes, mostly minor in substance when compared to De Moivre’s 
original results, make the third edition run to 348 pages. Since the second edition 
is 259 pages, Millar advertised that the book had been increased by a third. Millar 
may have wanted De Moivre to complete a third edition because his bookshop was 
running out of copies of the second one.

There were some changes to third edition that may not have come directly 
from De Moivre before he died. On March 18, 1755, Murdoch wrote to Philip 
Stanhope about the changes he hoped to make:

The Edition which Mr. De Moivre desired me to make of his Chances is now 
almost printed; and a few things, taken from other parts of his work, are to be 
subjoined in an Appendix. To which Mr. Stevens, and some other Gentlemen, 
propose to add some things relating to the same subject; but without naming any 
author: and he thought if your Lordship was pleased to communicate anything 
of yours, it would be a favour done the publick. Mr. Scott also tells me, there 
are in your Lordship’s hands two Copy Books containing some propositions on 
Chances, which De Moivre allowed him to copy. If your Lordship would be 
pleased to transmit these (to Millar’s) with your judgement of them, it might be 
a great advantage to the Edition.55

An analysis of Stanhope’s unpublished work in probability shows that it is unlikely 
that Stanhope submitted any of his work.56 It is impossible to say what new parts 
of the third edition are due to Murdoch and his friends. There is one reasonable 
possibility that can be singled out. In the appendix at the end of the third edition, 
item III is about Waldegrave’s problem or the problem of the pool for four players. 
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In this addition, the writer shows how to obtain the probability that the pool will 
be won after a given number of games.57 Anders Hald was puzzled about why De 
Moivre waited until the third edition when it could easily have appeared in the first 
edition of Doctrine of Chances.58 The puzzle might be solved if Murdoch or Henry 
Stewart Stevens or George Lewis Scott inserted this material.

I have told you of De Moivre’s fights with Cheyne, Montmort, and Simpson 
and how he unilaterally ceased correspondence with the Bernoullis, Johann and 
Nicolaus. I have also told you about a possible cantankerous streak in De Moivre, 
backed by a few examples. That was not how his friends remembered him. The 
notice in the newspaper the day after his death reads,

Yesterday Morning, died of old Age, Mr. Abraham De Moivre, about eighty-
seven. His great Knowledge, his communicative Disposition and chearful [sic] 
Temper render’d him admired, esteemed, and loved by all who knew him.

The substance of De Moivre’s death notice is unusual for mid-eighteenth-century 
newspapers by speaking to qualities that show De Moivre as a person. By contrast, 
the 1761 notice of Thomas Bayes’s death only says that he died suddenly. For 
Martin Folkes, who died a few months before De Moivre, the death notice lists his 
accomplishments only: president of the Royal Society, president of the Society of 
Antiquaries, graduate of both universities and Doctor of Laws at Oxford. Likewise, 
another De Moivre student higher up the social ladder received only a few more 
lines than Folkes. When George Parker, 2nd Earl of Macclesfield, died in 1764, 
after his list of major duties (teller of the Exchequer, president of the Royal Society, 
vice president of the Foundling Hospital), the death notice mentions in addition 
only his advantageous marriage and his heirs.59 Of these three—Bayes, Folkes, and 
Macclesfield—there is no indication given in their death notices of any positive 
personal traits of the individual. De Moivre, on the other hand, had a few admirable 
ones that people publicly recognized. Such was his personality that his network of 
friends admired, respected, supported, and remained with him until the very end.
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1 Galloway (1839, pp. 7, 14–15).
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Chapter 1
1 Maty (1755, p. 44).
2 Abraham De Moivre’s name is variously spelled “De Moivre,” “de Moivre” and “Demoivre.” Common 
French usage is “de” rather than “De.” I will use “De Moivre” since that is what appears on most docu-
ments that I have seen where his signature is attached. The use of “de” or “De” usually implies that the 
family is noble, although that is not always the case. Abraham De Moivre came from the bourgeoisie. In 
his biography of De Moivre in the online Oxford Dictionary of National Biography, Ivo Schneider sug-
gests that the “de” was adopted in England to gain prestige with his English clients among landed families 
and the nobility. This was questioned by Bellhouse and Genest (2007) who note that several (140 out of 
about 1600) Huguenots, overwhelmingly non-noble, recorded at the Savoy Church on arrival in England 
used the particle “de” in their names. In a genealogy of the Moivre family in the eighteenth-century 
manuscript (Ms. 171) held by La Bibliothèque de la Société de l’Histoire du Protestantisme français, 
the particle “de” is used throughout the discussion of this family. When referring to a family by surname 
only, when the name contains “de,” it is usual to drop the “de.” I will follow this convention, except when 
referring to Abraham. For example, “De Moivre’s rival in probability was Montmort (Pierre Rémond de 
Montmort).” Other eighteenth-century variations in the spelling of De Moivre’s name have cropped up. 
In French sources, I have seen Moyvre instead of Moivre. I have also seen Moavre and Movire in early 
English sources that might reflect non-French speakers trying to write down what they heard. Finally, two 
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p. 223) also reports this with specific reference to Daniel De Moivre.
30 Hérelle (1905, vol. 1, pp. 48–53, 281–288).
31 Sturdy (1995, pp. 378–380).
32 Maty (1755, pp. 6–7).
33 Haag and Haag (1846–1859, vol. 7, p. 260).
34 Barthélemy (1861, vol. 2, p. 292).
35 Jaquelot (1712, pp. 11–12, 61–63).
36 Douen (1894, pp. 223–224). There is much confusion over the Prieuré de Saint-Martin and who was held 
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Chapter 5
1 Translation of Maty (1755) from Bellhouse and Genest (2007, p. 130).
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regular members; the last four names, ending with De Moivre, are also in alphabetical order and cor-
respond to foreign members.
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16 Bernoulli’s problem is described in Hald (1990, pp. 184–185).
17 Cited as Roberts (1693).
18 Todhunter (1965, pp. 53–54).
19 Harris (1710).
20 Montmort (1708).
21 Newton (1959–1971, vol. 4, pp. 533–534) and Rigaud (1965, p. 256). In a 1712 letter from Abraham 
De Moivre to Johann Bernoulli, De Moivre says that Robartes had mentioned Montmort’s book to him 
(Wollenschläger, 1933, p. 272).
22 Anonymous (1709, p. 462). Review of Essay d’analyse sur les jeux de hazard, by Pierre Rémond de 
Montmort, Supplément du Journal des sçavans (1709): 462.
23 De Moivre (1718, p. i).
24 Cotton (1674 and 1709).
25 Wollenschläger (1933, p. 272).
26 Royal Society Journal Book, June 21, 1711.
27 Journal de Trévoux ou memoires pour server a l’histoire des sciences et des arts, 1709, pp. 1369–1383.
28 Journal de Trévoux ou memoires pour server a l’histoire des sciences et des arts, 1712, pp. 1452–1367.
29 Montmort (1713, p. 362).
30 Osborne (1742). 
31 Harrison (1978).
32 Sunderland (1881–1883).
33 British Library, Add. 4281.
34 Montmort’s receipt of De Mensura Sortis is also recorded in Montmort (1713, p. xxvii).
35 Montmort (1713, p. 375).
36 Bernoulli (1992, pp. 518 and 523).
37 Universitätsbibliothek Basel Bernoulli papers. L I a 654, Nr. 9 and L I a 654, Nr. 10.
38 McClintock’s translation of De Moivre (1711) in De Moivre (1984, p. 237).
39 Montmort (1713, pp. 361–370).
40 Bernoulli (1992, p. 523).
41 Universitätsbibliothek Basel Bernoulli papers. L I a 654, Nr. 10.
42 Montmort (1713, pp. 361–370).
43 Montmort actually used the word pillaged, rather than plagiarized: “il a bien pillé mon livre sans me 
nommér.” Taylor (1793, pp. 97–98).
44 Shank (2008).
45 Fontenelle (1719, p. 89).
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46 See Bellhouse and Genest (2007, p. 121) for a full translation of this passage.
47 Halley (1693).
48 Royal Society Archives Cl.P/1/4 and Royal Society Journal Book, vol. 8, March 6, 1691/2.
49 Schneider (1968) and Hald (1990).
50 Edinburgh University Library, GB 0237 David Gregory Dk.1.2.2 Folio B [18].
51 Bellhouse and Davison (2009) have analyzed De Moivre’s Problems 6 and 7 and have speculated on 
how De Moivre went about obtaining his numerical solutions to these problems.
52 Bellhouse and Davison (2009) have discussed the fluxional equation and the attempted infinite series 
solution.
53 Hald (1990, p. 203). An explanation of De Moivre’s solution can be found in Hald (1990, pp. 203–240) 
and Thatcher (1957).
54 Montmort (1713, pp. 248–257).
55 Piquet is described in Anonymous (1651) and Cotton (1674). The first mention of the variation in play 
using the pool is in Seymour (1719). 
56 Seymour (1719, pp. 92–93). 
57 Seymour (1719, p. 91).
58 De Moivre (1718, p. 84).
59 See Bellhouse (2007a) for information about Charles Waldegrave and his association with Montmort.
60 St. John’s College Library, Cambridge. TaylorB/E7.
61 Montmort (1713, p. 369).
62 Montmort (1713, p. 275).
63 McClintock’s translation of De Moivre (1711) in De Moivre (1984, p. 240).
64 Lewis and Short (1879).
65 St. John’s College Library, TaylorB/E7.
66 De Moivre’s pride in his work was reported by William Jones in a letter to Roger Cotes. See Edleston 
(1969, p. 208).
67 Wollenschläger (1933, pp. 270–271, 279).
68 Hall (1980, p. 6) has pointed out that two of the sources of several priority disputes in past were “the great 
value attached to personal merit” and “the emphasis on innovation as the creation of an individual talent.”
69 Halley (1715, p. 251). See also Bellhouse and Genest (2007, p. 120).
70 Ladurie et al. (2001, p. 220).
71 See, for example, Bellhouse (2008).
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1 Baker (1756, p. 155).
2 Newton (1711).
3 Hall (1980, pp. 169–170) and Newton (1967–1981, vol. II, pp. 206–207).
4 Newton (1959–1971, vol. V, p. 95).
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6 Newton (1967–1981, vol. III, pp. 244–255).
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scripts on the quadrature of curves.
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losopher Samuel Clarke translate the Opticks into Latin (Newton (1706)). Newton’s biographer, David 
Brewster (Brewster (1855, vol. I, p. 248)), claimed, “Demoivre is said to have secured and taken charge 
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9 Fatio de Duillier (1699, p. 18).
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12 Hall (1980, p. 178).
13 Royal Society Archives EL/H3/53.
14 The claim is in a 1714 letter from Bernoulli to Leibniz. An English translation is in Newton (1959–1971, 
vol. VI, p. 68).
15 Universitätsbibliothek Basel Bernoulli papers. L I a 654, Nr. 11.
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17 Wollenschläger (1933, pp. 270–271).
18 Wollenschläger (1933, pp. 277–280). 
19 Hall (1980, pp. 195–197).
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21 Universitätsbibliothek Basel Bernoulli papers. L I a 673, Nr. 1, fol. 5–6.
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23 Wollenschläger (1933, pp. 286–289).
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25 Universitätsbibliothek Basel Bernoulli papers. L I a 654, Nr. 19*.
26 Universitätsbibliothek Basel Bernoulli papers. L I a 654, Nr. 13.
27 Wollenschläger (1933, pp. 289–290) as translated by Catherine Cox.
28 Bernoulli (1713, p. 127).
29 See Hall (1980, p. 295).
30 There was also, unknown at the time to Bernoulli, a serious faux pas on Newton’s part. He did not ac-
knowledge in the second edition of the Principia that the correction to Proposition 10 in Book II was due 
to Bernoulli.
31 Universitätsbibliothek Basel Bernoulli papers. L I a 673, Nr. 1, fol. 13–14.
32 Journal literaire May/June 1713.
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34 Newton (1959–1971, vol. 6, pp. 80–90).
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Moivre to Varignon. Varignon apparently told Jacob Hermann of it, who informed Christian Wolf, who 
passed the information on to Leibniz. Wolf’s letter is translated in Newton (1959–1971, vol. VI, p. 180). 
36 Journal literaire July/August,1714.
37 Newton (1959–1971, vol. 6, p. 114).
38 Guicciardini (1995) has treated the controversy between Keill and Bernoulli on central forces in detail. 
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39 Guicciardini (1995, p. 555).
40 Journal literaire 1716.
41 Keill’s article has a misprint and gives the year as 1708.
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43 Universitätsbibliothek Basel Bernoulli papers. L I a 665, Nr. 11.
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baum (1985).
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of the suspending material is much less than the bob and the length of the suspending material is much 
greater than the dimension of the bob. It is a compound pendulum when the mass of the suspending mate-
rial is not negligible when compared to the bob. 
46 Leibniz (1716) and Bernoulli (1716).
47 Taylor (1719).
48 St. John’s College Library, Cambridge. TaylorB/E7.
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49 Messbarger (2002, p. 55).
50 Meli (1999).
51 The episode in described in Newton (1967–1981, vol. 8, pp. 62–67) and Newton (1959–1971, vol. 6, 
pp. 285–293, 295–296).
52 Englesman (1984, p. 74).
53 Newton (1959–1971, vol. 7, p. 138).
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